Skip to main content

Advertisement

Log in

Imaging vascular function for early stage clinical trials using dynamic contrast-enhanced magnetic resonance imaging

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Many therapeutic approaches to cancer affect the tumour vasculature, either indirectly or as a direct target. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has become an important means of investigating this action, both pre-clinically and in early stage clinical trials. For such trials, it is essential that the measurement process (i.e. image acquisition and analysis) can be performed effectively and with consistency among contributing centres. As the technique continues to develop in order to provide potential improvements in sensitivity and physiological relevance, there is considerable scope for between-centre variation in techniques. A workshop was convened by the Imaging Committee of the Experimental Cancer Medicine Centres (ECMC) to review the current status of DCE-MRI and to provide recommendations on how the technique can best be used for early stage trials. This review and the consequent recommendations are summarised here.

Key Points

Tumour vascular function is key to tumour development and treatment

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can assess tumour vascular function

Thus DCE-MRI with pharmacokinetic models can assess novel treatments

Many recent developments are advancing the accuracy of and information from DCE-MRI

Establishing common methodology across multiple centres is challenging and requires accepted guidelines

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jackson E, Ashton E, Evelhoch JL et al (2010) Multivendor, multisite DCE-MRI phantom validation study. In: Proceedings of the 95th Scientific Assembly and Annual Meeting of the Radiological Society of North America (RSNA '10); December 2009; Chicago, IL, USA

  2. Meyer CR, Armato SG, Fenimore CP et al (2009) Quantitative imaging to assess tumor response to therapy: common themes of measurement, truth data, and error sources. Transl Oncol 2:198–210

    PubMed  Google Scholar 

  3. Leach MO, Brindle KM, Evelhoch JL et al (2003) Assessment of antiangiogenic and antivascular therapeutics using MRI: recommendations for appropriate methodology for clinical trials. Br J Radiol 76:S87–S91

    Article  PubMed  Google Scholar 

  4. Leach MO, Brindle KM, Evelhoch JL et al (2005) The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. Br J Cancer 92:1599–1610

    Article  PubMed  CAS  Google Scholar 

  5. Evelhoch J, Garwood N, Vigneron D et al (2005) Expanding the use of magnetic resonance in the assessment of tumor response to therapy: Workshop report. Cancer Research 65:7041–7044

    Article  PubMed  CAS  Google Scholar 

  6. Evelhoch JL (1999) Key factors in the acquisition of contrast kinetic data for oncology. J Magn Reson Imaging 10:254–259

    Article  PubMed  CAS  Google Scholar 

  7. Taylor JS, Tofts PS, Port R et al (1999) MR imaging of tumor microcirculation: promise for the new millennium. J Magn Reson Imaging 10:903–907

    Article  PubMed  CAS  Google Scholar 

  8. Tofts PS (1998) Standardisation and optimisation of magnetic resonance techniques for multicentre studies. J Neurol Neurosurg Psychiatry 64:S37–S43

    Article  PubMed  Google Scholar 

  9. Tofts PS, Brix G, Buckley DL et al (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusible tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232

    Article  PubMed  CAS  Google Scholar 

  10. Jia G, Heverhagen JT, Polzer H et al (2006) Dynamic contrast enhanced magnetic resonance imaging as a biological marker to noninvasively assess the effect of finasteride on prostatic suburethral microcirculation. J Urol 176:2299–2304

    Article  PubMed  CAS  Google Scholar 

  11. McKeage M, Fong P, Jeffery M et al (2006) 5,6-Dimethylxanthenone-4-acetic acid in the treatment of refractory tumours: a phase I safety study of a vascular disrupting agent. Clin Cancer Res 12:1776–1784

    Article  PubMed  CAS  Google Scholar 

  12. Head M, Jameson MB (2010) The development of the tumor vascular-disrupting agent ASA404 (vadimezan, DMXAA): current status and future opportunities. Expert Opin Investig Drugs 19:295–304

    Article  PubMed  CAS  Google Scholar 

  13. Eskens FALM, Steeghs N, Verweij J et al (2009) Phase I Dose Escalation Study of Telatinib, a Tyrosine Kinase Inhibitor of Vascular Endothelial Growth Factor Receptor 2 and 3, Platelet-Derived Growth Factor Receptor beta, and c-Kit, in Patients With Advanced or Metastatic Solid Tumours. J Clin Oncol 27:4169–4176

    Article  PubMed  CAS  Google Scholar 

  14. LoRusso PM, Gadgeel SM, Wozniak A et al (2008) Phase I clinical evaluation of ZD6126, a novel vascular-targeting agent, in patients with solid tumours. Invest New Drugs 26:159–167

    Article  PubMed  CAS  Google Scholar 

  15. Drevs J, Siegert P, Medinger M et al (2007) Phase I clinical study of AZD2171, an oral vascular endothelial growth factor signalling inhibitor, in patients with advanced solid tumours. J Clin Oncol 25:3045–3054

    Article  PubMed  CAS  Google Scholar 

  16. Leach MO (2009) Breast cancer screening in women at high risk using MRI. NMR Biomed 22:17–27

    Article  PubMed  Google Scholar 

  17. Miyazaki K, Orton MR, Davidson RI et al (2011) The feasibility of dynamic contrast-enhanced magnetic resonance imaging to monitor and predict peptide receptor radionuclide therapy outcome in patients with neuroendocrine tumour liver metastases. Radiology 17:2012. doi:10.1148/radiol.12110770, Published online before print February

    Google Scholar 

  18. Dowell NG, Tofts PS (2007) Fast, accurate, and precise mapping of the RF field in vivo using the 180 degrees signal null. Magn Reson Med 58:622–630

    Article  PubMed  Google Scholar 

  19. Yarnykh VL (2007) Actual flip-angle imaging in the pulsed steady state: a method for rapid three-dimensional mapping of the transmitted radiofrequency field. Magn Reson Med 57:192–200

    Article  PubMed  Google Scholar 

  20. Cunningham CH, Pauly JM, Nayak KS (2006) Saturated double-angle method for rapid B1+ mapping. Magn Reson Med 55:1326–1333

    Article  PubMed  Google Scholar 

  21. Preibisch C, Deichmann R (2009) Influence of RF spoiling on the stability and accuracy of T1 mapping based on spoiled FLASH with varying flip angles. Magn Reson Med 61:125–135

    Article  PubMed  CAS  Google Scholar 

  22. Roberts C, Little R, Watson Y, Zhao S, Buckley DL, Parker GJ (2011) The effect of blood inflow and B(1)-field inhomogeneity on measurement of the arterial input function in axial 3D spoiled gradient echo dynamic contrast-enhanced MRI. Magn Reson Med 65:108–119

    Article  PubMed  Google Scholar 

  23. Buckley DL, Parker GJM (2004) T1 estimation using variable flip angle spoiled gradient echo for dynamic contrast-enhanced MRI: Arterial input measurement improves accuracy in the presence of B1 error. Proceedings of the 12th Annual Scientific Meeting of the ISMRM, Kyoto, pp 1968

  24. Larkman DJ, Nunes RG (2007) Parallel magnetic resonance imaging. Phys Med Biol 52:R15–R55

    Article  PubMed  Google Scholar 

  25. Firbank MJ, Harrison RM, Williams ED, Coulthard A (2000) Quality assurance for MRI: practical experience. Br J Radiol 73:376–383

    PubMed  CAS  Google Scholar 

  26. Ihalainen T, Sipila O, Savolainen S (2004) MRI quality control: six imagers studied using eleven unified image quality parameters. Eur Radiol 14:1859–1865

    Article  PubMed  CAS  Google Scholar 

  27. Lerski RA, de Certaines JD (1993) Performance assessment and quality control in MRI by Eurospin test objects and protocols. Magn Reson Imaging 11:817–833

    Article  PubMed  CAS  Google Scholar 

  28. Tofts P (2003) QA: Quality assurance, accuracy, precision and phantoms. In: Tofts P (ed) Quantitative MRI of the brain: measuring changes caused by disease. Wiley, Chichester, pp 55–81

    Google Scholar 

  29. Lerski RA (1993) Trial of modifications to Eurospin MRI test objects. Magn Reson Imaging 11:835–839

    Article  PubMed  CAS  Google Scholar 

  30. Jackson EF, Barboriak DP, Bidaut LM, Meyer CR (2009) Magnetic resonance assessment of response to therapy: tumor change measurement, truth data and error sources. Transl Oncol 2:211–215

    PubMed  Google Scholar 

  31. Brookes JA, Redpath TW, Gilbert FJ, Murray AD, Staff RT (1999) Accuracy of T1 measurement in dynamic contrast-enhanced breast MRI using two- and three-dimensional variable flip angle fast low-angle shot. J Magn Reson Imaging 9:163–171

    Article  PubMed  CAS  Google Scholar 

  32. Preibisch C, Deichmann R (2009) T1 mapping using spoiled FLASH-EPI hybrid sequences and varying flip angles. Magn Reson Med 62:240–246

    Article  PubMed  CAS  Google Scholar 

  33. Wang J, Qiu M, Kim H, Constable RT (2006) T1 measurements incorporating flip angle calibration and correction in vivo. J Magn Reson 182:283–292

    Article  PubMed  CAS  Google Scholar 

  34. Li KL, Zhu XP, Waterton J, Jackson A (2000) Improved 3D quantitative mapping of blood volume and endothelial permeability in brain tumours. J Magn Reson Imaging 12:347–357

    Article  PubMed  CAS  Google Scholar 

  35. Parker GJ, Roberts C, Macdonald A et al (2006) Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magn Reson Med 56:993–1000

    Article  PubMed  Google Scholar 

  36. Bellin MF, Van Der Molen AJ (2008) Extracellular gadolinium-based contrast media: an overview. Eur J Radiol 66:160–167

    Article  PubMed  Google Scholar 

  37. Prince MR, Zhang HL, Roditi GH, Leiner T, Kucharczyk W (2009) Risk factors for NSF: a literature review. J Magn Reson Imaging 30:1298–1308

    Article  PubMed  Google Scholar 

  38. Thomsen HS (2005) How to avoid CIN: guidelines from the European Society of Urogenital Radiology. Nephrol Dial Transplant 20:i18–22

    Article  PubMed  Google Scholar 

  39. Sam AD 2nd, Morasch MD, Collins J, Song G, Chen R, Pereles FS (2003) Safety of gadolinium contrast angiography in patients with chronic renal insufficiency. J Vasc Surg 38:313–318

    Article  PubMed  Google Scholar 

  40. FDA (2011) Drug Safety Information for Patients and Providers. http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/ucm142882.htm Accessed 15th February 2012 16.51GMT

  41. EMEA (2011) Information on NSF http://www.ismrm.org/special/EMEA2.pdf. Accessed 15th February 2012 16.53GMT

  42. Tofts PS, Kermode AG (1991) Measurement of the blood–brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson. Med 17:357–367

    CAS  Google Scholar 

  43. Schabel MC, Parker DL (2008) Uncertainty and bias in contrast concentration measurements using spoiled gradient echo pulse sequences. Phys Med Biol 53:2345–2373

    Article  PubMed  Google Scholar 

  44. Morgan B, Utting JF, Higginson A, Thomas AL, Steward WP, Horsfield MA (2006) A simple, reproducible method for monitoring the treatment of tumours using dynamic contrast-enhanced MR imaging. Br J Cancer 94:1420–1427

    Article  PubMed  CAS  Google Scholar 

  45. Galbraith SM, Lodge MA, Taylor NJ et al (2002) Reproducibility of dynamic contrast-enhanced MRI in human muscle and tumours: comparison of quantitative and semi-quantitative analysis. NMR Biomed 15:132–142

    Article  PubMed  Google Scholar 

  46. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    Article  PubMed  CAS  Google Scholar 

  47. Orton MR, Miyazaki K, Koh DM et al (2009) Optimizing functional parameter accuracy for breath-hold DCE-MRI of liver tumours. Phys Med Biol 54:2197–2215

    Article  PubMed  Google Scholar 

  48. Henderson E, Rutt BK, Lee TY (1998) Temporal sampling requirements for the tracer kinetics modeling of breast disease. Magn Reson Imaging 16:1057–1073

    Article  PubMed  CAS  Google Scholar 

  49. Melbourne A, Atkinson D, Hawkes D (2008) Influence of organ motion and contrast enhancement on image registration. Med Image Comput Comput Assist Interv 11:948–955

    PubMed  CAS  Google Scholar 

  50. Melbourne A, Atkinson D, White MJ, Collins D, Leach M, Hawkes D (2007) Registration of dynamic contrast-enhanced MRI using a progressive principal component registration (PPCR). Phys Med Biol 52:5147–5156

    Article  PubMed  CAS  Google Scholar 

  51. Buonaccorsi GA, O'Connor JP, Caunce A et al (2007) Tracer kinetic model-driven registration for dynamic contrast-enhanced MRI time-series data. Magn Reson Med 58:1010–1019

    Article  PubMed  Google Scholar 

  52. Sourbron S, Ingrisch M, Siefert A, Reiser M, Herrmann K (2009) Quantification of cerebral blood flow, cerebral blood volume, and blood–brain-barrier leakage with DCE-MRI. Magn Reson Med 62:205–217

    Article  PubMed  Google Scholar 

  53. Buckley DL, Shurrab AE, Cheung CM, Jones AP, Mamtora H, Kalra PA (2006) Measurement of single kidney function using dynamic contrast-enhanced MRI: comparison of two models in human subjects. J Magn Reson Imaging 24:1117–1123

    Article  PubMed  Google Scholar 

  54. Makkat S, Luypaert R, Sourbron S, Stadnik T, De Mey J (2010) Assessment of tumor blood flow in breast tumours with T1-dynamic contrast-enhanced MR imaging: impact of dose reduction and the use of a prebolus technique on diagnostic efficacy. J Magn Reson Imaging 31:556–561

    Article  PubMed  Google Scholar 

  55. Makkat S, Luypaert R, Sourbron S, Stadnik T, De Mey J (2007) Quantification of perfusion and permeability in breast tumours with a deconvolution-based analysis of second-bolus T1-DCE data. J Magn Reson Imaging 25:1159–1167

    Article  PubMed  CAS  Google Scholar 

  56. Risse F, Semmler W, Kauczor HU, Fink C (2006) Dual-bolus approach to quantitative measurement of pulmonary perfusion by contrast-enhanced MRI. J Magn Reson Imaging 24:1284–1290

    Article  PubMed  Google Scholar 

  57. Christian TF, Rettmann DW, Aletras AH et al (2004) Absolute myocardial perfusion in canines measured by using dual-bolus first-pass MR imaging. Radiology 232:677–684

    Article  PubMed  Google Scholar 

  58. Kershaw LE, Buckley DL (2006) Precision in measurements of perfusion and microvascular permeability with T1-weighted dynamic contrast-enhanced MRI. Magn Reson Med 56:986–992

    Article  PubMed  Google Scholar 

  59. Kovar DA, Lewis M, Karczmar GS (1998) A new method for imaging perfusion and contrast extraction fraction: input functions derived from reference tissues. J Magn Reson Imaging 8:1126–1134

    Article  PubMed  CAS  Google Scholar 

  60. Yang C, Karczmar GS, Medved M, Stadler WM (2004) Estimating the arterial input function using two reference tissues in dynamic contrast-enhanced MRI studies: fundamental concepts and simulations. Magn Reson Med 52:1110–1117

    Article  PubMed  Google Scholar 

  61. Yankeelov TE, Luci JJ, Lepage M et al (2005) Quantitative pharmacokinetic analysis of DCE-MRI data without an arterial input function: a reference region model. Magn Reson Imaging 23:519–529

    Article  PubMed  CAS  Google Scholar 

  62. Yang C, Karczmar GS, Medved M, Stadler WM (2007) Multiple reference tissue method for contrast agent arterial input function estimation. Magn Reson Med 58:1266–1275

    Article  PubMed  Google Scholar 

  63. Fan X, Haney CR, Mustafi D et al (2010) Use of a reference tissue and blood vessel to measure the arterial input function in DCEMRI. Magn Reson Med 64:1821–1826

    Article  PubMed  Google Scholar 

  64. Fluckiger JU, Schabel MC, Dibella EV (2009) Model-based blind estimation of kinetic parameters in dynamic contrast enhanced (DCE)-MRI. Magn Reson Med 62:1477–1486

    Article  PubMed  Google Scholar 

  65. Schabel MC, DiBella EV, Jensen RL, Salzman KL (2010) A model-constrained Monte Carlo method for blind arterial input function estimation in dynamic contrast-enhanced MRI: II. In vivo results. Phys Med Biol 55:4807–4823

    Article  PubMed  Google Scholar 

  66. Fritz-Hansen T, Rostrup E, Larsson HB, Sondergaard L, Ring P, Henriksen O (1996) Measurement of the arterial concentration of Gd-DTPA using MRI: a step toward quantitative perfusion imaging. Magn Reson Med 36:225–231

    Article  PubMed  CAS  Google Scholar 

  67. Weinmann HJ, Laniado M, Mutzel W (1984) Pharmacokinetics of GdDTPA/dimeglumine after intravenous injection into healthy volunteers. Physiol Chem Phys Med NMR 16:167–172

    PubMed  CAS  Google Scholar 

  68. Horsfield MA, Thornton JS, Gill A, Jager HR, Priest AN, Morgan B (2009) A functional form for injected MRI Gd-chelate contrast agent concentration incorporating recirculation, extravasation and excretion. Phys Med Biol 54:2933–2949

    Article  PubMed  Google Scholar 

  69. Orton MR, d’Arcy JA, Walker-Samuel S et al (2008) Computationally efficient vascular input function models for quantitative kinetic modelling using DCE-MRI. Phys Med Biol 53:1225–1239

    Article  PubMed  Google Scholar 

  70. Rose CJ, Mills SJ, O'Connor JP et al (2009) Quantifying spatial heterogeneity in dynamic contrast-enhanced MRI parameter maps. Magn Reson Med 62:488–499

    Article  PubMed  Google Scholar 

  71. Tofts PS, Steens SC, Cercignani M et al (2006) Sources of variation in multi-centre brain MTR histogram studies: body-coil transmission eliminates inter-centre differences. MAGMA 19:209–222

    Article  PubMed  CAS  Google Scholar 

  72. Balvay D, Frouin F, Calmon G et al (2005) New criteria for assessing fit quality in dynamic contrast-enhanced T1-weighted MRI for perfusion and permeability imaging. Magn Reson Med 54:868–877

    Article  PubMed  Google Scholar 

  73. Jeukens CR, van den Berg CA, Donker R et al (2006) Feasibility and measurement precision of 3D quantitative blood flow mapping of the prostate using dynamic contrast-enhanced multi-slice CT. Phys Med Biol 51:4329–4343

    Article  PubMed  Google Scholar 

  74. NCI (2004) Imaging Guidelines for Clinical Trials. http://imaging.cancer.gov/clinicaltrials/guidelines. Accessed 15th February 2012 16.57GMT

  75. Sourbron SP, Buckley DL (2011) On the scope and interpretation of the Tofts models for DCE-MRI. Magn Reson Med 66:735–745

    Article  PubMed  Google Scholar 

  76. Donaldson SB, West CM, Davidson SE et al (2010) A comparison of tracer kinetic models for T1-weighted dynamic contrast-enhanced MRI: application in carcinoma of the cervix. Magn Reson Med 63:691–700

    Article  PubMed  Google Scholar 

  77. Brix G, Kiessling F, Lucht R et al (2004) Microcirculation and microvasculature in breast tumours: pharmacokinetic analysis of dynamic MR image series. Magn Reson Med 52:420–429

    Article  PubMed  Google Scholar 

  78. Johnson JA, Wilson TA (1966) A model for capillary exchange. Am J Physiol 210:1299–1303

    PubMed  CAS  Google Scholar 

  79. St Lawrence KS, Lee TY (1998) An adiabatic approximation to the tissue homogeneity model for water exchange in the brain: II. Experimental validation. J Cereb Blood Flow Metab 18:1378–1385

    Article  PubMed  CAS  Google Scholar 

  80. St Lawrence KS, Lee TY (1998) An adiabatic approximation to the tissue homogeneity model for water exchange in the brain: I. Theoretical derivation. J Cereb Blood Flow Metab 18:1365–1377

    Article  PubMed  CAS  Google Scholar 

  81. Koh TS, Cheong LH, Hou Z, Soh YC (2003) A physiologic model of capillary-tissue exchange for dynamic contrast-enhanced imaging of tumor microcirculation. IEEE Trans Biomed Eng 50:159–167

    Article  PubMed  CAS  Google Scholar 

  82. Huang W, Li X, Morris EA et al (2008) The magnetic resonance shutter speed discriminates vascular properties of malignant and benign breast tumours in vivo. Proc Natl Acad Sci USA 105:17943–17948

    Article  PubMed  CAS  Google Scholar 

  83. Li X, Huang W, Morris EA et al (2008) Dynamic NMR effects in breast cancer dynamic-contrast-enhanced MRI. Proc Natl Acad Sci USA 105:17937–17942

    Article  PubMed  CAS  Google Scholar 

  84. Huang W, Tudorica LA, Li X et al (2011) Discrimination of benign and malignant breast lesions by using shutter-speed dynamic contrast-enhanced MR imaging. Radiology 261:394–403

    Article  PubMed  Google Scholar 

  85. Ewing JR, Brown SL, Lu M et al (2006) Model selection in magnetic resonance imaging measurements of vascular permeability: Gadomer in a 9 L model of rat cerebral tumor. J Cereb Blood Flow Metab 26:310–320

    Article  PubMed  Google Scholar 

  86. Naish JH, Kershaw LE, Buckley DL, Jackson A, Waterton JC, Parker GJ (2009) Modeling of contrast agent kinetics in the lung using T1-weighted dynamic contrast-enhanced MRI. Magn Reson Med 61:1507–1514

    Article  PubMed  Google Scholar 

  87. Brix G, Zwick S, Kiessling F, Griebel J (2009) Pharmacokinetic analysis of tissue microcirculation using nested models: multimodel inference and parameter identifiability. Med Phys 36:2923–2933

    Article  PubMed  Google Scholar 

  88. Buckley DL, Kershaw LE, Stanisz GJ (2008) Cellular-interstitial water exchange and its effect on the determination of contrast agent concentration in vivo: dynamic contrast-enhanced MRI of human internal obturator muscle. Magn Reson Med 60:1011–1019

    Article  PubMed  Google Scholar 

  89. Li X, Springer CS Jr, Jerosch-Herold M (2009) First-pass dynamic contrast-enhanced MRI with extravasating contrast reagent: evidence for human myocardial capillary recruitment in adenosine-induced hyperemia. NMR Biomed 22:148–157

    Article  PubMed  Google Scholar 

  90. Akaike H (1974) New Look at Statistical-Model Identification. IEEE T Automat Contr Ac 19:716–723

    Article  Google Scholar 

  91. O'Connor JPB, Jayson GC, Jackson A et al (2007) Enhancing fraction predicts clinical outcome following first-line chemotherapy in patients with epithelial ovarian carcinoma. Clin Cancer Res 13:6130–6135

    Article  PubMed  Google Scholar 

  92. Jayson GC, Parker GJ, Mullamitha S et al (2005) Blockade of platelet-derived growth factor receptor-beta by CDP860, a humanized, PEGylated di-Fab', leads to fluid accumulation and is associated with increased tumor vascularized volume. J Clin Oncol 23:973–981

    Article  PubMed  CAS  Google Scholar 

  93. Mills SJ, Soh C, O'Connor JP et al (2009) Tumour enhancing fraction (EnF) in glioma: relationship to tumour grade. Eur Radiol 19:1489–1498

    Article  PubMed  Google Scholar 

  94. Poldrack RA, Fletcher PC, Henson RN, Worsley KJ, Brett M, Nichols TE (2008) Guidelines for reporting an fMRI study. Neuroimage 40:409–414

    Article  PubMed  Google Scholar 

  95. Schulz KF, Altman DG, Moher D (2010) CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMJ 340:c332

    Article  PubMed  Google Scholar 

  96. Moher D, Hopewell S, Schulz KF et al (2010) CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. BMJ 340:c869

    Article  PubMed  Google Scholar 

  97. Gaehtgens P (1980) Flow of blood through narrow capillaries: rheological mechanisms determining capillary hematocrit and apparent viscosity. Biorheology 17:183–189

    PubMed  CAS  Google Scholar 

  98. Brix G, Griebel J, Kiessling F, Wenz F (2010) Tracer kinetic modelling of tumour angiogenesis based on dynamic contrast-enhanced CT and MRI measurements. Eur J Nucl Med Mol Imaging 37:S30–S51

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for comments received from Y. Hwang, E. Jackson, R. Sims, J. Evelhoch, M. Silva, W. Vennart, M. Clemence, B. Kiefer, and M. Rosen. We would also like to acknowledge the Experimental Cancer Medicine Centre (ECMC) Imaging Steering Committee (M. Leach, E. Aboagye, F. Gilbert, V. Goh, A. Jackson, D. Lomas, B. Morgan, and R. Plummer) and the ECMC Secretariat for supporting the workshop on tumour vascularity in May 2010 and coordinating activities, and all of the speakers and delegates who contributed to the meeting. The Experimental Cancer Medicine Centre Initiative is jointly funded by Cancer Research UK, the National Institute for Health Research in England, and the Departments of Health for Scotland, Wales, and Northern Ireland.

Conflict of Interest

M.O. Leach and D.J. Collins: Software developed at the Institute of Cancer Research and using some of the approaches referred to in this paper may be commercialised by the Institute of Cancer Research and commercialised or licensed to users. In those cases employees may receive some income under the Institute's rewards to inventors scheme.

B. Whitcher: Employed by GlaxoSmithKline (pharmaceutical industry) at the time of the ECMC workshop and until 6 May 2011. Now employed by Mango Solutions (software industry) and provides medical image analysis services to the pharmaceutical industry.

G. Parker: Received research grant income and consultancy income from pharmaceutical companies for work in DCE-MRI associated with clinical trials. Specifically, within the last year received research grant income from AstraZeneca, Pfiizer, GSK, Roche, Genentech, Bayer, and Merck-Serono. Received consultancy income from Bayer. Also a shareholder and director of Bioxydyn limited, a specialist imaging company with an interest in DCE-MRI.

G. Karczmar: Research has been supported by Philips Medical Systems and Bayer.

A. Padhani: Consultancy work for IXICO and Roche. DCE trial work with Roche and Oxigene.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to M. O. Leach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leach, M.O., Morgan, B., Tofts, P.S. et al. Imaging vascular function for early stage clinical trials using dynamic contrast-enhanced magnetic resonance imaging. Eur Radiol 22, 1451–1464 (2012). https://doi.org/10.1007/s00330-012-2446-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-012-2446-x

Keywords

Navigation