Skip to main content

A Panoply of Phototrophs: An Overview of the Thermophilic Chlorophototrophs of the Microbial Mats of Alkaline Siliceous Hot Springs in Yellowstone National Park, WY, USA

  • Chapter
  • First Online:
Modern Topics in the Phototrophic Prokaryotes

Abstract

Chlorophototrophs are organisms that can synthesize chlorophylls or bacteriochlorophylls, and they use these molecules to harvest and convert light energy into stored chemical potential energy. Some of these organisms also perform photosynthesis, in which light provides the energy (ATP) and reducing power (NAD(P)H or reduced ferredoxin) required for inorganic carbon (Ci) fixation. Over the past decade, we have studied the chlorophototrophs found in two alkaline siliceous hot springs in Yellowstone National Park, WY, USA. The microbial mats that occur at temperatures of 40–73 °C in Mushroom and Octopus Springs have proven to contain a surprisingly diverse array of chlorophototrophs. These include members of six of the seven bacterial phyla known to have members capable of synthesizing (bacterio)-chlorophylls: Acidobacteria, Cyanobacteria, Chlorobi, Chloroflexi, Firmicutes, and Proteobacteria. More than 16 chlorophototrophs have now been associated with these microbial mats, and this does not include the many ecotypes of these organisms that occur within these communities. In this chapter we will briefly describe the panoply of phototrophic organisms that occur in these mat communities and will provide an introduction to their morphological appearance and other basic properties. Metagenomic analyses have revealed several novel organisms, e.g., Chloracidobacterium thermophilum, “Candidatus Thermochlorobacter aerophilum,” “Candidatus Chloranaerofilum corporosum,” “Candidatus Roseovibrio tepidum,” and “Candidatus Roseilinea gracile,” which were hitherto unknown to microbiologists because they escaped isolation by classical, culture-based methods. However, by combining molecular methods, in situ physiological observations, metabolic reconstruction, and enrichment techniques, we are now making remarkable progress toward the isolation of these chlorophototrophic organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albuquerque L, Rainey FA, Nobre MF, da Costa MS (2008) Elioraea tepidiphila gen. nov., sp. nov., a slightly thermophilic member of the Alphaproteobacteria. Int J Syst Evol Microbiol 58:773–778. doi:10.1099/ijs.0.65294-0

    Article  PubMed  Google Scholar 

  • Allewalt JP, Bateson MM, Revsbech NP et al (2006) Effect of temperature and light on growth of and photosynthesis by Synechococcus isolates typical of those predominating in the Octopus Spring microbial mat community of Yellowstone National Park. Appl Environ Microbiol 72:544–550. doi:10.1128/AEM.72.1.544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balashov SP, Lanyi JK (2007) Xanthorhodopsin: proton pump with a carotenoid antenna. Cell Mol Life Sci 64:2323–2328. doi:10.1016/j.bbabio.2008.05.005

    Article  CAS  PubMed  Google Scholar 

  • Balashov SP, Imasheva ES, Boichenko VA et al (2005) Xanthorhodopsin: a proton pump with a light-harvesting carotenoid antenna. Science 309:2061–2064. doi:10.1126/science.1118046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ball JW, McCleskey RB, Nordstrom DK et al (2004) Water-chemistry data for selected springs, geysers and streams in Yellowstone National Park, Wyoming, 2001-2002. U S Geol Surv Open-File Rep Open-File Report 2004-1316. doi:10.5066/F7M043FS

  • Bateson MM, Ward DM (1988) Photoexcretion and fate of glycolate in a hot spring cyanobacterial mat. Appl Environ Microbiol 54:1738–1743

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bauld J, Brock TD (1973) Ecological studies of Chloroflexus, a gliding photosynthetic bacterium. Arch Mikrobiol 92:267–284. doi:10.1007/BF00409281

    Article  Google Scholar 

  • Becraft ED, Cohan FM, Kühl M et al (2011) Fine-scale distribution patterns of Synechococcus ecological diversity in the microbial mat of Mushroom Spring, Yellowstone National Park. Appl Environ Microbiol 77:7689–7697. doi:10.1128/AEM.05927-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becraft ED, Wood JM, Rusch DB et al (2015) The molecular dimension of microbial species: 1. Ecological distinctions among, and homogeneity within, putative ecotypes of Synechococcus inhabiting the cyanobacterial mat of Mushroom Spring, Yellowstone National Park. Front Microbiol 6:590. doi:10.3389/fmicb.2015.00590

  • Béjà O, Aravind L, Koonin EV et al (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289:1902–1906. doi:10.1126/science.289.5486.1902

    Article  PubMed  Google Scholar 

  • Béjà O, Spudich EN, Spudich JL et al (2001) Proteorhodopsin phototrophy in the ocean. Nature 411:786–789. doi:10.1038/35081051

    Article  PubMed  Google Scholar 

  • Berg IA, Keppen OI, Krasil’nikova EN et al (2005) Carbon metabolism of filamentous anoxygenic phototrophic bacteria of the family Oscillochloridaceae. Microbiology 74:258–264. doi:10.1007/s11021-005-0060-5

    Article  CAS  Google Scholar 

  • Bhaya D, Grossman AR, Steunou A-S et al (2007) Population level functional diversity in a microbial community revealed by comparative genomic and metagenomic analyses. ISME J 1:703–713. doi:10.1038/ismej.2007.46

    Article  CAS  PubMed  Google Scholar 

  • Borrego CM, Garcia-Gil J, Cristina XP et al (1998) Occurrence of new bacteriochlorophyll d forms in natural populations of green photosynthetic sulfur bacteria. FEMS Microbiol Ecol 26:257–267. doi:10.1111/j.1574-6941.1998.tb00510.x

    Article  CAS  Google Scholar 

  • Bott TL, Brock TD (1969) Bacterial growth rates above 90 degrees C in Yellowstone hot springs. Science 164:1411–1412. doi:10.1126/science.164.3886.1411

    Article  CAS  PubMed  Google Scholar 

  • Brock TD (1967a) Micro-organisms adapted to high temperatures. Nature 214:882–885. doi:10.1038/214882a0

    Article  CAS  PubMed  Google Scholar 

  • Brock TD (1967b) Life at high temperatures. Science 158:1012–1019. doi:10.1126/science.158.3804.1012

    Article  CAS  PubMed  Google Scholar 

  • Brock TD (1972) One hundred years of algal research in Yellowstone National Park. In: Desikachary TV (ed) Taxonomy and biology of blue-green algae. Center for Advanced Study of Botany, Madras, pp 393–405

    Google Scholar 

  • Brock TD (1978) Thermophilic microorganisms and life at high temperatures. Springer, Berlin. doi:10.1007/978-1-4612-6284-8

  • Brock TD (1997) The value of basic research: Discovery of Thermus aquaticus and other extreme thermophiles. Genetics 146:1207–1210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brock TD (1998) Early days in Yellowstone microbiology. ASM News 64:137–140

    Google Scholar 

  • Brock TD, Brock ML (1968) Relationship between environmental temperature and optimum temperature of bacteria along a hot spring thermal gradient. J Appl Microbiol 31:54–58. doi: 10.1111/j.1365-2672.1968.tb00340.x

  • Brock TD, Freeze H (1969) Thermus aquaticus gen. nov. and sp. nov., a non-sporulating extreme thermophile. J Bacteriol 98:289–297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bryant DA, Frigaard N-U (2006) Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol 14:488–496. doi:10.1016/j.tim.2006.09.001

    Article  CAS  PubMed  Google Scholar 

  • Bryant DA, Garcia Costas AM, Maresca JA et al (2007) Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic Acidobacterium. Science 317:523–526. doi:10.1126/science.1143236

    Article  CAS  PubMed  Google Scholar 

  • Bryant DA, Liu Z, Li T et al (2012) Comparative and functional genomics of anoxygenic green bacteria from the taxa Chlorobi, Chloroflexi, and Acidobacteria. In: Burnap R, Vermaas W (eds) Advances in photosynthesis and respiration, vol 33, Functional genomics and evolution of photosynthetic systems. Springer, Dordrecht, pp 47–102. doi:10.1007/978-94-007-1533-2_3

    Google Scholar 

  • Buchanan BB, Arnon DI (1990) A reverse KREBS cycle in photosynthesis: consensus at last. Photosynth Res 24:47–53. doi:10.1007/BF00032643

    Article  CAS  Google Scholar 

  • Castenholz RW (1969) Thermophilic blue-green algae and the thermal environment. Bacteriol Rev 33:476–504

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chan CS, Chan K-G, Tay Y-L et al (2015) Diversity of thermophiles in a Malaysian hot spring determined using 16S rRNA and shotgun metagenome sequencing. Front Microbiol 6:177. doi:10.3389/fmicb.2015.00177

    PubMed  PubMed Central  Google Scholar 

  • Chen M (2014) Chlorophyll modifications and their spectral extension in oxygenic photosynthesis. Annu Rev Biochem 83:317–340. doi:10.1146/annurev-biochem-072711-162943

    Article  CAS  PubMed  Google Scholar 

  • Choi AR, Shi L, Brown LS et al (2014) Cyanobacterial light-driven proton pump, Gloeobacter rhodopsin: complementarity between rhodopsin-based energy production and photosynthesis. PLoS One 9, e110643. doi:10.1371/journal.pone.0110643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Copeland J (1936) Yellowstone thermal Myxophyceae. Ann N Y Acad Sci 36:1–232. doi:10.1111/j.1749-6632.1936.tb56976.x

    Article  Google Scholar 

  • De Wit R, van Gemerden H (1987) Oxidation of sulfide to thiosulfate by Microcoleus chtonoplastes. FEMS Microbiol Lett 45:7–13. doi:10.1111/j.1574-6968.1987.tb02332.x

    Article  Google Scholar 

  • Dillon JG, Fishbain S, Miller SR et al (2007) High rates of sulfate reduction in a low-sulfate hot spring microbial mat are driven by a low level of diversity of sulfate-respiring microorganisms. Appl Environ Microbiol 73:5218–5226. doi:10.1128/AEM.00357-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dodsworth JA, Gevorkian J, Despujos F et al (2014) Thermoflexus hugenholtzii gen. nov., sp. nov., a thermophilic, microaerophilic, filamentous bacterium representing a novel class in the Chloroflexi, Thermoflexia classis nov., and description of Thermoflexaceae fam. nov. and Thermoflexales ord. nov. Int J Syst Evol Microbiol 64:2119–2127. doi:10.1099/ijs.0.055855-0

    Article  CAS  PubMed  Google Scholar 

  • Doemel WN, Brock TD (1976) Vertical distribution of sulfur species in benthic algal mats. Limnol Oceanogr 21:237–244. doi:10.4319/lo.1976.21.2.0237

    Article  CAS  Google Scholar 

  • Doemel WN, Brock TD (1977) Structure, growth, and decomposition of laminated algal-bacterial mats in alkaline hot springs. Appl Environ Microbiol 34:433–452

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferris MJ, Ward DM (1997) Seasonal distributions of dominant 16S rRNA-defined populations in a hot spring microbial mat examined by denaturing gradient gel electrophoresis. Appl Environ Microbiol 63:1375–1381

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferris MJ, Muyzer G, Ward DM (1996a) Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl Environ Microbiol 62:340–346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferris MJ, Ruff-Roberts AL, Kopczynski ED, Bateson MM et al (1996b) Enrichment culture and microscopy conceal diverse thermophilic Synechococcus populations in a single hot spring mat habitat. Microbiology 62:1045–1050

    CAS  Google Scholar 

  • Ferris MJ, Kühl M, Wieland A et al (2003) Cyanobacterial ecotypes in different optical microenvironments of a 68°C hot spring mat community revealed by 16S-23S rRNA internal transcribed spacer region variation. Appl Environ Microbiol 69:2893–2898. doi:10.1128/AEM.69.5.2893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finkel OM, Béjà O, Belkin S (2013) Global abundance of microbial rhodopsins. ISME J 7:448–451. doi:10.1038/ismej.2012.112

    Article  CAS  PubMed  Google Scholar 

  • Frigaard N-U, Dahl C (2009) Sulfur metabolism in phototrophic sulfur bacteria. In: Poole R (ed) Advances in microbial physiology, vol 54. Academic Press, pp 103–200. doi:10.1016/S0065-2911(08)00002-7

  • Frigaard N-U, Martinez A, Mincer TJ et al (2006) Proteorhodopsin lateral gene transfer between marine planktonic bacteria and archaea. Nature 439:847–850. doi:10.1038/nature04435

    Article  CAS  PubMed  Google Scholar 

  • Gaisin VA, Kalashnikov AM, Sukhacheva MV et al (2015) Filamentous anoxygenic phototrophic bacteria from cyanobacterial mats of Alla hot springs (Barguzin Valley, Russia). Extremophiles 19:1–10. doi:10.1007/s00792-015-0777-7

    Article  CAS  Google Scholar 

  • Gan F, Bryant DA (2015) Adaptive and acclimative responses of cyanobacteria to far-red light. Environ Microbiol 17:3450–3465. doi:10.1111/1462-2920.12992

  • Gan F, Zhang S, Rockwell NC et al (2014) Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. Science 345:1312–1317. doi:10.1126/science.1256963

    Article  CAS  PubMed  Google Scholar 

  • Gan F, Shen G, Bryant DA (2015) Occurrence of far-red light photoacclimation (FaRLiP) in diverse Cyanobacteria. Life (Basel, Switzerland) 5:4–24. doi:10.3390/life5010004

  • Garcia Costas AMG, Tsukatani Y, Romberger SP et al (2011a) Ultrastructural analysis and identification of envelope proteins of “Candidatus Chloracidobacterium thermophilum” chlorosomes. J Bacteriol 193:6701–6711. doi:10.1128/JB.06124-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garcia Costas AMG, Tsukatani Y, Rijpstra WIC et al (2011b) Identification of the bacteriochlorophylls, carotenoids, quinones, lipids, and hopanoids of “Candidatus Chloracidobacterium thermophilum”. J Bacteriol 194:1158–1168. doi:10.1128/JB.06421-11

    Article  PubMed  CAS  Google Scholar 

  • Garcia Costas AMG, Liu Z, Tomsho LP et al (2012) Complete genome of “Candidatus Chloracidobacterium thermophilum”, a chlorophyll-based photoheterotroph belonging to the phylum Acidobacteria. Environ Microbiol 14:177–190. doi:10.1111/j.1462-2920.2011.02592.x

    Article  PubMed  CAS  Google Scholar 

  • Gelfand DH, Stoffel S, Lawyer FC et al (1989) Purified thermostable enzyme. Patent US 4889818 A

    Google Scholar 

  • Gibson J, Pfennig N, Waterbury JB (1984) Chloroherpeton thalassium gen. nov. et spec. nov., a non-filamentous, flexing and gliding green sulfur bacterium. Arch Microbiol 138(2):96–101. doi:10.1007/BF00413007

    Article  CAS  PubMed  Google Scholar 

  • Giovannoni SJ, Bibbs L, Cho J-C et al (2005) Proteorhodopsin in the ubiquitous marine bacterium SAR11. Nature 438:82–85. doi:10.1038/nature04032

    Article  CAS  PubMed  Google Scholar 

  • Golbeck JH (1993) Shared thematic elements in photochemical reaction centers. Proc Natl Acad Sci U S A 90:1642–1646. doi:10.1073/pnas.90.5.1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez Maqueo Chew A, Bryant DA (2007) Chlorophyll biosynthesis in bacteria: the origins of structural and functional diversity. Annu Rev Microbiol 61:113–129. doi:10.1146/annurev.micro.61.080706.093242

    Article  CAS  Google Scholar 

  • Gómez-Consarnau L, González JM, Coll-Lladó M et al (2007) Light stimulates growth of proteorhodopsin-containing marine Flavobacteria. Nature 445:210–213. doi:10.1038/nature05381

    Article  PubMed  CAS  Google Scholar 

  • Gorlenko VM, Bryantseva IA, Kalashnikov AM et al (2014) “Candidatus Chloroploca asiatica” gen. nov., sp. nov., a new mesophilic filamentous anoxygenic phototrophic bacterium. Microbiology 83:838–848. doi:10.1134/S0026261714060083

    Article  CAS  Google Scholar 

  • Gregersen LH, Bryant DA, Frigaard N-U (2011) Mechanisms and evolution of oxidative sulfur metabolism in green sulfur bacteria. Front Microbiol 2:116. doi:10.3389/fmicb.2011.00116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grégoire P, Fardeau M-L, Joseph M et al (2011) Isolation and characterization of Thermanaerothrix daxensis gen. nov., sp. nov., a thermophilic anaerobic bacterium pertaining to the phylum Chloroflexi, isolated from a deep hot aquifer in the Aquitaine Basin. Syst Appl Microbiol 34:494–497. doi:10.1016/j.syapm.2011.02.004

    Article  PubMed  CAS  Google Scholar 

  • Gupta RS, Chander P, George S (2013) Phylogenetic framework and molecular signatures for the class Chloroflexi and its different clades; proposal for division of the class Chloroflexia class. nov. into the suborder Chloroflexineae subord. nov., consisting of Oscillochloridacea and the family Chloroflexaceae fam. nov., and the suborder Roseiflexineae subord. nov., containing the family Roseiflexaceae fam. nov. Antonie Van Leeuwenhoek 103:99–119. doi:10.1007/s10482-012-9790-3

    Article  PubMed  Google Scholar 

  • Hallenbeck PC, Grogger M, Mraz M, Veverka D (2016) Draft genome sequence of the photoheterotrophic Chloracidobacterium thermophilum strain OC1 found in a mat at Ojo Caliente. Genome Announc 4:e01570-15. doi:10.1128/genomeA.01570-15

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanada S, Pierson BK (2006) The family Chloroflexaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes: a handbook on the biology of bacteria. Springer, New York, pp 815–842. doi:10.1007/0-387-30747-8_33

    Chapter  Google Scholar 

  • Hanada S, Hiraishi A, Shimada K et al (1995) Chloroflexus aggregans sp. nov., a filamentous phototrophic bacterium which forms dense cell aggregates by active gliding movement. Int J Syst Bacteriol 45:676–681. doi:10.1099/00207713-45-4-676

    Article  CAS  PubMed  Google Scholar 

  • Hanada S, Takaichi S, Matsuura K, Nakamura K (2002) Roseiflexus castenholzii gen. nov., sp. nov., a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes. Int J Syst Evol Microbiol 52:187–193. doi:10.1099/00207713-52-1-187

    Article  CAS  PubMed  Google Scholar 

  • Hauruseu D, Koblížek M (2012) Influence of light on carbon utilization in aerobic anoxygenic phototrophs. Appl Environ Microbiol 78:7414–7419. doi:10.1128/AEM.01747-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henry EA, Devereux R, Maki JS et al (1994) Characterization of a new thermophilic sulfate-reducing bacterium. Thermodesulfovibrio yellowstoneii, gen. nov. and sp. nov.: its phylogenetic relationship to Thermodesulfobacterium commune and their origins deep within the bacterial domain. Arch Microbiol 161:62–69. doi:10.1007/BF00248894

    Article  CAS  PubMed  Google Scholar 

  • Hisada TAH, Okamura K, Hiraishi A (2007) Isolation and characterization of phototrophic purple nonsulfur bacteria from Chloroflexus and cyanobacterial mats in hot springs. Microbes Environ 22:405–411. doi:10.1264/jsme2.22.405

    Article  Google Scholar 

  • Hohmann-Marriott MF, Blankenship RE (2011) Evolution of photosynthesis. Annu Rev Plant Biol 62:515–548. doi:10.1146/annurev-arplant-042110-103811

    Article  CAS  PubMed  Google Scholar 

  • Holt AS, Hughes DW (1961) Studies of Chlorobium chlorophylls. III. Chlorobium chlorophyll (650). J Am Chem Soc 83:499–500. doi:10.1021/ja01463a067

  • Hoogewerf GJ, Jung DO, Madigan MT (2003) Evidence for limited species diversity of bacteriochlorophyll b-containing purple nonsulfur anoxygenic phototrophs in freshwater habitats. FEMS Microbiol Lett 218:359–364. doi:10.1016/S0378-1097(02)01195-3

    Article  CAS  PubMed  Google Scholar 

  • Huber R, Eder W, Heldwein S et al (1998) Thermocrinis ruber gen. nov., sp. nov., a pink-filament-forming hyperthermophilic bacterium isolated from Yellowstone National Park. Appl Environ Microbiol 64:3576–3583

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter NC, Daldal F, Thurnayer MC, Beatty TJ (eds) (2009) The purple phototrophic bacteria. Advances in Photosynthesis and Respiration, vol 28. Springer, Dordrecht, The Netherlands. ISBN 978-1-4020-8814-8

    Google Scholar 

  • Imachi H, Sakai S, Lipp JS et al (2014) Pelolinea submarina gen. nov., sp. nov., an anaerobic, filamentous bacterium of the phylum Chloroflexi isolated from subseafloor sediment. Int J Syst Evol Microbiol 64:812–818. doi:10.1099/ijs.0.057547-0

    Article  CAS  PubMed  Google Scholar 

  • Imhoff JF (2014) The family Chromatiaceae. In: Rosenberg E, DeLong EF, Lory S et al (eds) The prokaryotes: gammaproteobacteria. Springer, Berlin/Heidelberg, pp 151–178. doi:10.1007/978-3-642-38922-1_295

    Google Scholar 

  • Imhoff JF, Süling J (1996) The phylogenetic relationship among Ectothiorhodospiraceae: a reevaluation of their taxonomy on the basis of 16S rDNA analyses. Arch Microbiol 165:106–113. doi:10.1007/s002030050304

    Article  CAS  PubMed  Google Scholar 

  • Imhoff JF, Trüper HG (1977) Ectothiorhodospira halochloris sp. nov., a new extremely halophilic phototrophic bacterium containing bacteriochlorophyll b. Arch Microbiol 114:115–121. doi:10.1007/BF00410772

    Article  CAS  Google Scholar 

  • Inoue K, Ono H, Abe-Yoshizumi R et al (2013) A light-driven sodium ion pump in marine bacteria. Nat Commun 4:1678–1687. doi:10.1038/ncomms2689

    Article  PubMed  CAS  Google Scholar 

  • Jaschke PR, Saer RG, Noll S, Beatty JT (2011) Modification of the genome of Rhodobacter sphaeroides and construction of synthetic operons. Methods Enzymol 497:519–538. doi:10.1016/B978-0-12-385075-1.00023-8

    Article  CAS  PubMed  Google Scholar 

  • Jensen SI, Steunou A-S, Bhaya D et al (2011) In situ dynamics of O2, pH and cyanobacterial transcripts associated with CCM, photosynthesis and detoxification of ROS. ISME J 5:317–328. doi:10.1038/ismej.2010.131

    Article  CAS  PubMed  Google Scholar 

  • Jiao N, Zhang Y, Zeng Y et al (2007) Distinct distribution pattern of abundance and diversity of aerobic anoxygenic phototrophic bacteria in the global ocean. Environ Microbiol 9:3091–3099. doi:10.1360/02wc0336

    Article  CAS  PubMed  Google Scholar 

  • Kandori H (2015) Ion-pumping microbial rhodopsins. Front Mol Biosci 2:52. doi:10.3389/fmolb.2015.00052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kanokratana P, Chanapan S, Pootanakit K, Eurwilaichitr L (2004) Diversity and abundance of bacteria and archaea in the Bor Khlueng hot spring in Thailand. J Basic Microbiol 44:430–444. doi:10.1002/jobm.200410388

    Article  PubMed  Google Scholar 

  • Katoh H, Itoh S, Shen JR, Ikeuchi M (2001) Functional analysis of psbV and a novel c-type cytochrome gene psbV2 of the thermophilic cyanobacterium Thermosynechococcus elongatus strain BP-1. Plant Cell Physiol 42:599–607. doi:10.1093/pcp/pce074

    Article  CAS  PubMed  Google Scholar 

  • Keppen OI, Baulina OI, Kondratieva EN (1994) Oscillochloris trichoides neotype strain DG-6. Photosynth Res 41:29–33. doi:10.1007/BF02184143

    Article  CAS  PubMed  Google Scholar 

  • Keppen OI, Tourova TP, Kuznetsov BB et al (2000) Proposal of Oscillochloridaceae fam. nov. on the basis of a phylogenetic analysis of the filamentous anoxygenic phototrophic bacteria, and emended description of Oscillochloris and Oscillochloris trichoides in comparison with further new isolates. Int J Syst Evol Microbiol 50:1529–1537. doi:10.1099/00207713-50-4-1529

    Article  PubMed  Google Scholar 

  • Kim Y-M, Nowack S, Olsen MT et al (2015) Diel metabolomics analysis of a hot spring chlorophototrophic microbial mat leads to new hypotheses of community member metabolisms. Front Microbiol 6:209. doi:10.3389/fmicb.2015.00209

    PubMed  PubMed Central  Google Scholar 

  • Kimble LK, Mandelco L, Woese CR, Madigan MT (1995) Heliobacterium modesticaldum, sp. nov., a thermophilic heliobacterium of hot springs and volcanic soils. Arch Microbiol 163:259–267. doi:10.1007/BF00393378

    Article  CAS  Google Scholar 

  • Klatt CG, Bryant DA, Ward DM (2007) Comparative genomics provides evidence for the 3-hydroxypropionate autotrophic pathway in filamentous anoxygenic phototrophic bacteria and in hot spring microbial mats. Environ Microbiol 9:2067–2078. doi:10.1111/j.1462-2920.2007.01323.x

    Article  CAS  PubMed  Google Scholar 

  • Klatt CG, Wood JM, Rusch DB et al (2011) Community ecology of hot spring cyanobacterial mats: predominant populations and their functional potential. ISME J 5:1262–1278. doi:10.1038/ismej.2011.73

  • Klatt CG, Liu Z, Ludwig M et al (2013) Temporal metatranscriptomic patterning in phototrophic Chloroflexi inhabiting a microbial mat in a geothermal spring. ISME J 7:1775–1789. doi:10.1038/ismej.2013.52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koblížek M (2015) Ecology of aerobic anoxygenic phototrophs in aquatic environments. FEMS Microbiol Rev 39:854–870. doi:10.1093/femsre/fuv032

    Article  PubMed  Google Scholar 

  • Kuznetsov BB, Ivanovsky RN, Keppen OI et al (2011) Draft genome sequence of the anoxygenic filamentous phototrophic bacterium Oscillochloris trichoides subsp. DG-6. J Bacteriol 193:321–322. doi:10.1128/JB.00931-10

    Article  CAS  PubMed  Google Scholar 

  • Lanyi JK (2006) Proton transfers in the bacteriorhodopsin photocycle. Biochim Biophys Acta 1757:1012–1018. doi:10.1016/j.bbabio.2005.11.003

    Article  CAS  PubMed  Google Scholar 

  • Lau MC, Aitchison JC, Pointing SB (2009) Bacterial community composition in thermophilic microbial mats from five hot springs in central Tibet. Extremophiles 13:139–149. doi:10.1007/s00792-008-0205-3

    Article  PubMed  Google Scholar 

  • Liu Z, Klatt CG, Wood JM et al (2011) Metatranscriptomic analyses of chlorophototrophs of a hot-spring microbial mat. ISME J 5:1279–1290. doi:10.1038/ismej.2011.37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Klatt CG, Ludwig M et al (2012) “Candidatus Thermochlorobacter aerophilum:” an aerobic chlorophotoheterotrophic member of the phylum Chlorobi defined by metagenomics and metatranscriptomics. ISME J 6:1869–1882. doi:10.1038/ismej.2012.24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madigan MT (1984) A novel photosynthetic purple bacterium isolated from a Yellowstone hot spring. Science 225:313–315. doi:10.1126/science.225.4659.313

    Article  CAS  PubMed  Google Scholar 

  • Madigan MT (1986) Chromatium tepidum sp. nov., a thermophilic photosynthetic bacterium of the family Chromatiaceae. Int J Syst Evol Microbiol 36:222–227. doi:10.1099/00207713-36-2-222

    CAS  Google Scholar 

  • Madigan MT (2003) Anoxygenic phototrophic bacteria from extreme environments. Photosynth Res 76:157–171. doi:10.1023/A:1024998212684

    Article  CAS  PubMed  Google Scholar 

  • Madigan MT, Brock TD (1977) Adaptation by hot spring phototrophs to reduced light intensities. Arch Microbiol 113:111–120. doi:10.1007/BF00428590

    Article  CAS  PubMed  Google Scholar 

  • Madigan MT, Petersen SR, Brock TD (1974) Nutritional studies on Chloroflexus, a filamentous photosynthetic, gliding bacterium. Arch Microbiol 100:97–103. doi:10.1007/BF00446309

    Article  CAS  Google Scholar 

  • Maresca JA, Graham JE, Bryant DA (2008) The biochemical basis for structural diversity in the carotenoids of chlorophototrophic bacteria. Photosynth Res 97:121–140. doi:10.1007/s11120-008-9312-3

    Article  CAS  PubMed  Google Scholar 

  • Maresca JA, Gomez Maqueo Chew A, Ros Ponsatí M et al (2004) The bchU gene of Chlorobium tepidum encodes the bacteriochlorophyll C-20 methyltransferase. J Bacteriol 186:2558–2566. doi:10.1128/JB.186.9.2558-2566.2004

  • Martinez-Garcia M, Swan BK, Poulton NJ et al (2011) High-throughput single-cell sequencing identifies photoheterotrophs and chemoautotrophs in freshwater bacterioplankton. ISME J 6:113–123. doi:10.1038/ismej.2011.84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meeks JC, Castenholz R (1971) Growth and photosynthesis in an extreme thermophile, Synechococcus lividus (Cyanophyta). Arch Microbiol 78:25–41. doi:10.1007/BF00409086

    CAS  Google Scholar 

  • Melendrez MC, Lange RK, Cohan FM, Ward DM (2011) Influence of molecular resolution on sequence-based discovery of ecological diversity among Synechococcus populations in an alkaline siliceous hot spring microbial mat. Appl Environ Microbiol 77:1359–1367. doi:10.1128/AEM.02032-10

    Article  CAS  PubMed  Google Scholar 

  • Miller SR, Strong AL, Jones KL, Ungerer MC (2009) Bar-coded pyrosequencing reveals shared bacterial community properties along the temperature gradients of two alkaline hot springs in Yellowstone National Park. Appl Environ Microbiol 75:4565–4572. doi:10.1128/AEM.02792-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowack S (2014) Niche character in a temporally varying environment. PhD thesis, Montana State University

    Google Scholar 

  • Nowack S, Olsen MT, Schaible GA et al (2015) The molecular dimension of microbial species: 2. Synechococcus strains representative of putative ecotypes inhabiting different depths in the Mushroom Spring microbial mat exhibit different adaptive and acclimative responses to light. Front Microbiol 6:626. doi:10.3389/fmicb.2015.00626

  • Nübel U, Bateson MM, Madigan MT et al (2001) Diversity and distribution in hypersaline microbial mats of bacteria related to Chloroflexus spp. Appl Environ Microbiol 67:4365–4371. doi:10.1128/AEM.67.9.4365

    Article  PubMed  PubMed Central  Google Scholar 

  • Nübel U, Bateson MM, Vandieken V et al (2002) Microscopic examination of distribution and phenotypic properties of phylogenetically diverse Chloroflexaceae-related bacteria in hot spring microbial mats. Appl Environ Microbiol 68:4593–4603. doi:10.1128/AEM.68.9.4593

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nunoura T, Hirai M, Miyazaki M et al (2013) Isolation and characterization of a thermophilic, obligately anaerobic and heterotrophic marine Chloroflexi bacterium from a Chloroflexi-dominated microbial community associated with a Japanese shallow hydrothermal system, and proposal for Thermomarinilinea lacunofontalis gen. nov., sp. nov. Microbes Environ 28:228–235. doi:10.1264/jsme2.ME12193

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohashi S, Iemura T, Okada N et al (2010) An overview on chlorophylls and quinones in the photosystem I-type reaction centers. Photosynth Res 104:305–319. doi:10.1007/s11120-010-9530-3

    Article  CAS  PubMed  Google Scholar 

  • Olsen MT, Nowack S, Wood JM et al (2015) The molecular dimension of microbial species: 3. Comparative genomics of Synechococcus strains with different light responses and in situ diel transcription patterns of associated putative ecotypes in the Mushroom Spring microbial mat. Front Microbiol 6:604. doi:10.3389/fmicb.2015.00604

  • Oren A (2014) The family Ectothiorhodospiraceae. In: Rosenberg E, DeLong EF, Lory S et al (eds) The prokaryotes: gammaproteobacteria. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 199–222

    Google Scholar 

  • Overmann J (2008) Ecology of phototrophic sulfur bacteria. In: Advances in Photosynthesis and Respiration, vol 27, Hell R, Dahl C, Knaff DB, Leustek T (eds) Sulfur metabolism in phototrophic organisms. Springer, Dordrecht, pp 375–396. doi:10.1007/978-1-4020-6863-8_19

  • Overmann J, Garcia-Pichel F (2013) The phototrophic way of life. In: Rosenberg E, DeLong EF, Lory S et al (eds) The prokaryotes: prokaryotic communities and ecophysiology. Springer, Berlin Heidelberg, pp 80–136. doi:10.1007/0-387-30742-7_3

    Google Scholar 

  • Papke RT, Ramsing NB, Bateson MM, Ward DM (2003) Geographical isolation in hot spring cyanobacteria. Environ Microbiol 5:650–659. doi:10.1046/j.1462-2920.2003.00460.x

    Article  CAS  PubMed  Google Scholar 

  • Pierson BK, Castenholz RW (1971) Bacteriochlorophylls in gliding filamentous prokaryotes from hot springs. Nat New Biol 233:25–27. doi:10.1038/newbio233025a0

  • Pierson BK, Castenholz RW (1974) A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen nov. sp. nov. Arch Microbiol 100:5–24. doi:10.1007/BF00446302

    Article  CAS  PubMed  Google Scholar 

  • Podosokorskaya OA, Bonch-Osmolovskaya EA, Novikov AA et al (2013) Ornatilinea apprima gen. nov., sp. nov., a cellulolytic representative of the class Anaerolineae. Int J Syst Evol Microbiol 63:86–92. doi:10.1099/ijs.0.041012-0

    Article  CAS  PubMed  Google Scholar 

  • Rabenstein A, Rethmeier J, Fischer U (1995) Sulphite as intermediate sulfur compound in anaerobic sulphide oxidation to thiosulphate by marine cyanobacteria. Z Naturforsch 50c:769–774. doi:10.1515/znc-1995-11-1206

  • Ragon M, Benzerara K, Moreira D et al (2014) 16S rDNA-based analysis reveals cosmopolitan occurrence but limited diversity of two cyanobacterial lineages with contrasted patterns of intracellular carbonate mineralization. Front Microbiol 5:1–11. doi:10.3389/fmicb.2014.00331

    Article  Google Scholar 

  • Ramsing NB, Ferris MJ, Ward DM (2000) Highly ordered vertical structure of Synechococcus populations within the one-millimeter-thick photic zone of a hot spring cyanobacterial mat. Appl Environ Microbiol 66:1038–1049. doi:10.1128/AEM.66.3.1038-1049.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rappé MS, Connon SA, Vergin KL, Giovannoni SJ (2002) Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418:630–633. doi:10.1038/nature00917

    Article  PubMed  CAS  Google Scholar 

  • Resnick S, Madigan MT (1989) Isolation and characterization of a mildly thermophilic nonsulfur purple bacterium containing bacteriochlorophyll b. FEMS Microbiol Lett 65:165–170. doi:10.1016/0378-1097(89)90385-6

    Article  CAS  Google Scholar 

  • Revsbech NP, Ward DM (1984) Microelectrode studies of interstitial water chemistry and photosynthetic activity in a hot spring microbial mat. Appl Environ Microbiol 48:270–275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Revsbech, NP, Trampe E, Lichtenberg M et al (2016). In situ hydrogen dynamics in a hot spring microbial mat during a diel cycle. Appl Environ Microbiol 82:4209–4217. doi:10.1128/AEM.00710-16

  • Reysenbach A, Wickham GS, Pace NR (1994) Phylogenetic analysis of the hyperthermophilic pink filament community in Octopus Spring, Yellowstone National Park. Appl Environ Microbiol 60:2113–2119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reysenbach AL, Voytek M, Mancinelli R (eds) (2001) Thermophiles: biodiversity, ecology, and evolution. Kluwer Academic/Plenum Press, New York. doi:10.1007/978-1-4615-1197-7

  • Rippka R, Deruelles J, Waterbury JB et al (1979) Generic assignments, strain histories and properties of pure cultures of Cyanobacteria. J Gen Microbiol 111:1–61. doi:10.1099/00221287-111-1-1

    Google Scholar 

  • Ross KA, Feazel LM, Robertson CE et al (2012) Phototrophic phylotypes dominate mesothermal microbial mats associated with hot springs in Yellowstone National Park. Microb Ecol 64:162–170. doi:10.1007/s00248-012-0012-3

    Article  CAS  PubMed  Google Scholar 

  • Ruff-Roberts AL, Kuenen JG, Ward DM (1994) Distribution of cultivated and uncultivated cyanobacteria and Chloroflexus-like bacteria in hot spring microbial mats. Appl Environ Microbiol 60:697–704

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sadekar S, Raymond J, Blankenship RE (2006) Conservation of distantly related membrane proteins: photosynthetic reaction centers share a common structural core. Mol Biol Evol 23:2001–2007. doi:10.1093/molbev/msl079

    Article  CAS  PubMed  Google Scholar 

  • Saiki R, Gelfand D, Stoffel S et al (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491. doi:10.1126/science.2448875

    Article  CAS  PubMed  Google Scholar 

  • Sandbeck KA, Ward DM (1981) Fate of immediate methane precursors in low-sulfate, hot-spring algal-bacterial mats. Appl Environ Microbiol 41:775–782

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sekiguchi Y, Yamada T, Hanada S et al (2003) Anaerolinea thermophila gen. nov., sp. nov. and Caldilinea aerophila gen. nov., sp. nov., novel filamentous thermophiles that represent a previously uncultured lineage of the domain Bacteria at the subphylum level. Int J Syst Evol Microbiol 53:1843–1851. doi:10.1099/ijs.0.02699-0

    Article  CAS  PubMed  Google Scholar 

  • Shen G, Gan F, Bryant DA (2016) The siderophilic cyanobacterium Leptolyngbya sp. strain JSC-1 acclimates to iron starvation by expressing multiple isiA-family genes. Photosynth Res 128:325–340. doi:10.1007/s11120-016-0257-7

    Article  CAS  PubMed  Google Scholar 

  • Sidler WA (1994) Phycobilisome and phycobiliprotein structures. In: Bryant DA (ed) Advances in photosynthesis and respiration, vol 1, the molecular biology of cyanobacteria. Springer, Berlin, pp 139–216

    Google Scholar 

  • Sitz TO, Schmidt RR (1973) Purification of Synechococcus lividus by equilibrium centrifugation and its synchronization by differential centrifugation. J Bacteriol 115:43–46

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stanier RY, Cohen-Bazire G (1977) Phototrophic prokaryotes: the cyanobacteria. Ann Rev Microbiol 31:225–274. doi:10.1146/annurev.mi.31.100177.001301

    Article  CAS  Google Scholar 

  • Steensgaard DB, Van Walree CA, Bañeras L et al (1999) Evidence for spatially separate bacteriochlorophyll c and bacteriochlorophyll d pools within the chlorosomal aggregate of the green sulfur bacterium Chlorobium limicola. Photosyn Res 59:231–241. doi:10.1023/A:1006116101525

    Article  CAS  Google Scholar 

  • Steindler L, Schwalbach MS, Smith DP et al (2011) Energy-starved “Candidatus Pelagibacter ubique” substitutes light-mediated ATP production for endogenous carbon respiration. PLoS One 6, e19725. doi:10.1371/journal.pone.0019725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steunou A-S, Bhaya D, Bateson MM et al (2006) In situ analysis of nitrogen fixation and metabolic switching in unicellular thermophilic cyanobacteria inhabiting hot spring microbial mats. Proc Natl Acad Sci U S A 103:2398–2403. doi:10.1073/pnas.0507513103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steunou A-S, Jensen SI, Brecht E et al (2008) Regulation of nif gene expression and the energetics of N2 fixation over the diel cycle in a hot spring microbial mat. ISME J 2:364–378. doi:10.1038/ismej.2007.117

    Article  CAS  PubMed  Google Scholar 

  • Stevenson AK, Kimble LK, Woese CR, Madigan MT (1997) Characterization of new phototrophic heliobacteria and their habitats. Photosynth Res 53:1–12. doi:10.1023/A:1005802316419

    Article  CAS  Google Scholar 

  • Takaichi S, Tsuji K, Matsuura K, Shimada K (1995) A monocyclic carotenoid glucoside ester is a major carotenoid in the green filamentous bacterium Chloroflexus aurantiacus. Plant Cell Physiol 36:773–778

    Article  CAS  Google Scholar 

  • Takaichi S, Maoka T, Yamada M et al (2001) Absence of carotenes and presence of a tertiary methoxy group in a carotenoid from a thermophilic filamentous photosynthetic bacterium Roseiflexus castenholzii. Plant Cell Physiol 42:1355–1362. doi:10.1093/pcp/pce172

    Article  CAS  PubMed  Google Scholar 

  • Tang KH, Feng X, Tang YJ, Blankenship RE (2009) Carbohydrate metabolism and carbon fixation in Roseobacter denitrificans OCh114. PLoS One 4, e7233. doi:10.1371/journal.pone.0007233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang KH, Tang YJ, Blankenship RE (2011) Carbon metabolic pathways in phototrophic bacteria and their broader evolutionary implications. Front Microbiol 2:165. doi:10.3389/fmicb.2011.00165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tank M, Bryant DA (2015a) Nutrient requirements and growth physiology of the photoheterotrophic acidobacterium, Chloracidobacterium thermophilum. Front Microbiol 06:1–14. doi:10.3389/fmicb.2015.00226

    Article  Google Scholar 

  • Tank M, Bryant DA (2015b) Chloracidobacterium thermophilum gen. nov., sp. nov.: an anoxygenic microaerophilic chlorophotoheterotrophic acidobacterium. Int J Syst Evol Microbiol 65:1426–1430. doi:10.1099/ijs.0.000113

    Article  CAS  PubMed  Google Scholar 

  • Thiel V, Hamilton TL, Tomsho LP et al (2014) Draft genome sequence of a sulfide-oxidizing, autotrophic filamentous anoxygenic phototrophic bacterium, Chloroflexus sp. strain MS-G (Chloroflexi). Genome Announc 2:e00872-14. doi:10.1128/genomeA.00872-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Thiel V, Wood JM, Olsen MT et al (2016) The dark side of the Mushroom Spring microbial mat: life in the shadow of chlorophototrophs. I. Microbial diversity based on 16S rRNA amplicon and metagenomic sequencing. Front Microbiol 7:919. doi:10.3389/fmicb.2016.00919

  • Thiel V, Hügler M, Ward DM, Bryant DA (2017) The dark side of the Mushroom Spring microbial mat: life in the shadow of chlorophototrophs. II. Metabolic functions of abundant community members predicted from metagenomic analyses. Front. Microbiol., submitted for publication

    Google Scholar 

  • Tsukatani Y, Romberger SP, Golbeck JH, Bryant DA (2012) Isolation and characterization of homodimeric type-I reaction center complex from Candidatus Chloracidobacterium thermophilum, an aerobic chlorophototroph. J Biol Chem 287:5720–5732. doi:10.1074/jbc.M111.323329

  • Ugalde JA, Podell S, Narasingarao P, Allen EE (2011) Xenorhodopsins, an enigmatic new class of microbial rhodopsins horizontally transferred between archaea and bacteria. Biol Direct 6:52. doi:10.1186/1745-6150-6-52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Meer MTJ, Schouten S, Bateson MM et al (2005) Diel variations in carbon metabolism by green nonsulfur-like bacteria in alkaline siliceous hot spring microbial mats from Yellowstone National Park. Appl Environ Microbiol 71:3978–3986

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van der Meer MTJ, Schouten S, Sinninghe Damsté JS, Ward DM (2007) Impact of carbon metabolism on 13C signatures of cyanobacteria and green non-sulfur-like bacteria inhabiting a microbial mat from an alkaline siliceous hot spring in Yellowstone National Park (USA). Environ Microbiol 9:482–491. doi:10.1111/j.1462-2920.2006.01165.x

  • van der Meer MTJ, Klatt CG, Wood J et al (2010) Cultivation and genomic, nutritional, and lipid biomarker characterization of Roseiflexus strains closely related to predominant in situ populations inhabiting Yellowstone hot spring microbial mats. J Bacteriol 192:3033–3042. doi:10.1128/JB.01610-09

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Niel CB, Thayer LA (1930) Report on preliminary observations on the microflora in and near the hot springs in Yellowstone National park and their importance for the geological formations. YNP Lib File 7312, Mammoth, WY

    Google Scholar 

  • Venkata Ramana V, Sasikala C, Takaichi S, Ramana CV (2010) Roseomonas aestuarii sp. nov., a bacteriochlorophylla containing alphaproteobacterium isolated from an estuarine habitat of India. Syst Appl Microbiol 33:198–203. doi:10.1016/j.syapm.2009.09.004

    Article  CAS  PubMed  Google Scholar 

  • Wahlund TM, Madigan MT (1993) Nitrogen fixation by the thermophilic green sulfur bacterium Chlorobium tepidum. J Bacteriol 175:474–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wahlund TM, Tabita FR (1997) The reductive tricarboxylic acid cycle of carbon dioxide assimilation: initial studies and purification of ATP-citrate lyase from the green sulfur bacterium Chlorobium tepidum. J Bacteriol 179:4859–4867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wakao N, Yokoi N, Isoyama N et al (1996) Discovery of natural photosynthesis using Zn-containing bacteriochlorophyll in an aerobic bacterium Acidiphilium rubrum. Plant Cell Physiol 37:889–893. doi:10.1093/oxfordjournals.pcp.a029029

    Article  CAS  Google Scholar 

  • Ward DM (1998) A natural species concept for prokaryotes. Curr Opin Microbiol 1:271–7. doi:10.1016/S1369-5274(98)80029-5

  • Ward DM, Weller R, Bateson MM (1990) 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 346:183–187. doi:10.1038/346183a0

    Article  Google Scholar 

  • Ward DM, Bateson MM, Weller R, Ruff-Roberts AL (1992) Ribosomal RNA analysis of microorganisms as they occur in nature. In: Arshall K (ed) Advances in microbial ecology, vol 12. Springer, Boston, pp 219–286. doi:10.1007/978-1-4684-7609-5_5

    Chapter  Google Scholar 

  • Ward DM, Ferris MJ, Nold SC, Bateson MM (1998) A natural view of microbial biodiversity within hot spring cyanobacterial mat communities. Microbiol Mol Biol Rev 62:1353–1370

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ward DM, Bateson MM, Ferris MJ et al (2006) Cyanobacterial ecotypes in the microbial mat community of Mushroom Spring (Yellowstone National Park, Wyoming) as species-like units linking microbial community composition, structure and function. Philos Trans R Soc Lond B Biol Sci 361:1997–2008. doi:10.1098/rstb.2006.1919

    Article  PubMed  PubMed Central  Google Scholar 

  • Ward DM, Castenholz RW, Miller SR (2012a) Ecology of cyanobacteria II: Cyanobacteria in geothermal habitats. In: Whitton BA (ed) Ecology of cyanobacteria II. Springer, Dordrecht, pp 39–63. doi:10.1007/978-94-007-3855-3_3

    Chapter  Google Scholar 

  • Ward DM, Klatt CG, Wood J et al (2012b) Functional genomics and ecological and evolutionary context: maximizing the value of genomes in systems biology. In: Burnap R, Vermaas W (eds) Advances in photosynthesis and respiration, vol 33, Functional genomics and evolution of photosynthetic systems. Springer, Dordrecht, pp 1–16. doi:10.1007/978-94-007-1533-2

    Google Scholar 

  • Weller R, Bateson MM, Heimbuch BK et al (1992) Uncultivated cyanobacteria, Chloroflexus-like inhabitants, and spirochete-like inhabitants of a hot spring microbial mat. Appl Environ Microbiol 58:3964–3969

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada T, Sekiguchi Y, Hanada S et al (2006) Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen. nov., sp. nov. and Leptolinea tardivitalis gen. nov., sp. nov., novel filamentous anaerobes, and description of the new classes Anaerolineae classis nov. and Caldilineae classis nov. in the bacterial phylum Chloroflexi. Int J Syst Evol Microbiol 56:1331–1340. doi:10.1099/ijs.0.64169-0

    Article  CAS  PubMed  Google Scholar 

  • Yamada T, Imachi H, Ohashi A et al (2007) Bellilinea caldifistulae gen. nov., sp. nov. and Longilinea arvoryzae gen. nov., sp. nov., strictly anaerobic, filamentous bacteria of the phylum Chloroflexi isolated from methanogenic propionate-degrading consortia. Int J Syst Evol Microbiol 57:2299–2306. doi:10.1099/ijs.0.65098-0

    Article  CAS  PubMed  Google Scholar 

  • Yurkov V, Beatty JT (1998) Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev 62:695–724

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yurkov VV, Csotonyi JT (2009) New light on aerobic anoxygenic phototrophs. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) Advances in photosynthesis and respiration, vol 28, The purple phototrophic bacteria. Springer, Berlin, pp 31–55. doi:10.1007/978-1-4020-8815-5_3

    Google Scholar 

  • Zeng Y, Feng F, Medová H et al (2014) Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes. Proc Natl Acad Sci U S A 111:7795–7800. doi:10.1073/pnas.1400295111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng Y, Baumbach J, Barbosa EGV et al (2016) Metagenomic evidence for the presence of phototrophic Gemmatimonadetes bacteria in diverse environments. Environ Microbiol Rep 8:n/a–n/a. doi:10.1111/1758-2229.12363

Download references

Acknowledgements

The studies described in this chapter were partly funded by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the Department of Energy through Grant DE-FG02-94ER20137. D. A. B. and D. M. W. additionally acknowledge support from the NASA Exobiology program (NX09AM87G). This work was also partly supported by the US Department of Energy (DOE), Office of Biological and Environmental Research (BER), as part of BER’s Genomic Science Program 395 (GSP). This contribution originates from the GSP Foundational Scientific Focus Area (FSFA) at the Pacific Northwest National Laboratory (PNNL) under a subcontract to D.A.B. Some of the nucleotide sequencing was performed as part of a Community Sequencing Program (Project CSP-411) and was performed by the US Department of Energy Joint Genome Institute, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231.

The authors would also like to thank all of the JGI staff members who contributed to obtaining the sequence data. The materials used in this study were collected under permit #YELL-SCI-0129 held by D. M. W. and administered under the authority of Yellowstone National Park. The authors especially thank Christie Hendrix and Stacey Gunther for their advice and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald A. Bryant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tank, M., Thiel, V., Ward, D.M., Bryant, D.A. (2017). A Panoply of Phototrophs: An Overview of the Thermophilic Chlorophototrophs of the Microbial Mats of Alkaline Siliceous Hot Springs in Yellowstone National Park, WY, USA. In: Hallenbeck, P. (eds) Modern Topics in the Phototrophic Prokaryotes. Springer, Cham. https://doi.org/10.1007/978-3-319-46261-5_3

Download citation

Publish with us

Policies and ethics