Skip to main content

Magnetic Resonance Imaging: Advanced Imaging Techniques

  • Chapter
  • First Online:
Imaging of Soft Tissue Tumors

Abstract

The purpose of this chapter is to review the basic principles and clinical applications of advanced magnetic resonance imaging (MRI) of soft tissue tumors, including dynamic contrast-enhanced MRI (DCE-MRI), diffusion MRI, and proton nuclear magnetic resonance (NMR) spectroscopy. DCE-MRI is a method of physiological imaging, based on ultrafast imaging, with the possibility of following the early enhancement kinetics of a water-soluble contrast agent after intravenous bolus injection. This technique provides clinically useful information, by depicting tissue vascularization and perfusion, capillary permeability, and composition of the interstitial space. Diffusion MRI provides quantitative and qualitative information on tissue cellularity, cell membrane integrity, and the interstitial space. NMR spectroscopy characterizes molecules in soft tissue tumors. The most important advantages of these techniques are their abilities to monitor response to preoperative chemotherapy, to identify areas of viable tumor before biopsy, to differentiate tumor tissue from peritumoral edema, and to provide physiological information for improved tissue characterization and detection of residual or recurrent tumor tissue after therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brasch RC (1992) New directions in the development of MR imaging contrast-media. Radiology 183:1–11

    Article  CAS  PubMed  Google Scholar 

  2. Verstraete KL, Dedeene Y, Roels H, Dierick A, Uyttendaele D, Kunnen M (1994) Benign and malignant musculoskeletal lesions – dynamic contrast-enhanced MR-imaging – parametric first-pass images depict tissue vascularization and perfusion. Radiology 192:835–843

    Article  CAS  PubMed  Google Scholar 

  3. Wolf GL (1991) Contrast agents in spine and body MRI: introduction. In: Hasso AN, Stark DD (ed) American Roentgen Ray Society – categorical course syllabus: spine and body magnetic resonance imaging. Reston, Congres of ARRS in Boston, 1991. Reston, VA, USA pp 111–115

    Google Scholar 

  4. Dean PB, Kormano M (1977) Intravenous bolus of 125I-labeled meglumine diatrizoate. Early extravascular distribution. Acta Radiol Diagn (Stockh) 18:293–304

    Article  CAS  Google Scholar 

  5. Kormano M, Dean PB (1976) Extravascular contrast material: the major component of contrast enhancement. Radiology 121:379–382

    Article  CAS  PubMed  Google Scholar 

  6. Tong CY, Prato FS, Wisenberg G et al (1993) Measurement of the extraction efficiency and distribution volume for Gd-DT-PA in normal and diseased canine myocardium. Magn Reson Med 30:337–346

    Article  CAS  PubMed  Google Scholar 

  7. Tong CY, Prato FS, Wisenberg G et al (1993) Techniques for the measurement of the local myocardial extraction efficiency for inert diffusible contrast agents such as gadopentetate dimeglumine. Magn Reson Med 30:332–336

    Article  CAS  PubMed  Google Scholar 

  8. Verstraete KL et al (1992) Dynamic contrast enhanced MRI of musculoskeletal neoplasms: different types and slopes of TICs (abstract). Proceedings of Society of Magnetic Resonance in Medicine. Berkely, p 2609

    Google Scholar 

  9. Debaere T, Vanel D, Shapeero LG, Charpentier A, Terrier P, Dipaola M (1992) Osteosarcoma after chemotherapy – evaluation with contrast material enhanced subtraction MR imaging. Radiology 185:587–592

    Article  CAS  Google Scholar 

  10. Hanna SL, Parham DM, Fairclough DL, Meyer WH, Le AH, Fletcher BD (1992) Assessment of osteosarcoma response to preoperative chemotherapy using dynamic flash gadolinium-DTPA-enhanced magnetic-resonance mapping. Invest Radiol 27:367–373

    Article  CAS  PubMed  Google Scholar 

  11. Konig H, Sieper J, Wolf KJ (1990) Rheumatoid arthritis – evaluation of hypervascular and fibrous pannus with dynamic MR imaging enhanced with Gd-DTPA. Radiology 176:473–477

    Article  CAS  PubMed  Google Scholar 

  12. Konig H, Sieper J, Wolf KJ (1990) Dynamic MRI for the differentiation of inflammatory joint lesions. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 153:1–5

    Article  CAS  PubMed  Google Scholar 

  13. Ross JS, Delamarter R, Hueftle MG et al (1989) Gadolinium-DTPA-enhanced MRI of the postoperative lumbar spine: time course and mechanism of enhancement. AJR Am J Roentgenol 152:825–834

    Article  CAS  PubMed  Google Scholar 

  14. Verstraete KL, Dierick A, De Deene Y et al (1994) First-pass images of musculoskeletal lesions: a new and useful diagnostic application of dynamic contrast-enhanced MRI. Magn Reson Imaging 12:687–702

    Article  CAS  PubMed  Google Scholar 

  15. Bollow M, Braun J, Hamm B et al (1995) Early sacroiliitis in patients with spondyloarthropathy – evaluation with dynamic gadolinium-enhanced MR-imaging. Radiology 194:529–536

    Article  CAS  PubMed  Google Scholar 

  16. Bonnerot V, Charpentier A, Frouin F, Kalifa C, Vanel D, Dipaola R (1992) Factor-analysis of dynamic magnetic-resonance-imaging in predicting the response of osteosarcoma to chemotherapy. Invest Radiol 27:847–855

    Article  CAS  PubMed  Google Scholar 

  17. Charpentier E et al (1990) Factor analysis processing of dynamic MRI: new method to assess osteosarcoma preoperative chemotherapy response (abstract). Radiology 177(Suppl):221

    Google Scholar 

  18. Cova M, Kang YS, Tsukamoto H et al (1991) Bone-marrow perfusion evaluated with gadolinium-enhanced dynamic fast MR imaging in a dog-model. Radiology 179:535–539

    Article  CAS  PubMed  Google Scholar 

  19. Erlemann R, Reiser MF, Peters PE et al (1989) Musculoskeletal neoplasms – static and dynamic Gd-DTPA enhanced MR imaging. Radiology 171:767–773

    Article  CAS  PubMed  Google Scholar 

  20. Erlemann R, Sciuk J, Bosse A et al (1990) Response of osteosarcoma and Ewing sarcoma to preoperative chemotherapy – assessment with dynamic and static MR imaging and skeletal scintigraphy. Radiology 175:791–796

    Article  CAS  PubMed  Google Scholar 

  21. Fletcher BD, Hanna SL, Fairclough DL, Gronemeyer SA (1992) Pediatric musculoskeletal tumors – use of dynamic contrast-enhanced MR imaging to monitor response to chemotherapy. Radiology 184:243–248

    Article  CAS  PubMed  Google Scholar 

  22. Hanna SL, Fletcher BD, Fairclough DL, Le A (1990) Use of dynamic Gd-DTPA enhanced MRI in musculoskeletal malignancies (abstract). Proceedings of Society of Magnetic Resonance Imaging, p 9

    Google Scholar 

  23. Lang P, Stevens M, Vahlensieck M (1991) Rheumatoid arthritis of the hand and wrist: evaluation of soft-tissue inflammation and quantification of inflammatory activity using unenhanced and dynamic Gd-DTPA enhanced MRI (abstract). Proceedings of Society of Magnetic Resonance in Medicine p 66

    Google Scholar 

  24. Mirowitz SA, Totty WG, Lee JKT (1990) Evaluation of musculoskeletal masses with dynamic Gd-DTPA enhanced rapid-acquisition spin-echo imaging (abstract). Radiology 177(Suppl):221

    Google Scholar 

  25. Mirowitz SA, Totty WG, Lee JKT (1992) Characterization of musculoskeletal masses using dynamic Gd-DTPA enhanced spin-echo MRI. J Comput Assist Tomogr 16:120–125

    CAS  PubMed  Google Scholar 

  26. Reiser MF, Bongartz GP, Erlemann R et al (1989) Gadolinium-DTPA in rheumatoid-arthritis and related diseases – first results with dynamic magnetic-resonance imaging. Skeletal Radiol 18:591–597

    Article  CAS  PubMed  Google Scholar 

  27. Sugimoto H, Miyaji N, Ohsawa T (1994) Carpal-tunnel syndrome – evaluation of median nerve circulation with dynamic contrast-enhanced MR-imaging. Radiology 190:459–466

    Article  CAS  PubMed  Google Scholar 

  28. Tsukamoto H, Kang YS, Jones LC et al (1992) Evaluation of marrow perfusion in the femoral-head by dynamic magnetic-resonance-imaging – effect of venous occlusion in a dog-model. Invest Radiol 27:275–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vanel D et al (1993) Dynamic contrast-enhanced subtraction MRI in follow-up of aggressive soft-tissue tumors: a prospective study of 74 patients (abstract). Radiology 189(Suppl):205

    Google Scholar 

  30. Vanel D, Shapeero LG, Debaere T et al (1994) MR-imaging in the follow-up of malignant and aggressive soft-tissue tumors – results of 511 examinations. Radiology 190:263–268

    Article  CAS  PubMed  Google Scholar 

  31. Verstraete K (1994) Dynamic contrast-enhanced MRI of tumor and tumor-like lesions of the musculoskeletal system, pp 63–185. Thesis, University of Gent, Gent, Belgium

    Google Scholar 

  32. Verstraete KL, Dierick A, De Deene Y et al (1993) First-pass images of musculoskeletal lesions: a new and useful diagnostic application of dynamic contrast-enhanced MRI. Proc. Soc. Magn. Reson. Med. 2, New York 869

    Google Scholar 

  33. Verstraete KL, Vanzieleghem B, De Deene Y et al (1995) Static, dynamic and first-pass MRI of musculoskeletal lesions using gadodiamide injection. Acta Radiol 36:27–36

    Article  CAS  PubMed  Google Scholar 

  34. Chien D, Edelman RR (1991) Ultrafast imaging using gradient echos. Magn Reson Q 7:31–56

    CAS  PubMed  Google Scholar 

  35. Haase A, Matthaei D, Bartkowski R, Duhmke E, Leibfritz D (1989) Inversion recovery snapshot FLASH MR imaging. J Comput Assist Tomogr 13:1036–1040

    Article  CAS  PubMed  Google Scholar 

  36. Haase A (1990) Snapshot FLASH MRI – applications to T1, T2, and chemical-shift imaging. Magn Reson Med 13:77–89

    Article  CAS  PubMed  Google Scholar 

  37. Van der Woude H et al (1995) Double slice dynamic contrast-enhanced subtraction MR images in 60 patients with musculoskeletal tumors or tumor-like lesions (abstract). Eur Radiol (Suppl 5):181

    Google Scholar 

  38. Van der Woude HJ, Bloem JL, Verstraete KL, Taminiau AH, Nooy MA, Hogendoorn PC (1995) Osteosarcoma and Ewing’s sarcoma after neoadjuvant chemotherapy: value of dynamic MR imaging in detecting viable tumor before surgery. AJR Am J Roentgenol 165:593–8

    Google Scholar 

  39. Verstraete KL, Lang P (2000) Bone and soft tissue tumors: the role of contrast agents for MRI. Eur J Radiol 34:229–246

    Article  CAS  PubMed  Google Scholar 

  40. van Rijswijk CS, Geirnaerdt MJ, Hogendoorn PC et al (2004) Soft-tissue tumors: value of static and dynamic gadopentetate dimeglumine-enhanced MRI in prediction of malignancy. Radiology 233:493–502

    Article  PubMed  Google Scholar 

  41. Shapeero LG, Henry-Amar M, Vanel D (1992) Response of osteosarcoma and Ewing sarcoma to preoperative chemotherapy: assessment with dynamic and static MRI and skeletal scintigraphy. Invest Radiol 27:989–991

    Article  CAS  PubMed  Google Scholar 

  42. Kashanian FK, Goldstein HA, Blumetti RF, Holyoak WL, Hugo FP, Dolker M (1990) Rapid bolus injection of gadopentetate dimeglumine: absence of side effects in normal volunteers. AJNR Am J Neuroradiol 11:853–856

    CAS  PubMed  Google Scholar 

  43. Chambers TP, Baron RL, Lush RM, Dodd GD, Miller WJ, Confer SR (1993) Hepatic CT enhancement – a method to demonstrate reproducibility. Radiology 188:627–631

    Article  CAS  PubMed  Google Scholar 

  44. Chambers TP, Baron RL, Lush RM (1994) Hepatic CT enhancement. 1. Alterations in the volume of contrast material within the same patients. Radiology 193:513–517

    Article  CAS  PubMed  Google Scholar 

  45. Chambers TP, Baron RL, Lush RM (1994) Hepatic CT enhancement. 2. Alterations in contrast material volume and rate of injection within the same patients. Radiology 193:518–522

    Article  CAS  PubMed  Google Scholar 

  46. Vanderwoude HJ, Bloem JL, Schipper J et al (1994) Changes in tumor perfusion induced by chemotherapy in bone sarcomas – color Doppler flow imaging compared with contrast-enhanced MR-imaging and 3-phase bone-scintigraphy. Radiology 191:421–431

    Article  CAS  Google Scholar 

  47. Vaupel P, Kallinowski F, Okunieff P (1989) Blood-flow, oxygen and nutrient supply, and metabolic microenvironment of human-tumors – a review. Cancer Res 49:6449–6465

    CAS  PubMed  Google Scholar 

  48. Reddick WE, Langston JW, Meyer WH et al (1994) Discrete signal-processing of dynamic contrast-enhanced MR-imaging – statistical validation and preliminary clinical-application. J Magn Reson Imaging 4:397–404

    Article  CAS  PubMed  Google Scholar 

  49. Lang P, Honda G, Roberts T et al (1995) Musculoskeletal neoplasm: perineoplastic edema versus tumor on dynamic post-contrast MR images with spatial mapping of instantaneous enhancement rates. Radiology 197:831–839

    Article  CAS  PubMed  Google Scholar 

  50. Erlemann R (1993) Dynamic gadolinium-enhanced MR imaging to monitor tumor response to chemotherapy. Radiology 186:904

    Article  CAS  PubMed  Google Scholar 

  51. Lawrence JA, Babyn PS, Chan HSL, Thorner PS, Pron GE, Krajbich IJ (1993) Extremity osteosarcoma in childhood – prognostic value of radiologic imaging. Radiology 189:43–47

    Article  CAS  PubMed  Google Scholar 

  52. Glasser DB, Lane JM, Huvos AG, Marcove RC, Rosen G (1992) Survival, prognosis, and therapeutic response in osteogenic-sarcoma – the Memorial Hospital Experience. Cancer 69:698–708

    Article  CAS  PubMed  Google Scholar 

  53. Hudson M, Jaffe MR, Jaffe N et al (1990) Pediatric osteosarcoma – therapeutic strategies, results, and prognostic factors derived from a 10-year experience. J Clin Oncol 8:1988–1997

    Article  CAS  PubMed  Google Scholar 

  54. Meyers PA, Heller G, Healey J et al (1992) Chemotherapy for nonmetastatic osteogenic-sarcoma – the Memorial Sloan-Kettering experience. J Clin Oncol 10:5–15

    Article  CAS  PubMed  Google Scholar 

  55. Oberlin O, Patte C, Demeocq F et al (1985) The response to initial chemotherapy as a prognostic factor in localized Ewing sarcoma. Eur J Cancer Clin Oncol 21:463–467

    Article  CAS  PubMed  Google Scholar 

  56. Rosen G, Caparros B, Huvos AG et al (1982) Preoperative chemotherapy for osteogenic-sarcoma – selection of postoperative adjuvant chemotherapy based on the response of the primary tumor to preoperative chemotherapy. Cancer 49:1221–1230

    Article  CAS  PubMed  Google Scholar 

  57. Winkler K, Beron G, Delling G et al (1988) Neoadjuvant chemotherapy of osteo-sarcoma – results of a randomized cooperative trial (Coss-82) with salvage chemotherapy based on histological tumor response. J Clin Oncol 6:329–337

    Article  CAS  PubMed  Google Scholar 

  58. Raymond AK, Chawla SP, Carrasco CH et al (1987) Osteosarcoma chemotherapy effect – a prognostic factor. Semin Diagn Pathol 4:212–236

    CAS  PubMed  Google Scholar 

  59. Erlemann R, Sciuk J, Wuisman P et al (1992) Dynamic MR tomography in diagnosis of inflammatory and tumorous space-occupying growths of the musculoskeletal system. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 156:353–359

    Article  CAS  PubMed  Google Scholar 

  60. Fletcher B, Hanna S (1989) Musculoskeletal neoplasms: dynamic Gd-DTPA-enhanced MRI (letter). Radiology 177:287–288

    Google Scholar 

  61. Carrasco CH, Charnsangavej C, Raymond AK et al (1989) Osteosarcoma – angiographic assessment of response to preoperative chemotherapy. Radiology 170:839–842

    Article  CAS  PubMed  Google Scholar 

  62. Chuang VP, Benjamin R, Jaffe N et al (1982) Radiographic and angiographic changes in osteosarcoma after intraarterial chemotherapy. AJR Am J Roentgenol 139:1065–1069

    Article  CAS  PubMed  Google Scholar 

  63. Knop J, Delling G, Heise U, Winkler K (1990) Scintigraphic evaluation of tumor-regression during preoperative chemotherapy of osteosarcoma – correlation of Tc-99m-methylene diphosphonate parametric imaging with surgical histopathology. Skeletal Radiol 19:165–172

    Article  CAS  PubMed  Google Scholar 

  64. Kumpan W, Lechner G, Wittich GR et al (1986) The angiographic response of osteosarcoma following pre-operative chemotherapy. Skeletal Radiol 15:96–102

    Article  CAS  PubMed  Google Scholar 

  65. Biondetti PR, Ehman RL (1992) Soft-tissue sarcomas: use of textural patterns in skeletal muscle as a diagnostic feature in postoperative MRI. Radiology 183:845–848

    Article  CAS  PubMed  Google Scholar 

  66. Bloem JL, Reiser MF, Vanel D (1990) Magnetic resonance contrast agents in the evaluation of the musculoskeletal system. Magn Reson Q 6:136–163

    CAS  PubMed  Google Scholar 

  67. Maas R (1992) Radiological-diagnosis of recurrent soft-tissue sarcoma. Radiologe 32:597–605

    CAS  PubMed  Google Scholar 

  68. Reuther G, Mutschler W (1990) Detection of local recurrent disease in musculoskeletal tumors – magnetic-resonance-imaging versus computed-tomography. Skeletal Radiol 19:85–90

    Article  CAS  PubMed  Google Scholar 

  69. Vanel D, Lacombe MJ, Couanet D, Kalifa C, Spielmann M, Genin J (1987) Musculoskeletal tumors – follow-up with MR imaging after treatment with surgery and radiation-therapy. Radiology 164:243–245

    Article  CAS  PubMed  Google Scholar 

  70. Padhani AR (2002) Dynamic contrast-enhanced MRI in clinical oncology: current status and future directions. J Magn Reson Imaging 16:407–422

    Article  PubMed  Google Scholar 

  71. Essig M, Shiroishi M, Nguyen T et al (2013) Perfusion MRI: the five most frequently asked technical questions. AJR Am J Roentgenol 200(1):24–34

    Article  PubMed  PubMed Central  Google Scholar 

  72. Paldino MJ, Barboriak DP (2009) Fundamentals of quantitative dynamic contrast-enhanced MR imaging. Magn Reson Imaging Clin N Am 17:277–289

    Article  PubMed  Google Scholar 

  73. Tofts PS, Brix G, Buckley DL et al (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232

    Article  CAS  PubMed  Google Scholar 

  74. Miller JC, Pien HH, Sahani D, Sorensen AG, Thrall JH (2005) Imaging angiogenesis: applications and potential for drug development. J Natl Cancer Inst 97:172–187

    Article  CAS  PubMed  Google Scholar 

  75. Leach MO, Morgan B, Tofts PS et al (2012) Imaging vascular function for early stage clinical trials using dynamic contrast-enhanced magnetic resonance imaging. Eur Radiol 22:1465–1478

    Article  Google Scholar 

  76. Costa FM, Ferreira EC, Vianna EM (2011) Diffusion-weighted magnetic resonance imaging for the evaluation of musculoskeletal tumors. Magn Reson Imaging Clin N Am 19(1):159–180

    Article  PubMed  Google Scholar 

  77. Baur A, Reiser MF (2000) Diffusion-weighted imaging of the musculoskeletal system in humans. Skeletal Radiol 29(10):555–562

    Article  CAS  PubMed  Google Scholar 

  78. Lang P, Wendland MF, Saeed M et al (1998) Osteogenic sarcoma: noninvasive in vivo assessment of tumor necrosis with diffusion weighted MR imaging. Radiology 206(1):227–235

    Article  CAS  PubMed  Google Scholar 

  79. Van Rijswijk CS, Kunz P, Hogendoorn PC et al (2002) Diffusion weighted MRI in the characterization of soft-tissue tumors. J Magn Reson Imaging 15(3):302–307

    Article  PubMed  Google Scholar 

  80. Nagata S, Nishimura H, Uchida M et al (2008) Diffusion-weighted imaging of soft tissue tumors: usefulness of the apparent diffusion coefficient for differential diagnosis. Radiat Med 26:287–295

    Article  PubMed  Google Scholar 

  81. Maeda M, Matsumine A, Kato H et al (2007) Soft-tissue tumors evaluated by line-scan diffusion-weighted imaging: influence of myxoid matrix on the apparent diffusion coefficient. J Magn Reson Imaging 25:119–204

    Article  Google Scholar 

  82. Bley TA, Wieben O, Uhl M, Diffusion-weighted MR (2009) imaging in musculoskeletal radiology: applications in trauma, tumors, and inflammation. Magn Reson Imaging Clin N Am 17(2):263–275

    Article  PubMed  Google Scholar 

  83. Fayad LM, Barker PB, Jacobs MA et al (2007) Characterization of musculoskeletal lesions on 3-T proton MR spectroscopy. AJR Am J Roentgenol 188(6):1513–1520

    Article  PubMed  Google Scholar 

  84. Fayad LM, Bluemke DA, McCarthy EF, Weber KL et al (2006) Musculoskeletal tumors: use of proton MR spectroscopic imaging for characterization. J Magn Reson Imaging 23(1):23–28

    Article  PubMed  Google Scholar 

  85. Doganay S, Altinok T, Alkan A et al (2011) The role of MRS in the differentiation of benign and malignant soft tissue and bone tumors. Eur J Radiol 20(2):219–225

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koenraad L. Verstraete .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Verstraete, K.L., Dutoit, J.C., Drapé, J.L., Bloem, J.L. (2017). Magnetic Resonance Imaging: Advanced Imaging Techniques. In: Vanhoenacker, F., Parizel, P., Gielen, J. (eds) Imaging of Soft Tissue Tumors. Springer, Cham. https://doi.org/10.1007/978-3-319-46679-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46679-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46677-4

  • Online ISBN: 978-3-319-46679-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics