Skip to main content

Ribosomal RNA Analysis of Microorganisms as They Occur in Nature

  • Chapter
Advances in Microbial Ecology

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 12))

Abstract

Advances in molecular biology are now providing the means for solving long-standing problems in microbiology. One of the best examples is the development of a rational approach to the phylogenetic classification of microorganisms, based on comparative analysis of slowly evolving molecular components, most notably ribosomal RNAs (Woese, 1987). Molecular biologists and microbiologists have been quick to recognize how rRNA sequence variation could be used to answer major questions limiting progress in microbial ecology. Only a few years after the initial rRNA-based phylogenetic observations were published (Woese and Fox, 1977), the 16S rRNA molecule was used to characterize Prochloron, an uncultivated symbiont of marine invertebrates (Seewaldt and Stackebrandt, 1982), and the smallest ribosomal RNA molecule, 5S rRNA, was used to analyze the composition of a few simple microbial communities (Stahl et al., 1984, 1985; Lane et al., 1985b). Some further ecologic work with 5S rRNA has appeared (Colwell et al., 1989), but extensive community analysis with this molecule is complicated by the difficulty of physically separating 5S rRNAs, and by the relatively small size and thus limited information content of this molecule. In the last few years, considerable emphasis has been given in both microbial phylogeny and microbial ecology to the development of methods for studying the larger and more informative rRNAs. Most of the work has been with small ribosomal subunit rRNA (SSU rRNA, 16S in prokaryotes and 18S in eukaryotes), though a limited amount of work has been done with the larger rRNAs of large ribosomal subunits (here termed LSU rRNA, 23S in prokaryotes and 28S in eukaryotes) and with internal transcribed spacer (ITS) regions separating rRNA genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achenbach-Richter, L., Stetter, K. O., and Woese, C. R., 1987, A possible biochemical missing link among archaebacteria, Nature 327:348–349.

    PubMed  CAS  Google Scholar 

  • Amann, R. I., Binder, B. J., Olson, R. J., Chisholm, S. W., Devereux, R., and Stahl, D. A., 1990a, Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations, Appl. Environ. Microbiol. 56:1919–1925.

    PubMed  CAS  Google Scholar 

  • Amann, R. I., Krumholz, L., and Stahl, D. A. 1990b, Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology, J. Bacteriol. 172:762–770.

    PubMed  CAS  Google Scholar 

  • Amann, R., Springer, N., Ludwig, W., Gortz, H., and Schleifer, K., 1991, Identification in situ and phylogeny of uncultured bacterial endosymbionts, Nature 351:161–164.

    PubMed  CAS  Google Scholar 

  • Amann, R. I., Lin, C., Key, R., Montgomery, L., and Stahl, D. A., 1992a, Diversity among Fibrobacter isolates: Towards a phylogenetic and habitat-based classification, Syst. Appl. Microbiol. 15, 23–31.

    Google Scholar 

  • Amann, R. I., Stromley, J., Devereux, R., Key, R., and Stahl, D. A., 1992b, Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms, Appl. Environ. Microbiol. 58:614–623.

    PubMed  CAS  Google Scholar 

  • Anderson, B. E., Dawson, J. E., Jones, D. C., and Wilson, K. H., 1991, Ehrlichia chaffeensis, a new species associated with human ehrlichiosis, J. Clin. Microbiol. 29:2838–2842.

    PubMed  CAS  Google Scholar 

  • Anderson, B. E., Sumner, J. W., Dawson, J. E., Tzianabos, T., Greene, C. R., Olson, J. G., Fishbein, D. B., Olsen-Rasmussen, M., Holloway, B. P. George, E. H., and Azad, A. F., 1992, Detection of the etiologic agent of human ehrlichiosis by polymerase chain reaction, J. Clin. Microbiol. 30:775–780.

    PubMed  CAS  Google Scholar 

  • Angert, E. R., Cements, K. D., and Pace, N. R., 1992, The largest prokaryote, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 248.

    Google Scholar 

  • Asgari, M., Lai, S., and Henney, H. R., 1991, Acanthamoeba DNA probe, Abstr. Annu. Meet., Am. Soc. Microbiol., p. 83.

    Google Scholar 

  • Atlas, R. M., 1984, Use of microbial diversity measurements to assess environmental stress, in Current Perspectives in Microbial Ecology (M. J. Klug and C. A. Reddy, eds.), Am. Soc. Microbiol., Washington, D.C., pp. 540–545.

    Google Scholar 

  • Barry, T., Powell, R., and Gannon, F., 1990, A general method to generate DNA probes for microorganisms, Biotechnology 8:233–236.

    PubMed  CAS  Google Scholar 

  • Barry, T., Colleran, G., Glennon, M., Dunican, L. K., and Gannon, F., 1991, The 16s/23s ribosomal spacer region as a target for DNA probes to identify eubacteria, PCR Meth. Appl. 1:51–56.

    CAS  Google Scholar 

  • Bateson, M. M., Wiegel, J., and Ward, D. M., 1989, Comparative analysis of 16S ribosomal RNA sequences of thermophilic fermentative bacteria isolated from hot spring cyanobacterial mats, Syst. Appl. Microbiol. 12:1–7.

    CAS  Google Scholar 

  • Bateson, M. M., Thibault, K. J., and Ward, D. M., 1990, Comparative analysis of 16S ribosomal RNA sequences of Thermus species, Syst. Appl. Microbiol. 13:8–13.

    CAS  Google Scholar 

  • Bauman, J. G. J., and Bentvelzen, P., 1988, Flow cytometric detection of ribosomal RNA in suspended cells by fluorescent in situ hybridization, Cytometry 9:517–524.

    PubMed  CAS  Google Scholar 

  • Bertin, B., Broux, O., and van Hoegarden, M., 1990, Flow cytometric detection of yeast by in situ hybridization with a fluorescent ribosomal RNA probe, J. Microbiol. Meth. 12:1–12.

    Google Scholar 

  • Betzl, D., Ludwig, W., and Schleifer, K. H., 1990, Identification of lactococci and enterococci by colony hybridization with 23S rRNA-targeted oligonucleotide probes, Appl. Environ. Microbiol. 56:2927–2929.

    PubMed  CAS  Google Scholar 

  • Boddinghaus, B., Rogali, T., Flohr, T., Blocker, H., and Bottger, E. C., 1990, Detection and identification of mycobacteria by amplification of rRNA, J. Clin. Microbiol. 28:1751–1759.

    PubMed  CAS  Google Scholar 

  • Bottger, E. C., 1989, Rapid determination of bacterial ribosomal RNA sequences by direct sequencing of enzymatically amplified DNA, FEMS Microbiol. Lett. 65:171–176.

    Google Scholar 

  • Bremer, H., and Dennis, P. P., 1987, Modulation of chemical composition and other parameters of the cell by growth rate, in: Escherichia coli and Salmonella typhimurium Cellular and Molecular Biology, Vol. 2 (F. C. Neidhart, J. L. Ingraham, K. Brooks Low, B. Magasanik, M. Shaechter, and H. E. Umbarger, eds.), Am. Soc. Microbiol., Washington, D.C., pp. 1527–1542.

    Google Scholar 

  • Briesacher, S. L., May, T. Grigsby, K. N., Kerley, M. S., Anthony, R. V., and Paterson, J. A., 1992, Use of DNA probes to monitor nutritional effects on ruminai prokaryotes and Fibrobacter succinogenes S85, J. Anim. Sci. 70:289–295.

    PubMed  CAS  Google Scholar 

  • Britschgi, T. B., and Giovannoni, S. J., 1991, Phylogenetic analysis of a natural marine bacterioplankton population by rRNA gene cloning and sequencing, Appl. Environ. Microbiol. 57:1707–1713.

    PubMed  CAS  Google Scholar 

  • Brock, T. D., 1978, Thermophilic Microorganisms and Life at High Temperatures, Springer-Verlag, Berlin.

    Google Scholar 

  • Brock, T. D., 1987, The study of microorganisms in situ: Progress and problems, Symp. Soc. Gen. Microbiol. 41:1–17.

    Google Scholar 

  • Brosius, J., Palmer, M. L., Kennedy, P. J., and Noller, H. F., 1978, Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli, Proc. Natl. Acad. Sci. USA 75:4801–4805.

    PubMed  CAS  Google Scholar 

  • Bruns, T. D., Fogel, R., and Taylor, J. W., 1990, Amplification and sequencing of DNA from fungal herbarium specimens, Mycologia 82:175–184.

    CAS  Google Scholar 

  • Bruns, T. D., Cullings, K. W., and Szaro, T. M., 1991, Pine drops, Pterospora andromedia, is specifically associated with Rhizopogon or a closely related taxon over a broad geographic range, Mycol. Soc. Am. Newsl. 42:8.

    Google Scholar 

  • Chan, S. W., Vera-Garcia, M., Chen, P., Weisburg, W. G., Barns, S. M., and Klinger, J. D., 1991, Rapid detection of fungemia using a prototype Q-beta amplified nucleic acid hybridization assay, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 360.

    Google Scholar 

  • Cheema, M. A., Schumacher, H. R., and Hudson, A. P., 1991, RNA-directed molecular hybridization screening: evidence for inapparent chlamydial infection, Am. J. Med. Sci. 302:261–268.

    PubMed  CAS  Google Scholar 

  • Chen, K., Neimark, H., Rumore, P., and Steinman, C. R., 1989, Broad range DNA probes for detecting and amplifying eubacterial nucleic acids, FEMS Microbiol. Lett. 57:19–24.

    CAS  Google Scholar 

  • Chuba, P. J., Pelz, K., Krekeler, G., De Isele, T. S., and Gobel, U., 1988, Synthetic oligodeoxy-nucleotide probes for the rapid detection of bacteria associated with human periodontitis, J. Gen. Microbiol. 134:1931–1938.

    PubMed  CAS  Google Scholar 

  • Colwell, R. R., MacDonell, M. T., and Swartz, D., 1989, Identification of an antarctic endolithic microorganism by 5S rRNA sequence analysis, Syst. Appl. Microbiol. 11:182–186.

    CAS  Google Scholar 

  • DeLong, E. F., 1991, Molecular systematics, microbial ecology and single cell analysis, in: Oceanography, NATO ASI Series, Vol. 27 (S. Demers, ed.), Springer-Verlag, Berlin, pp. 237–257.

    Google Scholar 

  • DeLong, E. F., 1992, Archaea in coastal marine environments, Proc. Natl. Acad. Sci. USA 89:5685–5689.

    PubMed  CAS  Google Scholar 

  • DeLong, E. F., and Shah, J., 1990, Fluorescent, ribosomal RNA probes for clinical application: A research review, Diagn. Clin. Test. 28:41–44.

    Google Scholar 

  • DeLong, E. F., Schmidt, T. M., and Pace, N. R., 1989a, Analysis of single cells and oligotrophic picoplankton populations using 16S rRNA sequences, in: Recent Advances in Microbial Ecology (T. Hattori, Y. Ishida, Y. Maruyama, R. Y. Morita, and A. Uchida, eds.), Japan Sci. Soc. Press, Tokyo, pp. 697–701.

    Google Scholar 

  • DeLong, E. F., Wickham, G. S., and Pace, N. R., 1989b, Phylogenetic stains: Ribosomal RNA-based probes for the identification of single cells, Science 243:1360–1363.

    PubMed  CAS  Google Scholar 

  • Deng, S., and Hiruki, C., 1991, Amplification of 16S rRNA genes from culturable and nonculturable mollicutes, J. Microbiol. Meth. 14:53–61.

    CAS  Google Scholar 

  • Devereux, R., Delaney, M., Widdel, F., and Stahl, D. A., 1989, Natural relationships among sulfate-reducing eubacteria, J. Bacteriol. 171:6689–6695.

    PubMed  CAS  Google Scholar 

  • Devereux, R., Winfrey, J., Winfrey, M. R., and Stahl, D. A., 1990, Application of 16S rRNA probes to correlate communities of sulfate-reducing bacteria with sulfate reduction and mercury methylation in a marine sediment, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 328.

    Google Scholar 

  • Devereux, R., Liebert, C., Barkay, T., and Stahl, D. A., 1991, Hybridization of fluorescent dye-labeled rRNA probes to bacteria extracted from sandy marine sediment, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 297.

    Google Scholar 

  • Devereux, R., and Mundfrom, G., 1992, Amplification of 16S rRNA genes from microbial communities within marine sediments by the polymerase chain reaction, Abstr. Ann. Meet. Am. Soc. Microbiol. p. 389.

    Google Scholar 

  • Distel, D., 1991, Analysis of the phylogenetic origins of autotrophic bacteria symbioses in marine bivalves by 16S rRNA sequence analysis, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 177.

    Google Scholar 

  • Distel, D. L., Lane, D. J., Olsen, G. J., Giovannoni, S. J., Pace, B., Pace, N. R., Stahl, D. A., and Feibeck, H., 1988, Sulfur-oxidizing bacterial endosymbionts: Analysis of phylogeny and specificity by 16S rRNA sequences, J. Bacteriol. 170:2506–2510.

    PubMed  CAS  Google Scholar 

  • Distel, D. L., DeLong, E. F., and Waterbury, J. B., 1991, Phylogenetic characterization and in situ localization of the bacterial symbiont of shipworms (Teredinidae: Bivalva) by using 16S rRNA sequence analysis and oligodeoxynucleotide probe hybridization, Appl. Environ. Microbiol. 57:2376–2382.

    PubMed  CAS  Google Scholar 

  • Dix, K., Watanabe, S. M., McArdle, S., Lee, D. I., Randolph, C., Moncla, B., and Schwartz, D. E., 1990, Species-specific oligodeoxynucleotide probes for the identification of periodontal bacteria, J. Clin. Microbiol. 28:319–323.

    PubMed  CAS  Google Scholar 

  • Eckert, K. A., and Kunkel, T. A., 1990, High fidelity DNA synthesis by the Thermus aquaticus DNA polymerase, Nucleic Acids Res. 18:3739–3744.

    PubMed  CAS  Google Scholar 

  • Edelstein, P. H., 1986, Evaluation of the Gen-Probe DNA probe for the detection of legionellae in culture, J. Clin. Microbiol. 23:481–484.

    PubMed  CAS  Google Scholar 

  • Edman, J. C., Kovacs, J. A., Masur, H., Santi, D. V., Elwood, H. J., and Sogin, M. L., 1988, Ribosomal RNA sequence shows Pneumocystis carinii to be a member of the fungi, Nature 334:519–522.

    PubMed  CAS  Google Scholar 

  • Edwards, D. B., and Nelson, D. C., 1991, DNA-DNA solution hybridization studies of the bacterial symbionts of hydrothermal vent tube worms (Riftia pachyptila and Tevnia jerichonana), Appl. Environ. Microbiol. 57:1082–1088.

    PubMed  CAS  Google Scholar 

  • Edwards, U., Rogali, T., Blocker, H., Emde, M., and Bottger, E. C., 1989, Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA, Nucleic Acids Res. 17:7843–7853.

    PubMed  CAS  Google Scholar 

  • Eisenstein, B. I., 1990, New opportunistic infections—More opportunities, New Engl. J. Med. 323:1625–1627.

    PubMed  CAS  Google Scholar 

  • Embley, T. M., Smida, J., and Stackebrandt, E., 1988, Reverse transcriptase sequencing of 16S ribosomal RNA from Faenia rectivirgula, Pseudonocardia thermophila and Saccharopolyspora hirsuta, three wall type IV actinomycetes which lack mycolic acids, J. Gen. Microbiol. 134:961–966.

    PubMed  CAS  Google Scholar 

  • Endo, G., Koseki, T., and Oikawa, E., 1992, Quantitative detection of microorganism by PCR-MPN method, Abstr. Ann. Meet. Am. Soc. Microbiol. p. 390.

    Google Scholar 

  • Ennis, P. D., Zemmour, J., Salter, R. D., and Parham, P., 1990, Rapid cloning of HLA-A, B cDNA by using the polymerase chain reaction: Frequency and nature of errors produced in amplification, Proc. Natl. Acad. Sci. USA 87:2833–2837.

    PubMed  CAS  Google Scholar 

  • Felsenstein, J., 1985, Confidence limits on phylogenies: An approach using the bootstrap, Evolution 39:783–791.

    Google Scholar 

  • Festl, H., Ludwig, W., and Schleifer, K. H., 1986, DNA hybridization probe for the Pseudomonas fluorescens group, Appl. Environ. Microbiol. 52:1190–1194.

    PubMed  CAS  Google Scholar 

  • Forsman, M., Sandstrom, G., and Jaurin, B., 1990, Identification of Francisella species and discrimination of type A and type B strains of F. tularensis by 16S rRNA analysis, Appl. Environ. Microbiol. 56:949–955.

    PubMed  CAS  Google Scholar 

  • Fuhrman, J. A., Comeau, D. E., Hagstrom, A., and Chan, A. M., 1988, Extraction from natural planktonic microorganisms of DNA suitable for molecular biological studies, Appl. Environ. Microbiol. 54:1426–1429.

    PubMed  CAS  Google Scholar 

  • Fuhrman, J. A., McCallum, K., and Davis, A. A., 1992, Novel major archaebacterial group from marine plankton, Nature 356:148–149.

    PubMed  CAS  Google Scholar 

  • Gall, J. G., and Pardue, M. L., 1969, Formation and detection of RNA-DNA hybrid molecules in cytological preparations, Proc. Natl. Acad. Sci. USA 63:378–383.

    PubMed  CAS  Google Scholar 

  • Gardes, M., White, T. J., Fortin, J. A., Bruns, T. D., and Taylor, J. W., 1991, Identification of indigenous and introduced symbiotic fungi in ectomycorrhizae by amplification of nuclear and mitochondrial ribosomal DNA, Can. J. Bot. 69:180–190.

    CAS  Google Scholar 

  • Gaydos, C. A., Quinn, T. C., and Eiden, J. J., 1992, Identification of Chlamydia pneumoniae by DNA amplification of the 16S rRNA gene, J. Clin. Microbiol. 30:796–800.

    PubMed  CAS  Google Scholar 

  • Gevertz, D., 1992, Use of a chemiluminescent-labeled DNA probe to measure bacterial populations in oil field brines, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 389.

    Google Scholar 

  • Giovannoni, S. J., DeLong, E. F., Olsen, G. J., and Pace, N. R., 1988a, Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells, J. Bacteriol. 170:720–726.

    PubMed  CAS  Google Scholar 

  • Giovannoni, S. J., Turner, S., Olsen, G. J., Barns, S., Lane, D. J., and Pace, N. R., 1988b, Evolutionary relationships among cyanobacteria and green chloroplasts, J. Bacteriol. 170:3584–3592.

    PubMed  CAS  Google Scholar 

  • Giovannoni, S. J., Britschgi, T. B., Moyer, C. L., and Field, K. G., 1990a, Genetic diversity in Sargasso Sea bacterioplankton, Nature 345:60–63.

    PubMed  CAS  Google Scholar 

  • Giovannoni, S. J., DeLong, E. F., Schmidt, T. M., and Pace, N. R., 1990b, Tangential flow filtration and preliminary phylogenetic analysis of marine picoplankton, Appl. Environ. Microbiol. 56:2572–2575.

    PubMed  CAS  Google Scholar 

  • Gobel, U. B., and Stanbridge, E. J., 1984, Cloned mycoplasma ribosomal RNA genes for the detection of mycoplasma contamination in tissue cultures, Science 226:1211–1213.

    PubMed  CAS  Google Scholar 

  • Gobel, U. B., Geiser, A., and Stanbridge, E. J. 1987, Oligonucleotide probes complementary to variable regions of ribosomal RNA discriminate between Mycoplasma species, J. Gen. Microbiol. 133:1969–1974.

    PubMed  CAS  Google Scholar 

  • Goering, R. V., and Duensing, T. D., 1990, Rapid field inversion gel electrophoresis in combination with an rRNA gene probe in the epidemiological evaluation of staphylococci, J. Clin. Microbiol. 28:426–429.

    PubMed  CAS  Google Scholar 

  • Gonzales, F. R., Deveze-Doyle, S., Kranig-Brown, D., Sherrill, S., Bee, G., Hammond, P., Shaw, S. B., and Johnson, R., 1991, A non-isotopic DNA probe for the specific detection of Ureaplasma, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 81.

    Google Scholar 

  • Gouy, M., and Li, W.-H., 1989, Phylogenetic analysis based on rRNA sequences supports the archaebacterial rather than the eocyte tree, Nature 339:145–147.

    PubMed  CAS  Google Scholar 

  • Gray, M. W., Sankoff, D., and Cedergren, R. J., 1984, On the evolutionary descent of organisms and organelles: A global phylogeny based on a highly conserved structural core in small subunit ribosomal RNA, Nucleic Acids Res. 12:5837–5852.

    PubMed  CAS  Google Scholar 

  • Gunderson, J. H., Sogin, M. L., Wollett, G., Hollingdale, M., de la Cruz, V. F., Waters, A. P., and McCutchan, T. F., 1987, Structurally distinct, stage-specific ribosomes occur in Plasmodium, Science 238:933–937.

    PubMed  CAS  Google Scholar 

  • Gutell, R. R., Weiser, B., Woese, C. R., and Noller, H. F., 1985, Comparative anatomy of 16-S-like ribosomal RNA, Prog. Nucleic Acid Res. Mol. Biol. 32:155–216.

    PubMed  CAS  Google Scholar 

  • Hahn, D., Dorsch, M., Stackebrandt, E., and Akkermans, A. D. L., 1989, Synthetic oligonucleotide probes for identification of Frankia strains, Plant Soil 118:211–219.

    CAS  Google Scholar 

  • Hahn, D., Kester, R., Starrenburg, M. J. C., and Akkermans, A. D. L., 1990a, Extraction of ribosomal RNA from soil for detection of Frankia with oligonucleotide probes, Arch. Microbiol. 154:329–335.

    PubMed  CAS  Google Scholar 

  • Hahn, D., Starrenburg, M. J. C., and Akkermans, A. D. L., 1990b, Oligonucleotide probes that hybridize with rRNA as a tool to study Frankia strains in root nodules, Appl. Environ. Microbiol. 56:1342–1346.

    PubMed  CAS  Google Scholar 

  • Hammond, P. W., Gonzales, F. R., Deveze-Doyle, S., and Carter, N. M., 1991, Biotype specific probes for Ureaplasma urealyticum, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 81.

    Google Scholar 

  • Haun, G., and Gobel, U., 1987, Oligonucleotide probes for genus-, species-and subspecies-specific identification of representatives of the genus Proteus, FEMS Microbiol. Lett. 43:187–193.

    CAS  Google Scholar 

  • Haygood, M., Rosson, R., and Distel, D., 1991, Relationship of the unculturable luminous bacterial symbionts of anomalopid fishes to the culturable marine luminous bacteria determined by 16S rRNA phylogenetic analysis, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 177.

    Google Scholar 

  • Hensiek, R., Krupp, G., and Stackebrandt, E., 1992, Development of diagnostic oligonucleotide probes for four Lactobacillus species occurring in the intestinal tract, System. Appl. Microbiol. 15:123–128.

    CAS  Google Scholar 

  • Herrick, J. B., Madsen, E. L., and Ghiorse, W. C., 1992, PCR detection of biodegradation genes from environmental samples: an approach to the study of bacterial populations in their native habitats, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 350.

    Google Scholar 

  • Hertel, C., Ludwig, W., Obst, M., Vogel, R. F., Hammes, W. P., and Schleifer, K. H., 1991, 23S rRNA-targeted oligonucleotide probes for the rapid identification of meat lactobacilli, System. Appl. Microbiol. 14:173–177.

    CAS  Google Scholar 

  • Ho, S., Hoyle, J. A., Lewis, F. A., Secker, A. D., Cross, D., Mapstone, N. P., Dixon, M. F., Wyatt, J. I., Tompkins, D. S., Taylor, G. R., and Quirke, P., 1991, Direct polymerase chain reaction test for detection of Helicobacter pylori in humans and animals. J. Clin. Microbiol. 29:2543–2549.

    PubMed  CAS  Google Scholar 

  • Holben, W. E., and Tiedje, J. M., 1988, Application of nucleic acid hybridization in microbial ecology, Ecology 69:561–568.

    CAS  Google Scholar 

  • Holben, W. E., Jansson, J. K., Chelm, B. K., and Tiedje, J. M., 1988, DNA probe method for the detection of specific microorganisms in the soil bacterial community, Appl. Environ. Microbiol. 54:703–711.

    PubMed  CAS  Google Scholar 

  • Hosein, I., Kaunitz, A., Craft, S., and Holland, R., 1991, Evaluation of the Gen Prob PACE 2 DNA probe for direct detection of C. trachomatis in female genital infections, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 80.

    Google Scholar 

  • Hoshina, S., Kahn, S. M., Jiang, W., Green, P. H. R., Neu, H. C., Chin, N., Morotomi, M., LoGerfo, P., and Weinstein, I. B., 1990, Direct detection and amplification of Helicobacter pylori ribosomal 16S gene segments from gastric endoscopic biopsies, Diagn. Microbiol. Infect. Dis. 13:473–479.

    PubMed  CAS  Google Scholar 

  • Jensen, N. S., Casey, T. A., and Stanton, T. B., 1990, Detection and identification of Treponema hyodysenteriae by using oligodeoxynucleotide probes complementary to 16S rRNA, J. Clin. Microbiol 28:2717–2721.

    PubMed  CAS  Google Scholar 

  • John, H. A., Birnstiel, M. L., and Jones, K. W., 1969, RNA-DNA hybrids at the cytological level, Nature 223:582–587.

    PubMed  CAS  Google Scholar 

  • Jones, J. G., 1987, Diversity in freshwater microbiology, Symp. Soc. Gen. Microbiol. 41:235–259.

    Google Scholar 

  • Ka, J. O., and Holben, W. E., 1991, Use of gene probes to detect 2,4-D degrading populations in soil microcosms maintained under selective pressure, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 296.

    Google Scholar 

  • Kane, M. D., Stromley, J. M., Raskin, L., and Stahl, D. A., 1991, Molecular analysis of the phylogenetic diversity and ecology of sulfidogenic and methanogenic biofilm communities, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 309.

    Google Scholar 

  • Kemmerling, C., Witt, D., Liesack, W., Weyland, H., and Stackebrandt, E., 1990, Approaches for the molecular identification of streptomycetes in marine environment, in: Current Topics in Marine Biotechnology (S. Miyachi, I. Karube, and Y. Eshida, eds.), Japan Soc. Mar. Biotechnol., Tokyo, pp. 423–426.

    Google Scholar 

  • Kirshtein, J. D., Paerl, H. W., and Zehr, J., 1991, Amplification, cloning and sequencing of a nifH segment from aquatic microorganisms and natural communities, Appl. Environ. Microbiol. 57:2645–2650.

    PubMed  CAS  Google Scholar 

  • Klein, D. A., McGurk, S., Tiffney, W. N., and Eveleigh, D. E., 1992, Vesicular-arbuscular mycorrhizae of natural and restored sand dunes, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 398.

    Google Scholar 

  • Klijn, N., Weerkamp, A. H., and de Vos, W. M., 1991, Identification of mesophilic lactic acid bacteria by using polymerase chain reaction-amplified variable regions of 16S rRNA and specific DNA probes, Appl. Environ. Microbiol. 57:3390–3393.

    PubMed  CAS  Google Scholar 

  • Krueger, C., DeGrugillier, M., and Narang, S., 1992, PCR amplification of prokaryotic 16S rRNA genes from moth-testes (Heliothis spp.) extracts, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 291.

    Google Scholar 

  • Lake, J. A., 1987, A rate-independent technique for analysis of nucleic acid sequences: Evolutionary parsimony, Mol. Biol. Evol. 4:167–191.

    PubMed  CAS  Google Scholar 

  • Lane, D. J., and Collins, M. L., Current methods for detection of DNA/ribosomal RNA hybrids, in: Proc. 6th Int. Congress on Rapid Methods and Automation in Microbiology and Immunology (A. Vahen, R. C. Tilton, and A. Balows, eds.), Springer-Verlag, Berlin, pp. 54–75.

    Google Scholar 

  • Lane, D. J., Pace, B., Olsen, G. J., Stahl, D. A., Sogin, M. L., and Pace, N. R., 1985a, Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses, Proc. Natl. Acad. Sci. USA 82:6955–6959.

    PubMed  CAS  Google Scholar 

  • Lane, D. J., Stahl, D. A., Olsen, G. J., Heller, D. J., and Pace, N. R., 1985b, Phylogenetic analysis of the genera Thiobacillus and Thiomicrospira by 5S rRNA sequences, J. Bacteriol. 163:75–81.

    PubMed  CAS  Google Scholar 

  • Lane, D. J., Field, K. G., Olsen, G. J., and Pace, N. R., 1988, Reverse transcriptase sequencing of ribosomal RNA for phylogenetic analysis, Methods Enzymol. 167:138–144.

    PubMed  CAS  Google Scholar 

  • Lee, S., and Fuhrman, J. A., 1990, DNA hybridization to compare species compositions of natural bacterioplankton assemblages, Appl. Environ. Microbiol. 56:739–746.

    PubMed  CAS  Google Scholar 

  • Leong, D. U., and Greisen, K. S., 1991, An assay for the detection of septicemia based on the polymerase chain reaction, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 361.

    Google Scholar 

  • Liesack, W., Weyland, H., and Stackebrandt, E., 1991, Potential risks of gene amplification by PCR as determined by 16S rDNA analysis of a mixed-culture of strict barophilic bacteria, Microb. Ecol. 21:191–198.

    CAS  Google Scholar 

  • Liesack, W., and Stackebrandt, E., 1992, Unculturable microbes detected by molecular sequences and probes, Biodiversity and Conservation (in press).

    Google Scholar 

  • Liesack, W., and Stackebrandt, E., 1992, Occurrence of novel types of bacteria as revealed by analysis of the genetic material isolated from an Australian terrestrial environment, J. Bacteriol. (submitted).

    Google Scholar 

  • Lovell, C. R., and Hui, Y., 1989, Homology among formyltetrahydrofolate synthetase structural genes from acetogenic bacteria, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 234.

    Google Scholar 

  • Lovell, C. R., and Hui, Y., 1991, Development and testing of a functional group specific DNA probe for the acetogenic bacteria, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 300.

    Google Scholar 

  • Lu, S. Y., Kao, S.-Y., Silver, S., Purohit, A., Longiaru, M., and White, T. J., 1991, Detection of Neisseria gonorrhoeae and Chlamydia trachomatis in a combined system by PCR, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 361.

    Google Scholar 

  • Marconi, R. T., Lubke, L., Hauglum, W., and Garon, C. F., 1992, Species-specific identification of and distinction between Borrelia burgdorferi genomic groups by using 16S rRNA-directed oligonucleotide probes, J. Clin. Microbiol. 30:628–632.

    PubMed  CAS  Google Scholar 

  • McCutchan, T. F., de la Cruz, V. F., Lal, A. A., Gunderson, J. H., Elwood, H. J., and Sogin, M. L., 1988, Primary sequences of two small subunit ribosomal RNA genes from Plasmodium falciparum, Mol. Biochem. Parasitol. 28:63–68.

    PubMed  CAS  Google Scholar 

  • Medlin, L., Elwood, H. J., Stickel, S., and Sogin, M. L., 1988, The characterization of enzymatically amplified eukaryotic 16 S-like rRNA-coding regions, Gene 71:491–499.

    PubMed  CAS  Google Scholar 

  • Mizutani, S., and Temin, H. M., 1976, Incorporation of noncomplementary nucleotides at high frequencies by ribodeoxyvirus DNA polymerases and Escherichia coli DNA polymerase I, Biochemistry 15:1510–1516.

    PubMed  CAS  Google Scholar 

  • Moncla, B. J., Braham, P., Dix, K., Watanabe, S., and Schwartz, D., 1990, Use of synthetic oligonucleotide DNA probes for the identification of Bacteroides gingivalis, J. Clin. Microbiol. 28:324–327.

    PubMed  CAS  Google Scholar 

  • Moncla, B. J., Motley, S. T., Braham, P., Ewing, L., Adams, T. H., and Vermeulen, N. M. J., 1991, Use of synthetic oligonucleotide DNA probes for identification and direct detection of Bacteroides forsythus in plaque samples, J. Clin. Microbiol. 29:2158–2162.

    PubMed  CAS  Google Scholar 

  • Montgomery, L., Flesher, B., and Stahl, D., 1988, Transfer of Bacteroides succinogenes (Hungate) to Fibrobacter gen. nov. as Fibrobacter succinogenes comb. nov. Description of Fibrobacter intestinalis sp. nov., Int. J. Syst. Bacteriol. 38:430–435.

    Google Scholar 

  • Morotomi, M., Hoshina, S., Green, P., Neu, H. C., LoGerfo, P., Watanabe, I., Mutai, M., and Weinstein, I. B., 1989, Oligonucleotide probe for detection and identification of Campylobacter pylori, J. Clin. Microbiol. 27:2652–2655.

    PubMed  CAS  Google Scholar 

  • Mylvaganam, S., and Dennis, P. P., 1992, Sequence heterogeneity between the two genes encoding 16S rRNA from the halophilic archaebacterium Haloarcula marismortui, Genetics 130:399–410.

    PubMed  CAS  Google Scholar 

  • Odenyo, A. A., Mackie, R. I., and White, B. A., 1992, The use of 16S ribosomal RNA targeted oligonucleotide probes to study competition between ruminai fibrolytic bacteria, Abstr. Ann. Meet. Am. Soc. Microbiol. p. 396.

    Google Scholar 

  • Olsen, G. J., 1987, Earliest phylogenetic branchings: Comparing rRNA-based evolutionary trees inferred with various techniques, Cold Spring Harbor Symp. Quant. Biol. 52:825–837.

    PubMed  CAS  Google Scholar 

  • Olsen, G. J., 1988, Phylogenetic analysis using ribosomal RNA, Methods Enzymol. 164:793–812.

    PubMed  CAS  Google Scholar 

  • Olsen, G. J., 1990, Variation among the masses, Nature 345:20.

    PubMed  CAS  Google Scholar 

  • Olsen, G. J., Lane, D. J., Giovannoni, S. J., and Pace, N. R., 1986, Microbial ecology and evolution: A ribosomal RNA approach, Annu. Rev. Microbiol. 40:337–365.

    PubMed  CAS  Google Scholar 

  • Olsen, G. J., Larsen, N., and Woese, C. R., 1991, The ribosomal RNA database project, Nucleic Acids Res. 19:2017–2021.

    PubMed  CAS  Google Scholar 

  • Oyaizu, H., and Woese, C. R., 1985, Phylogenetic relationship among the sulfate respiring bacteria, myxobacteria, and purple bacteria, Syst. Appl. Microbiol. 6:257–263.

    CAS  Google Scholar 

  • Pace, N. R., Stahl, D. A., Lane, D. J., and Olsen, G. J., 1986, The analysis of natural microbial populations by ribosomal RNA sequences, Adv. Microbiol. Ecol. 9:1–55.

    CAS  Google Scholar 

  • Patton, C. M., Wachsmuth, I. K., Evins, G. M., Kiehlbauch, J. A., Plikaytis, B. D., Troup, N., Tompkins, L., and Lior, H., 1991, Evaluation of 10 methods to distinguish epidemic-associated Campylobacter strains, J. Clin. Microbiol. 29:680–688.

    PubMed  CAS  Google Scholar 

  • Pelletier, D. A., Paster, B. J., Weisburg, W. G., Dewhirst, F. E., Dannenberg, S., and Schroeder, I., 1991, Cristispira phylogeny by 16S rRNA sequence comparison of amplified bacterial DNA from crystalline styles, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 243.

    Google Scholar 

  • Persing, D. H., Telford, S. R., Rys, P. N., Dodge, D. E., White, T. J., Malawista, S. E., and Spielman, A., 1990, Detection of Borrelia burgdorferi DNA in museum specimens of Ixodes dammini ticks, Science 249:1420–1423.

    PubMed  CAS  Google Scholar 

  • Poulsen, L. K., Kane, M. D., and Stahl, D. A., 1992, Use of an oligonucleotide hybridization probe designed from environmentally derived 16S rRNA sequences to monitor enrichment and isolation of sulfate-reducing bacteria, Abstr. Ann. Meet. Am. Soc. Microbiol. p. 345.

    Google Scholar 

  • Pratt-Rippin, K., Hall, G., and Rutherford, I., 1991, Evaluation of a chemiluminescent DNA probe assay for the identification of Histoplasma capsulatum isolates, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 83.

    Google Scholar 

  • Putz, J., Meinen, F., Wyss, U., Ehlers, R., and Stackebrandt, E., 1990, Development and application of oligonucleotide probes for molecular identification of Xenorhabdus species, Appl. Environ. Microbiol. 56:181–186.

    PubMed  CAS  Google Scholar 

  • Rand, K., and Houck, H., 1991, Identification of bacterial DNA contaminating Taq enzyme, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 83.

    Google Scholar 

  • Razin, S., Gross, M., Wormser, M., Pollack, Y., and Glaser, G., 1984, Detection of mycoplasmas infecting cell cultures by DNA hybridization, In Vitro 20:404–408.

    PubMed  CAS  Google Scholar 

  • Reagan, D. R., Pfaller, M. A., Hollis, R. J., and Wenzel, R. P., 1990, Characterization of the sequence of colonization and nosocomial candidemia using DNA fingerprinting and a DNA probe, J. Clin. Microbiol. 28:2733–2738.

    PubMed  CAS  Google Scholar 

  • Regensburger, A., Ludwig, W., and Schleifer, K. H., 1988, DNA probes with different specificities from a cloned 23S rRNA gene of Micrococcus luteus, J. Gen. Microbiol. 134:1197–1204.

    PubMed  CAS  Google Scholar 

  • Rehnstam, A., Norqvist, A., Wolf-watz, H., and Hagstrom, A., 1989, Identification of Vibrio anguillarum in fish by using partial 16S rRNA-sequences and a specific 16S rRNA oligonucleotide probe, Appl. Environ. Microbiol. 55:1907–1910.

    PubMed  CAS  Google Scholar 

  • Relman, D. A., Loutit, J. S., Schmidt, T. M., Falkow, S., and Tompkins, L. S., 1990, The agent of bacillary angiomatosis: An approach to the identification of uncultured pathogens, N. Engl. J. Med. 323:1573–1580.

    PubMed  CAS  Google Scholar 

  • Romaniuk, P. J., and Trust, T. J., 1987, Identification of Campylobacter species by Southern hybridization of genomic DNA using an oligonucleotide probe for 16S rRNA genes, FEMS Microbiol. Lett. 43:331–335.

    CAS  Google Scholar 

  • Rossau, R., Vanmechelen, E., De Ley, J., and Van Heuverswijn, H., 1989, Specific Neisseria gonorrhoeae DNA-probes derived from ribosomal RNA, J. Gen. Microbiol. 135:1735–1745.

    PubMed  CAS  Google Scholar 

  • Rossau, R., Duhamel, M., Jannes, G., Decourt, J. L., and van Heuverswyn, H., 1991, The development of specific rRNA-derived oligonucleotide probes for Haemophilus ducreyi, the causative agent of chancroid, J. Gen. Microbiol. 137:277–285.

    PubMed  CAS  Google Scholar 

  • Rosswall, T., and Kvillner, E., 1978, Principal-components and factor analysis for the description of microbial populations, Adv. Microb. Ecol. 2:1–48.

    Google Scholar 

  • Rowan, R., and Powers, D. A., 1991, A molecular genetic classification of zooxanthellae and the evolution of animal-algal symbioses, Science 251:1348–1351.

    PubMed  CAS  Google Scholar 

  • Ruff, A. L., and Ward, D. M., 1991, 16S rRNA-based oligonucleotide probe analysis of hot spring photosynthetic procaryotes, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 194.

    Google Scholar 

  • Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B., and Erlich, H. A., 1988, Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase, Science 239:487–491.

    PubMed  CAS  Google Scholar 

  • Salama, M., Sandine, W., and Giovannoni, S., 1991, Development and application of oligonucleotide probes for identification of Lactococcus lactis subsp. cremoris, Appl. Environ. Microbiol. 57:1313–1318.

    PubMed  CAS  Google Scholar 

  • Sambrook, J., Fritsch, E. F., and Maniatis, T., 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Sandin, R. L., Hall, G., and Longworth, D. L., 1991, Confirmation of infection by an exo-antigen negative Blastomyces dermatitidis by way of a chemiluminescent-labelled DNA probe, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 83.

    Google Scholar 

  • Santo Domingo, J. W., Kaufman, M. G., and Klug, M. J., 1991, Use of 16S rRNA gene probes to study structural changes in bacterial communities in the hindgut of the house cricket, Acheta domesticus, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 313.

    Google Scholar 

  • Santo Domingo, J. W., Kaufman, M. G., and Klug, M. J., 1992, Effects of dietary perturbation on the hindgut bacterial community in crickets (Acheta domesticus) Abstr. Ann. Meet. Am. Soc. Microbiol. p. 396.

    Google Scholar 

  • Schleifer, K. H., Ludwig, W., Kraus, J., and Festl, H., 1985, Cloned ribosomal ribonucleic acid genes from Pseudomonas aeruginosa as probes for conserved deoxyribonucleic acid sequences, Int. J. Syst. Bacteriol. 35:231–236.

    CAS  Google Scholar 

  • Schmidt, T. M., DeLong, E. F., and Pace, N. R., 1991a, Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing, J. Bacteriol. 173:4371–4378.

    PubMed  CAS  Google Scholar 

  • Schmidt, T. M., DeLong, E. F., and Pace, N. R., 1991b, Phylogenetic identification of uncultivated microorganisms in natural habitats, in: Rapid Methods and Automation in Microbiology and Immunology (A. Vaheri, R. C. Tilton, and A. Balows, eds.), Springer-Verlag, Berlin, pp. 37–46.

    Google Scholar 

  • Schmidt, T. M., Pace, B., and Pace, N. R., 1991c, Detection of DNA contamination in Taq polymerase, Biotechniques 11:176–177.

    PubMed  CAS  Google Scholar 

  • Schwartz, J., Daniels, T., Gazumyan, A., Weissensee, P., Fish, D., and Schwartz, I., 1991, Determination of B. burgdorferi infection rates in Ixodes dammini ticks by three methods, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 80.

    Google Scholar 

  • Seewaldt, E., and Stackebrandt, E., 1988, Partial sequence of 16S ribosomal RNA and the phylogeny of Prochloron, Nature 295:618–620.

    Google Scholar 

  • Simon, L., Lalonde, M., and Bruns, T. D., 1992, Specific amplification of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots, Appl. Environ. Microbiol. 58:291–295.

    PubMed  CAS  Google Scholar 

  • Sneath, P. H. A., 1989, Analysis and interpretation of sequence data for bacterial systematics: The view of a numerical taxonomist, Syst Appl. Microbiol. 12:15–31.

    Google Scholar 

  • Somerville, C. C., Knight, I. T., Straube, W. L., and Colwell, R. R., 1989, Simple, rapid method for direct isolation of nucleic acids from aquatic environments, Appl. Environ. Microbiol. 55:548–554.

    PubMed  CAS  Google Scholar 

  • Speer, C. A., and White, M. W., 1991, Bovine trichomoniasis, Large Anim. Vet. 46:18–20.

    Google Scholar 

  • Spring, S., Amann, R., Ludwig, W., Schleifer, K., and Petersen, N., 1992, Phylogenetic diversity and identification of nonculturable magnetotactic bacteria, System. Appl. Microbiol. 15:116–122.

    Google Scholar 

  • Srivastava, A. K., and Schlessinger, D., 1990, Mechanism and regulation of bacterial ribosomal RNA processing, Annu. Rev. Microbiol. 44:105–129.

    PubMed  CAS  Google Scholar 

  • Stackebrandt, E., and Charfreitag, O., 1990, Partial 16S rRNA primary structure of five Actinomyces species: Phylogenetic implications and development of an Actinomyces israelii-specific oligonucleotide probe, J. Gen. Microbiol. 136:37–43.

    PubMed  CAS  Google Scholar 

  • Stackebrandt, E., Witt, D., Kemmerling, C., Kroppenstedt, R., and Liesack, W., 1991, Designation of streptomycete 16S and 23S rRNA-based target regions for oligonucleotide probes, Appl. Environ. Microbiol. 57:1468–1477.

    PubMed  CAS  Google Scholar 

  • Stahl, D. A., 1986, Evolution, ecology, and diagnosis: Unity in variety, Bio/Technology 4:623–628.

    CAS  Google Scholar 

  • Stahl, D. A., 1988, Phylogenetically based studies of microbial ecosystem perturbation, in: Biotechnology for Crop Protection (P. A. Hedin, J. J. Menn, and R. M. Hollingworth, eds.), Am. Chem. Soc., Washington, D.C., pp. 373–390.

    Google Scholar 

  • Stahl, D. A., and Amann, R., 1990, Development and application of nucleic acid probes, in: Molecular Biology Methods for Bacillus (C. R. Harwood and S. M. Cutting, eds.), Wiley, New York, pp. 203–245.

    Google Scholar 

  • Stahl, D. A., Lane, D. J., Olsen, G. J., and Pace, N. R., 1984, Analysis of hydrothermal vent-associated symbionts by ribosomal RNA sequences, Science 224:409–411.

    PubMed  CAS  Google Scholar 

  • Stahl, D. A., Lane, D. J., Olsen, G. J., and Pace, N. R., 1985, Characterization of a Yellowstone hot spring microbial community by 5S rRNA sequences, Appl. Environ. Microbiol. 49:1379–1384.

    PubMed  CAS  Google Scholar 

  • Stahl, D. A., Flesher, B., Mansfield, H. R., and Montgomery, L., 1988, Use of phylogenetically based hybridization probes for studies of ruminai microbial ecology, Appl. Environ. Microbiol. 54:1079–1084.

    PubMed  CAS  Google Scholar 

  • Stahl, D. A., Devereux, R., Amann, R. I., Flesher, B., Lin, C., and Stromley, J., 1989, Ribosomal RNA based studies of natural microbial diversity and ecology, in: Recent Advances in Microbial Ecology (T. Hattori, Y. Ishida, Y. Maruyama, R. Y. Morita, and A. Uchida, eds.), Japan Sci. Soc. Press, Tokyo, pp. 669–673.

    Google Scholar 

  • Staley, J. T., 1980, Diversity of aquatic heterotrophic bacterial communities, in: Microbiology—1980 (D. Schlessinger, ed.), Am. Soc. Microbiol., Washington, D.C., pp. 321–322.

    Google Scholar 

  • Steffan, R. J., Goksoyr, J., Bej, A. K., and Atlas, R. M., 1988, Recovery of DNA from soils and sediments, Appl. Environ. Microbiol. 54:2908–2915.

    PubMed  CAS  Google Scholar 

  • Toranzos, G. A., and Alvarez, A. J., 1992, Quantifying PCR templates using the most probable number polymerase chain reaction (MPN-PCR), Abstr. Ann. Meet. Am. Soc. Microbiol. 390.

    Google Scholar 

  • Tram, C., Simonet, M., Nicolas, M.-H., Offredo, C., Grimont, F., LeFevre, M., Ageron, E., DeBure, A., and Grimont, P. A. D., 1990, Molecular typing of nosocomial isolates of Legionella pneumophila serogroup 3, J. Clin. Microbiol. 28:242–245.

    PubMed  CAS  Google Scholar 

  • Tsai, Y., and Olson, B. H., 1992, Detection of low numbers of bacterial cells in soils and sediments by polymerase chain reaction, Appl. Environ. Microbiol. 58:754–757.

    PubMed  CAS  Google Scholar 

  • Tsai, Y., Palmer, C. J., Sangermano, L., and Olsen, B., 1992, A rapid method to purify bacterial DNA from humic substances for polymerase chain reaction, Abstr. Ann. Meet. Am. Soc. Microbiol. p. 389.

    Google Scholar 

  • Tsien, H. C., Bratina, B. J., Tsuji, K., and Hanson, R. S., 1990, Use of oligodeoxynucleotide signature probes for identification of physiological groups of methylotrophic bacteria, Appl. Environ. Microbiol. 56:2858–2865.

    PubMed  CAS  Google Scholar 

  • Tsien, H. C., Alvarez-Cohen, L., McCarty, P. L., and Hanson, R. S., 1991, Use of soluble methane monooxygenase component B gene probe for the detection of trichloroethylene degrading methanotrophs, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 285.

    Google Scholar 

  • Tsuji, K., Tsien, H. C., Hanson, R. S., DePalma, S. R., Scholtz, R., and LaRoche, S., 1990, 16S ribosomal RNA sequence analysis for determination of phylogenetic relationship among methylotrophs, J. Gen. Microbiol. 136:1–10.

    PubMed  CAS  Google Scholar 

  • Unterman, B. M., Baumann, P., and McLean, D. L., 1989, Pea aphid symbiont relationships established by analysis of 16S rRNAs, J. Bacteriol. 171:2970–2974.

    PubMed  CAS  Google Scholar 

  • van Niel, C. B., 1949, The “Delft School” and the rise of general microbiology, Bacteriol. Rev. 13:161–174.

    PubMed  Google Scholar 

  • van Niel, C. B., 1955, Natural selection in the microbial world, J. Gen. Microbiol. 13:201–217.

    Google Scholar 

  • Walch, M., Hamilton, W. A., Handley, P. S., Holm, N. C., Kuenen, J. G., Revsbech, N. P., Rubio, M. A., Stahl, D. A., Wanner, O., Ward, D. M., Wilderer, P. A., and Wimpenny, J. W. T., 1989, Spatial distribution of biotic and abiotic components in the biofilm, in: Structure and Function of Biofilms (W. G. Characklis and P. A. Wilderer, eds.), Wiley, New York, pp. 165–190.

    Google Scholar 

  • Wang, R.-F., Cao, W.-W., and Johnson, M. G., 1991, Development of a 16S RNA-based oligomer probe specific for Listeria monocytogenes, Appl. Environ. Microbiol. 57:3666–3670.

    PubMed  CAS  Google Scholar 

  • Ward, D. M., 1989, Molecular probes for analysis of microbial communities, in: Structure and Function of Biofilms (W. G. Characklis and P. A. Wilderer, eds.), Wiley, New York, pp. 145–163.

    Google Scholar 

  • Ward, D. M., and Winfrey, M. R., 1985, Interactions between methanogenic and sulfate-reducing bacteria in sediments, Adv. Agric. Microbiol. 3:141–179.

    Google Scholar 

  • Ward, D. M., Brassell, S. C., and Eglinton, G., 1985, Archaebacterial lipids in hot spring microbial mats, Nature 318:656–659.

    Google Scholar 

  • Ward, D. M., Tayne, T. A., Anderson, K. L., and Bateson, M. M., 1987, Community structure and interactions among community members in hot spring cyanobacterial mats, Symp. Soc. Gen. Microbiol. 41:179–210.

    CAS  Google Scholar 

  • Ward, D. M., Shiea, J., Zeng, Y. B., Dobson, G., Brassell, S., and Eglinton, G., 1989a, Lipid biochemical markers and the composition of microbial mats, in: Microbial Mats: Physiological Ecology of Benthic Microbial Communities (Y. Cohen and E. Rosenberg, eds.), Am. Soc. Microbiol., Washington, D.C., pp. 439–454.

    Google Scholar 

  • Ward, D. M., Weiler, R., Shiea, J., Castenholz, R. W., and Cohen, Y., 1989b, Hot spring microbial mats: Anoxygenic and oxygenic mats of possible evolutionary significance, in: Microbial Mats: Physiological Ecology of Benthic Microbial Communities (Y. Cohen and E. Rosenberg, eds.), Am. Soc. Microbiol., Washington, D.C., pp. 3–15.

    Google Scholar 

  • Ward, D. M., Weiler, R., and Bateson, M. M., 1990a, 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community, Nature 345:63–65.

    PubMed  CAS  Google Scholar 

  • Ward, D. M., Weiler, R., and Bateson, M. M., 1990b, 16S rRNA sequences reveal uncultured inhabitants of a well-studied thermal community, FEMS Microbiol. Rev. 75:105–116.

    CAS  Google Scholar 

  • Waters, A. P., and McCutchan, T. F., 1989, Rapid, sensitive diagnosis of malaria based on ribosomal RNA, Lancet (Vol. 1) 1343–1346.

    PubMed  CAS  Google Scholar 

  • Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandier, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E., Stackebrandt, E., Starr, M. P., and Truper, H. G., 1987, Report of the ad hoc committee on reconciliation of approaches to bacterial systematics, Int. J. Syst. Bacteriol. 37:463–464.

    Google Scholar 

  • Weisburg, W. G., Barns, S. M., Pelletier, D. A., and Lane, D. J., 1991, 16S ribosomal DNA amplification for phylogenetic study, J. Bacteriol. 173:697–703.

    PubMed  CAS  Google Scholar 

  • Weiss, J. B., Nash, T. E., Jarroll, E., van Keulen, H., and White, T. J., 1991, Specific detection of Giardia lamblia (G. duodenalis) by the polymerase chain reaction, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 48.

    Google Scholar 

  • Weiler, R., and Ward, D. M., 1989, Selective recovery of 16S rRNA sequences from natural microbial communities in the form of cDNA, Appl. Environ. Microbiol. 55:1818–1822.

    Google Scholar 

  • Weiler, R., Weiler, J. W., and Ward, D. M., 1991, 16S rRNA sequences of uncultivated hot spring cyanobacterial mat inhabitants retrieved as randomly primed cDNA, Appl. Environ. Microbiol. 57:1146–1151.

    Google Scholar 

  • Weiler, R., Bateson, M. M., Heimbuch, B. K., Kopczynski, E. D., and Ward, D. M., 1992, Uncultivated cyanobacteria, Chloroflexus-like and spirochete-like inhabitants of a hot spring microbial mat. Appl. Environ. Microbiol. (submitted).

    Google Scholar 

  • Wesley, I. V., Wesley, R. D., Cardella, M., Dewhirst, F. E., and Paster, B. J., 1991, Oligodeoxynucleotide probes for Campylobacter fetus and Campylobacter hyointestinalis based on 16S rRNA sequences, J. Clin. Microbiol. 29:1812–1817.

    PubMed  CAS  Google Scholar 

  • Wickham, G. S., Lane, D. J., Kim, S., and Pace, N. R., 1992, Intervening sequences in the 16S ribosomal RNA genes of naturally occurring hyperthermophilic archaebacteria, Abstr. Ann. Meet. Am. Soc. Microbiol. p. 239.

    Google Scholar 

  • Wilkinson, H. W., Sampson, J. S., and Plikaytis, B. B., 1986, Evaluation of a commercial gene probe for identification of Legionella cultures, J. Clin. Microbiol. 23:217–220.

    PubMed  CAS  Google Scholar 

  • Williams, S. T., Goodfellow, M., and Vickers, J. C., 1984, New Microbes from old habitats? Symp. Soc. Gen. Microbiol 36(2):219–256.

    Google Scholar 

  • Wilson, K. H., Blitchington, R., Hindenach, B., and Greene, R. C., 1988, Species-specific oligonucleotide probes for rRNA of Clostridium difficile and related species, J. Clin. Microbiol. 26:2484–2488.

    PubMed  CAS  Google Scholar 

  • Wilson, K. H., Blitchington, R., Shah, P., McDonald, G., Gilmore, R. D., and Mallavia, L. P., 1989, Probe directed at a segment of Rickettsia rickettsii rRNA amplified with polymerase chain reaction, J. Clin. Microbiol. 27:2692–2696.

    PubMed  CAS  Google Scholar 

  • Wilson, K. H., Blitchington, R. B., and Greene, R. C., 1990, Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction, J. Clin. Microbiol. 28:1942–1946.

    PubMed  CAS  Google Scholar 

  • Winfrey, J., Devereux, R., and Winfrey, M. R., 1991, Use of 16S rRNA-targeted probes to correlate community structure of sulfate-reducing bacteria with mercury methylation in freshwater sediments, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 319.

    Google Scholar 

  • Winker, S., and Woese, C. R., 1991, A definition of the domains Archaea, Bacteria, and Eucarya in terms of small subunit ribosomal RNA characteristics, System. Appl. Microbiol. 14:305–310.

    CAS  Google Scholar 

  • Winogradsky, S., 1949, Microbiologie du sol, problemes et methodes, Barneoud Freres, France.

    Google Scholar 

  • Witt, D., Liesack, W., and Stackebrandt, E., 1989, Identification of streptomycetes by 16S rRNA sequences and oligonucleotide probes, in: Recent Advances in Microbial Ecology (T. Hattori, Y. Ishida, Y. Maruyama, R. Y. Morita, and A. Uchida, eds.), Japan Sci. Soc. Press, Tokyo, pp. 679–684.

    Google Scholar 

  • Woese, C. R., 1987, Bacterial evolution, Microbiol. Rev. 51:221–271.

    PubMed  CAS  Google Scholar 

  • Woese, C. R., and Fox, G. E., 1977, Phylogenetic structure of the prokaryotic domain: The primary kingdoms, Proc. Natl. Acad. Sci. USA 74:5088–5090.

    PubMed  CAS  Google Scholar 

  • Woese, C. R., Stackebrandt, E., Macke, T. J., and Fox, G. E., 1985, A phylogenetic definition of the major eubacterial taxa, Syst. Appl. Microbiol. 6:143–151.

    PubMed  CAS  Google Scholar 

  • Woese, C. R., Kandier, O., and Wheelis, M. L., 1990, Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya, Proc. Natl. Acad. Sci. USA 87:4576–4579.

    PubMed  CAS  Google Scholar 

  • Wolfe, R. S., 1981, Foreword, in: The Procaryotes, Vol. I (M. P. Starr, H. Stolp, H. G. Truper, A. Balows, and H. G. Schlegel, eds.), Springer-Verlag, Berlin, pp. v–vi.

    Google Scholar 

  • Wolfe, C., and Haygood, M., 1992, Reduced copy number of ribosomal RNA genes in the luminous bacterial symbiont of Kryptophanaron alfredi relative to culturable luminous bacteria, Abstr. Ann. Meet. Am. Soc. Microbiol. p. 196.

    Google Scholar 

  • Yang, D., Oyaizu, Y., Oyaizu, H., Olsen, G. J., and Woese, C. R., 1985, Mitochondrial origins, Proc. Natl. Acad. Sci. USA 82:4443–4447.

    PubMed  CAS  Google Scholar 

  • Young, C., Burghoff, R., Keim, L., Lute, J., and Hinton, S., 1992, Molecular characterization of soil bacterial populations using 16S ribosomal DNA sequence analysis, Abstr. Ann. Meet. Am. Soc. Microbiol. p. 293.

    Google Scholar 

  • Zarda, B., Amann, R., Wallner, G., and Schleifer, K., 1991, Identification of single bacterial cells using digoxigenin-labelled, rRNA-targeted oligonucleotides, J. Gen. Microbiol. 137:2823–2830.

    PubMed  CAS  Google Scholar 

  • Zeng, Y. B., Ward, D. M., Brassell, S., and Eglinton, G., 1992a, Biogeochemistry of hot spring environments. 2. Lipid compositions of Yellowstone (Wyoming, U.S.A.) cyanobacterial and Chloroflexus mats, Chem. Geol. 95:327–345.

    CAS  Google Scholar 

  • Zeng, Y B., Ward, D. M., Brassell, S., and Eglinton, G., 1992b, Biogeochemistry of hot spring environments. 3. Apolar and polar lipids in the biologically active layers of a cyanobacterial mat, Chem. Geol. 95:347–360.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Plenum Press, New York

About this chapter

Cite this chapter

Ward, D.M., Bateson, M.M., Weller, R., Ruff-Roberts, A.L. (1992). Ribosomal RNA Analysis of Microorganisms as They Occur in Nature. In: Marshall, K.C. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7609-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7609-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7611-8

  • Online ISBN: 978-1-4684-7609-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics