Skip to main content

Lactone Formation in Yeast and Fungi

  • Reference work entry
  • First Online:
Fungal Metabolites

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Lactones are important secondary metabolites for fungi. In this chapter are presented some lactones that are important in biotechnology such as flavoring lactones or fragrance macrocyclic musk compounds, whereas others are important for quorum sensing and health (mycotoxins). Different pathways or enzymes can give rise to lactones, and the pathways going through β-oxidation and ω-oxidation and the fungal polyketide pathway (relatively similar to the fatty acid synthesis pathway) are presented as well as the activity of Baeyer–Villiger monooxygenases and lactonases and their potential use in biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

6MSA:

6-Methylsalicylic acid

AHL:

Acyl-homoserine lactone

AF:

Aflatoxin

AFL:

Aflatoxicol

ATP:

Adenosine triphosphate

BVMO:

Baeyer–Villiger monooxygenase

CDK:

Cyclin-dependent kinase

DALs:

Dihydroxyphenylacetic acid lactones

DNA:

Deoxyribonucleic acid

ERK:

Extracellular signal-regulated kinase

FAS:

Synthesis of fatty acids

HSP:

Heat shock protein 7

IC50 :

Half maximal inhibitory concentration

MAP, MAPK, MAPKKK:

Mitogen-activated protein kinase (MAP), kinase (K)

mRNA:

Messenger ribonucleic acid

PKS:

Polyketide synthase

QS:

Quorum sensing

RALs:

Resorcylic acid lactones

TAK:

Transforming growth factor-activated kinase

ZAL:

Zearalanol

ZAN:

Zearalanone

ZEN:

Zearalenone

ZEL:

Zearalenol

References

  1. Romero-Guido C et al (2011) Biochemistry of lactone formation in yeast and fungi and its utilisation for the production of flavour and fragrance compounds. Appl Microbiol Biotechnol 89(3):535–547

    Article  CAS  Google Scholar 

  2. Fickers P et al (2005) Hydrophobic substrate utilization by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res 5(6–7):527–543

    Article  CAS  Google Scholar 

  3. Waché Y (2013) Production of dicarboxylic acids and flagrances by Yarrowia lipolytica. In: Barth G (ed) Yarrowia lipolytica. Springer, Berlin/Heidelberg

    Google Scholar 

  4. Furuya T, Kino K (2010) Genome mining approach for the discovery of novel cytochrome P450 biocatalysts. Appl Microbiol Biotechnol 86(4):991–1002

    Article  CAS  Google Scholar 

  5. Farbood MJ, Mc Lean LB, Morris JA, Bondarovich HA (1992) Octalactone-containing composition, fermentation process for producing same and organoleptic uses thereof. Patent US 5112803 A

    Google Scholar 

  6. Waché Y et al (2003) Catabolism of hydroxyacids and production of lactones by the yeast Yarrowia lipolytica. Appl Microbiol Biotechnol 61:393–404

    Article  CAS  Google Scholar 

  7. Kataoka M et al (2007) Microbial enzymes involved in lactone compound metabolism and their biotechnological applications. Appl Microbiol Biotechnol 75(2):257–266

    Article  CAS  Google Scholar 

  8. Mattern DJ et al (2015) Synthetic biology of fungal natural products. Front Microbiol 6:775

    Article  Google Scholar 

  9. Jenke-Kodama H, Dittmann E (2009) Evolution of metabolic diversity: Insights from microbial polyketide synthases. Phytochemistry 70(15–16):1858–1866

    Article  CAS  Google Scholar 

  10. de Gonzalo G, Mihovilovic MD, Fraaije MW (2010) Recent developments in the application of Baeyer–Villiger monooxygenases as biocatalysts. ChemBioChem 11(16):2208–2231

    Article  CAS  Google Scholar 

  11. Beier A et al (2014) Metabolism of alkenes and ketones by Candida maltosa and related yeasts. AMB Express 4:75–75

    Article  CAS  Google Scholar 

  12. Cheng Q, Thomas S, Rouvière P (2002) Biological conversion of cyclic alkanes and cyclic alcohols into dicarboxylic acids: biochemical and molecular basis. Appl Microbiol Biotechnol 58(6):704–711

    Article  CAS  Google Scholar 

  13. Wang Y et al (2014) Gene discovery for enzymes involved in limonene modification or utilization by the mountain pine Beetle-associated pathogen Grosmannia clavigera. Appl Environ Microbiol 80(15):4566–4576

    Article  CAS  Google Scholar 

  14. Wanikawa A et al (2000) Detection of gamma-lactones in malt whisky. J Inst Brew 106(1):39–43

    Article  CAS  Google Scholar 

  15. Wanikawa A, Hosoi K, Kato T (2000) Conversion of unsaturated fatty acids to precursors of gamma-lactones by lactic acid bacteria during the production of malt whisky. J Am Soc Brew Chem 58(2):51–56

    CAS  Google Scholar 

  16. Okui S, Uchiyama M, Mizugaki M (1963) Metabolism of hydroxy fatty acids: 2. Intermediates of the oxidative breakdown of ricinoleic acid by Genus Candida. J Biochem 54(6):536–540

    CAS  Google Scholar 

  17. Gatfield IL (1999) Biotechnological production of natural flavor materials. In: Teranishi R, Wick EL, Hornstein I (eds) Flavor chemistry, thirty years of progress. Kluwer Academic/Plenum, New York

    Google Scholar 

  18. Broun P et al (1998) Catalytic plasticity of fatty acid modification enzymes underlying chemical diversity of plant lipids. Science 282(5392):1315–1317

    Article  CAS  Google Scholar 

  19. Blin-Perrin C et al (2000) Metabolism of ricinoleic acid into -decalactone: -oxidation and long chain acyl intermediates of ricinoleic acid in the genus Sporidiobolus sp. FEMS Microbiol Lett 188(1):69–74

    CAS  Google Scholar 

  20. Waché Y et al (2001) Role of β-oxidation enzymes in the production of γ-decalactones from methyl ricinoleate. Appl Environ Microbiol 67(12):5700–5704

    Article  CAS  Google Scholar 

  21. Waché Y et al (2000) Involvement of acyl-CoA oxidase isozymes in biotransformation of methyl ricinoleate into γ-decalactone by Yarrowia lipolytica. Appl Environ Microbiol 66(3):1233–1236

    Article  Google Scholar 

  22. Waché Y et al (1998) Acyl-CoA oxidase, a key step for lactone production by Yarrowia lipolytica. J Mol Catal B: Enzym 149(5):165–169

    Article  Google Scholar 

  23. Groguenin A et al (2004) Genetic engineering of the beta-oxidation pathway in the yeast Yarrowia lipolytica to increase the production of aroma compounds. J Mol Catal B 28(2–3):75–79

    Article  CAS  Google Scholar 

  24. Escamilla García E et al (2007) Effect of acyl-CoA oxidase activity on the accumulation of gamma-decalactone by the yeast Yarrowia lipolytica: a factorial approach. Biotechnol J 2(10):1280–1285

    Article  CAS  Google Scholar 

  25. Dufossé L et al (1999) In situ detoxification of the fermentation medium during gamma- decalactone production with the yeast sporidiobolus salmonicolor. Biotechnol Prog 15(1):135–139

    Article  Google Scholar 

  26. Dufossé LH, Souchon I, Féron G, Latrasse A, Spinnler HE (1997) Strategies to overcome toxicity during flavour production by micro-organisms: The case of gamma-decalactone from Sporidiobolus salmonicolor. In: Flavours and sensory related aspects. Presented at International Symposium on Flavours and Sensory related aspects. Rivista Italiana EPPOS. 284–298. http://prodinra.inra.fr/record/135179

  27. Souchon I et al (1998) Trapping of gamma-decalactone by adsorption on hydrophobic sorbents: application to the bioconversion of methyl ricinoleate by the yeast Sporidiobolus salmonicolor. Biotechnol Tech 12(2):109–113

    Article  CAS  Google Scholar 

  28. Escamilla-García E et al (2014) An air-lift biofilm reactor for the production of γ-decalactones by Yarrowia lipolytica. Process Biochem 49(9):1377–1382

    Article  CAS  Google Scholar 

  29. Escamilla García E et al (2009) Production of 3-hydroxy-γ-decalactone, the precursor of two decenolides with flavouring properties, by the yeast Yarrowia lipolytica. J Mol Catal B: Enzym 57(1–4):22–26

    Article  CAS  Google Scholar 

  30. Escamilla García E, Belin J-M, Waché Y (2007) Use of a Doehlert factorial design to investigate the effects of pH and aeration on the accumulation of lactones by Yarrowia lipolytica. J Appl Microbiol 103(5):1508–1515

    Article  CAS  Google Scholar 

  31. An J-U, Oh D-K (2013) Increased production of γ-lactones from hydroxy fatty acids by whole Waltomyces lipofer cells induced with oleic acid. Appl Microbiol Biotechnol 97(18):8265–8272

    Article  CAS  Google Scholar 

  32. Oh DK, Joo YC (2013) Method and composition for high-yield preparation of gamma-dodecalactone from hydroxy fatty acids

    Google Scholar 

  33. Frater G, Bajgrowicz J, Kraft P (1998) Fragrance chemistry. Tetrahedron 54(27):7633–7703

    Article  CAS  Google Scholar 

  34. Sommer C (2004) The role of musk and musk compounds in the fragrance industry. In: Rimkus GG (ed) Synthetic musk fragrances in the environment. Springer, Berlin/Heidelberg

    Google Scholar 

  35. Picataggio S et al (1992) Metabolic engineering of Candida tropicalis for the production of long chain dicarboxylic acids. Biotechnology 10:894–898

    Article  CAS  Google Scholar 

  36. Picataggio S, Rohrer T, Eirich LD (1997) Method for increasing the omega-hydroxylase activity in Candida tropicalis. Patent US 5620878 A

    Google Scholar 

  37. Kogure T et al (2007) Enhanced induction of cytochromes P450alk that oxidize methyl-ends of n-alkanes and fatty acids in the long-chain dicarboxylic acid-hyperproducing mutant of Candida maltosa. FEMS Microbiol Lett 271(1):106–111

    Article  CAS  Google Scholar 

  38. Hornby JM et al (2001) Quorum sensing in the dimorphic fungus Candida albicans is mediated by Farnesol. Appl Environ Microbiol 67(7):2982–2992

    Article  CAS  Google Scholar 

  39. Chen H et al (2004) Tyrosol is a quorum-sensing molecule in Candida albicans. Proc Natl Acad Sci U S A 101(14):5048–5052

    Article  CAS  Google Scholar 

  40. Schimmel TG, Coffman AD, Parsons SJ (1998) Effect of butyrolactone i on the producing fungus, Aspergillus terreus. Appl Environ Microbiol 64(10):3707–3712

    CAS  Google Scholar 

  41. Calvo AM et al (2002) Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev 66(3):447–459

    Article  CAS  Google Scholar 

  42. Tsitsigiannis DI, Keller NP (2007) Oxylipins as developmental and host–fungal communication signals. Trends Microbiol 15(3):109–118

    Article  CAS  Google Scholar 

  43. Safari M et al (2014) Microbial metabolism of quorum-sensing molecules acyl-homoserine lactones, γ-heptalactone and other lactones. Appl Microbiol Biotechnol 98(8):3401–3412

    Article  CAS  Google Scholar 

  44. Pearson JP et al (1995) A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 92(5):1490–1494

    Article  CAS  Google Scholar 

  45. Fuqua C, Parsek MR, Greenberg EP (2001) Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35(1):439–468

    Article  CAS  Google Scholar 

  46. Beppu T (1992) Secondary metabolites as chemical signals for cellular differentiation. Gene 115(1–2):159–165

    Article  CAS  Google Scholar 

  47. Albuquerque P, Casadevall A (2012) Quorum sensing in fungi – a review. Med Mycol 50(4):337–345

    Article  CAS  Google Scholar 

  48. Waters CM, Bassler BL (2005) QUORUM SENSING: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21(1):319–346

    Article  CAS  Google Scholar 

  49. Winzer K, Hardie KR, Williams P (2002) Bacterial cell-to-cell communication: sorry, can't talk now — gone to lunch! Curr Opin Microbiol 5(2):216–222

    Article  CAS  Google Scholar 

  50. Williams H et al (2012) γ-Heptalactone is an endogenously produced quorum-sensing molecule regulating growth and secondary metabolite production by Aspergillus nidulans. Appl Microbiol Biotechnol 96(3):773–781

    Article  CAS  Google Scholar 

  51. Raina S et al (2012) Is quorum sensing involved in lovastatin production in the filamentous fungus Aspergillus terreus? Process Biochem 47(5):843–852

    Article  CAS  Google Scholar 

  52. Palonen E et al (2014) Butyrolactone I quantification from lovastatin producing Aspergillus terreus using tandem mass spectrometry—evidence of signalling functions. Microorganisms 2(2):111

    Article  CAS  Google Scholar 

  53. Tobert JA (2003) Lovastatin and beyond: the history of the HMG-CoA reductase inhibitors. Nat Rev Drug Discov 2(7):517–526

    Article  CAS  Google Scholar 

  54. Furberg CD et al (1994) Effect of lovastatin on early carotid atherosclerosis and cardiovascular events. Asymptomatic Carotid Artery Progression Study (ACAPS) Research Group. Circulation 90(4):1679–1687

    Article  CAS  Google Scholar 

  55. Ohashi H et al (1997) Sulochrin inhibits eosinophil degranulation. J Antibiot 50(11):972–974

    Article  CAS  Google Scholar 

  56. Kitagawa M et al (1993) Butyrolactone I, a selective inhibitor of cdk2 and cdc2 kinase. Oncogene 8(9):2425–2432

    CAS  Google Scholar 

  57. Suzuki M et al (1999) Butyrolactone I induces cyclin B1 and causes G2/M arrest and skipping of mitosis in human prostate cell lines. Cancer Lett 138(1):121–130

    Article  CAS  Google Scholar 

  58. Ramón D et al (1987) Cloning and characterization of the isopenicillin N synthetase gene mediating the formation of the β-lactam ring in Aspergillus nidulans. Gene 57(2):171–181

    Article  Google Scholar 

  59. Gudgeon JA et al (1979) The structures and biosynthesis of multicolanic, multicolic, and multicolosic acids, novel tetronic acid metabolites of penicillium multicolor. Bioorg Chem 8(3):311–322

    Article  CAS  Google Scholar 

  60. Gedge DR, Pattenden G (1979) Structure and stereochemistry of multicolanic, multicolic, and multicolosic acids, 4-ylidenetetronic acid metabolites from Penicillium multicolor. Synthesis of methyl (E)-O-methylmulticolanate. Je Chem Soc Perkin Trans 1:89–91

    Article  Google Scholar 

  61. Holker JSE et al (1987) Biosynthesis of multicolosic acid, a polyketide metabolite from Penicillium multicolor: occurrence of large 18O-induced [small beta]-isotope shifts in 13C n.m.r. spectra. J Chem Soc Chem Commun (14):1099–1100

    Google Scholar 

  62. Tuner WB, Aldridge DC (1983) Fungal metabolites II. Academic, London

    Google Scholar 

  63. Chidananda C, Rao LJ, Sattur AP (2006) Sclerotiorin, from Penicillium frequentans, a potent inhibitor of aldose reductase. Biotechnol Lett 28(20):1633–1636

    Article  CAS  Google Scholar 

  64. Chidananda C, Sattur AP (2007) Sclerotiorin, a novel inhibitor of lipoxygenase from Penicillium frequentans. J Agric Food Chem 55(8):2879–2883

    Article  CAS  Google Scholar 

  65. Hogan DA (2006) Talking to themselves: autoregulation and quorum sensing in fungi. Eukaryot Cell 5(4):613–619

    Article  CAS  Google Scholar 

  66. Latour X et al (2013) Rhodococcus erythropolis and its γ-lactone catabolic pathway: an unusual biocontrol system that disrupts pathogen quorum sensing communication. Agronomy 3(4):816

    Article  CAS  Google Scholar 

  67. Schimmel TG, Parsons SJ (1999) High purity, high yield procedure for butyrolactone I production from Aspergillus terreus. Biotechnol Tech 13(6):379–384

    Article  CAS  Google Scholar 

  68. Dufossé L, Latasse A, Spinnler HE (1994) Importance des lactones dans les arômes alimentaires: structure, distribution, propriétés sensorielles. Sci Aliment 14(1):19–50

    Google Scholar 

  69. Parker J, Elmore S, Methven L (2014) Flavour development, analysis and perception in food and beverages. Elsevier, Oxford

    Google Scholar 

  70. Nakata H, Hinosaka M, Yanagimoto H (2015) Macrocyclic-, polycyclic-, and nitro musks in cosmetics, household commodities and indoor dusts collected from Japan: implications for their human exposure. Ecotoxicol Environ Saf 111:248–255

    Article  CAS  Google Scholar 

  71. McGinty D, Letizia CS, Api AM (2011) Fragrance material review on 16-hydroxy-7-hexadecenoic acid lactone. Food Chem Toxicol 49(Suppl 2):S149–S151

    Article  CAS  Google Scholar 

  72. Sweeney MJA, Dobson DW (1998) Mycotoxin production by Aspergillus, Fusarium and Penicillium species. Int J Food Microbiol 43(3):141–158

    Article  CAS  Google Scholar 

  73. Bennett JW, Chang PK, Bhatnagar D (1997) One gene to whole pathway: the role of norsolorinic acid in aflatoxin research. Adv Appl Microbiol 45:1–15

    Google Scholar 

  74. Bbosa GS, Kitya D, Lubega A, Ogwal-Okeng J, Anokbonggo WW, Kyegombe DB (2013) Review of the biological and health effects of aflatoxins on body organs and body systems 12:239–265

    Google Scholar 

  75. Reddy S, Waliyar F (2012) Properties of aflatoxin and its producing fungi. Aflatoxins. Available from: http://www.icrisat.org/aflatoxin/aflatoxin.asp

  76. Genderen Hv (1996) Adverse effects of naturally occurring nonnutritive substances. In: John V (ed) Food safety and toxicity. CRC Press, Heerlen, The Netherlands

    Google Scholar 

  77. Oliviera CAF, Bovo F, Corassin CH, Jager AV, Reddy KR (2013) Recent trends in microbiological decontamination of aflatoxins in foodstuffs 4:59–92

    Google Scholar 

  78. Nicolás-Vázquez I et al (2010) Role of lactone ring in structural, electronic, and reactivity properties of aflatoxin B1: a theoretical study. Arch Environ Contam Toxicol 59(3):393–406

    Article  CAS  Google Scholar 

  79. Bbosa GS et al (2013) Aflatoxins metabolism, effects on epigenetic mechanisms and their role in carcinogenesis. Health 5(10):21

    Article  CAS  Google Scholar 

  80. Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16(3):497–516

    Article  CAS  Google Scholar 

  81. Ciegler A, Detroy RW, Lillejoj EB (1971) Patulin, penicillic acid and other carcinogenic lactones. In Ciegler A, Kadis S, Ajl SJ (eds). Microbial toxins, vol. VI: fungal toxins, pp 409–434. Academic Press, New York

    Google Scholar 

  82. Puel O, Galtier P, Oswald IP (2010) Biosynthesis and toxicological effects of patulin. Toxins 2(4):613–631

    Article  CAS  Google Scholar 

  83. Frémy JM et al (1995) Procedures for destruction of patulin in laboratory wastes. Food Addit Contam 12(3):331–336

    Article  Google Scholar 

  84. Moake MM, Padilla-Zakour OI, Worobo RW (2005) Comprehensive review of patulin control methods in foods. Compr Rev Food Sci Food Saf 4(1):8–21

    Article  CAS  Google Scholar 

  85. Sorenson WG, Simpson J (1986) Toxicity of penicillic acid for rat alveolar macrophages in vitro. Environ Res 41(2):505–513

    Article  CAS  Google Scholar 

  86. Klarić M, Rašić D, Peraica M (2013) Deleterious effects of mycotoxin combinations involving ochratoxin A. Toxins 5(11):1965

    Article  CAS  Google Scholar 

  87. Kim Y-T et al (2005) Two different polyketide synthase genes are required for synthesis of zearalenone in Gibberella zeae. Mol Microbiol 58(4):1102–1113

    Article  CAS  Google Scholar 

  88. Zinedine A et al (2007) Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food Chem Toxicol 45(1):1–18

    Article  CAS  Google Scholar 

  89. Belhassen H et al (2015) Zearalenone and its metabolites in urine and breast cancer risk: a case-control study in Tunisia. Chemosphere 128:1–6

    Article  CAS  Google Scholar 

  90. Coffey DS (2001) Similarities of prostate and breast cancer: evolution, diet, and estrogens. Urology 57(4):31–38

    Article  CAS  Google Scholar 

  91. Winssinger N, Barluenga S (2007) Chemistry and biology of resorcylic acid lactones. Chem Commun 1:22–36

    Article  Google Scholar 

  92. Delmotte P, Delmotte-Plaque J (1953) A new antifungal substance of fungal origin. Nature 171(4347):344

    Article  CAS  Google Scholar 

  93. McCapra F et al (1964) The constitution of monorden, an antibiotic with tranquilising action. Tetrahedron Lett 5(15):869–875

    Article  Google Scholar 

  94. Kwon HJ et al (1992) Radicicol, an agent inducing the reversal of transformed phenotypes of src-transformed fibroblasts. Biosci Biotechnol Biochem 56(3):538–539

    Article  CAS  Google Scholar 

  95. Kwon HJ et al (1992) Potent and specific inhibition of p60v-src protein kinase both in vivo and in vitro by radicicol. Cancer Res 52(24):6926–6930

    CAS  Google Scholar 

  96. Xu J et al (2014) Recent progress regarding the bioactivities, biosynthesis and synthesis of naturally occurring resorcinolic macrolides. Acta Pharmacol Sin 35(3):316–330

    Article  CAS  Google Scholar 

  97. Kastelic T et al (1996) Induction of rapid IL-β mRNA degradation in THP-1 cells mediated through the AU-rich region in the 3′UTR by a radicicol analogue. Cytokine 8(10):751–761

    Article  CAS  Google Scholar 

  98. Ninomiya-Tsuji J et al (2003) A resorcylic acid lactone, 5Z-7-oxozeaenol, prevents inflammation by inhibiting the catalytic activity of TAK1 MAPK kinase kinase. J Biol Chem 278(20):18485–18490

    Article  CAS  Google Scholar 

  99. Ohori M et al (2007) Role of a cysteine residue in the active site of ERK and the MAPKK family. Biochem Biophys Res Commun 353(3):633–637

    Article  CAS  Google Scholar 

  100. Zhao A et al (1999) Resorcylic acid lactones: naturally occurring potent and selective inhibitors of MEK. J Antibiot 52:1086–1094

    Article  CAS  Google Scholar 

  101. Solit DB et al (2006) BRAF mutation predicts sensitivity to MEK inhibition. Nature 439(7074):358–362

    Article  CAS  Google Scholar 

  102. Nair MSRSTC, Carey ST (1980) Metabolites of pyrenomycetes XIII: structure of (+) hypothemycin, an antibiotic macrolide from Hypomyces trichothecoides. Tetrahedron Lett 21(21):2011–2012

    Article  CAS  Google Scholar 

  103. Agatsuma T et al (1993) Revised structure and stereochemistry of hypothemycin. Chem Pharm Bull 41(2):373–375

    Article  CAS  Google Scholar 

  104. Fukazawa H et al (2010) The resorcylic acid lactone hypothemycin selectively inhibits the mitogen-activated protein kinase kinase-extracellular signal-regulated kinase pathway in cells. Biol Pharm Bull 33(2):168–173

    Article  CAS  Google Scholar 

  105. Wee JL et al (2006) Cytotoxic hypothemycin analogues from Hypomyces subiculosus. J Nat Prod 69(10):1456–1459

    Article  CAS  Google Scholar 

  106. Hellwig V et al (2003) Pochonins A − F, new antiviral and antiparasitic resorcylic acid lactones from Pochonia chlamydosporia var. catenulata. J Nat Prod 66(6):829–837

    Article  CAS  Google Scholar 

  107. Shinonaga H et al (2009) Pochonins K–P: new radicicol analogues from Pochonia chlamydosporia var. chlamydosporia and their WNT-5A expression inhibitory activities. Tetrahedron 65(17):3446–3453

    Article  CAS  Google Scholar 

  108. Isaka M et al (2002) Aigialomycins A − E, new resorcylic macrolides from the marine mangrove fungus Aigialus parvus. J Org Chem 67(5):1561–1566

    Article  CAS  Google Scholar 

  109. Xu L et al (2010) β-resorcylic acid lactones from a Paecilomyces fungus. J Nat Prod 73(5):885–889

    Article  CAS  Google Scholar 

  110. Xu L et al (2012) Three new β-resorcylic acid lactones from Paecilomyces sp. SC0924. Chin J Chem 30(6):1273–1277

    Article  CAS  Google Scholar 

  111. Xu L-X et al (2013) Paecilomycins J–M, four new β-resorcylic acid lactones from Paecilomyces sp. SC0924. Tetrahedron Lett 54(21):2648–2650

    Article  CAS  Google Scholar 

  112. Gao J et al (2013) Neocosmospora sp.-derived resorcylic acid lactones with in vitro binding affinity for human opioid and cannabinoid receptors. J Nat Prod 76(5):824–828

    Article  CAS  Google Scholar 

  113. Shao C-L et al (2011) Potent antifouling resorcylic acid lactones from the gorgonian-derived fungus Cochliobolus lunatus. J Nat Prod 74(4):629–633

    Article  CAS  Google Scholar 

  114. Aldridge DC et al (1971) Metabolites of Lasiodiplodia theobromae. J Chem Soc C: Org (0): 1623–1627

    Google Scholar 

  115. Kashima T et al (2009) Biosynthesis of resorcylic acid lactone Lasiodiplodin in Lasiodiplodia theobromae. Biosci Biotechnol Biochem 73(5):1118–1122

    Article  CAS  Google Scholar 

  116. Leet K-H et al (1982) Lasiodiplodin, a potent antileukemic macrolide from Euphorbia splendens. Phytochemistry 21(5):1119–1121

    Article  Google Scholar 

  117. Xin-Sheng Y et al (1983) Structure of arnebinol, a new ANSA-type monoterpenylbenzenoid with inhibitory effect to prostaglandin biosynthesis. Tetrahedron Lett 24(23):2407–2410

    Article  Google Scholar 

  118. Buayairaksa M et al (2011) Cytotoxic lasiodiplodin derivatives from the fungus Syncephalastrum racemosum. Arch Pharm Res 34(12):2037–2041

    Article  CAS  Google Scholar 

  119. Oyama H, Sassa T, Ikeda M (1978) Structures of new plant growth inhibitors, trans- and cis-resorcylide. Agric Biol Chem 42(12):2407–2409

    CAS  Google Scholar 

  120. Xu Y et al (2014) Insights into the biosynthesis of 12-membered resorcylic acid lactones from heterologous production in Saccharomyces cerevisiae. ACS Chem Biol 9(5):1119–1127

    Article  CAS  Google Scholar 

  121. Poling SM et al (2008) Acremonium zeae, a protective endophyte of maize, produces dihydroresorcylide and 7-hydroxydihydroresorcylides. J Agric Food Chem 56(9):3006–3009

    Article  CAS  Google Scholar 

  122. Sassa T, Nukina M, Ikeda M (1981) Electrophilic reactivities and biological activities of trans- and cis-resorcylides. Nippon Kagaku Kaishi: 883–885

    Google Scholar 

  123. West RR et al (1996) Cis-resorcylide, pharmaceutical composition containing it, and use thereof in the treatment of thrombosis and related disorders. Patent WO 9640671

    Google Scholar 

  124. Rogers KD (2011) Chemical investigations of fungicolous and endophytic fungi. University of Iowa, Iowa

    Google Scholar 

  125. Li K-K et al (2010) The metabolites of mangrove endophytic fungus Zh6B1 from the South China Sea. Bioorg Med Chem Lett 20(11):3326–3328

    Article  CAS  Google Scholar 

  126. Zhan J et al (2012) A new anthraquinone and cytotoxic curvularins of a Penicillium sp. from the rhizosphere of Fallugia paradoxa of the Sonoran desert. J Antibiot 57:341–344

    Article  Google Scholar 

  127. Schmidt N et al (2012) The anti-inflammatory fungal compound (S)-curvularin reduces proinflammatory gene expression in an in vivo model of rheumatoid arthritis. J Pharmacol Exp Ther 343(1):106–114

    Article  CAS  Google Scholar 

  128. Lai S et al (1989) Novel curvularin-type metabolites of a hybrid strain ME 0005 derived from penicillium citreo-viride B. IFO 6200 and 4692. Tetrahedron Lett 30(17):2241–2244

    Article  CAS  Google Scholar 

  129. Dai J et al (2010) Curvularin-type metabolites from the fungus Curvularia sp. Isolated from a marine alga. Eur J Org Chemy 2010(36):6928–6937

    Article  CAS  Google Scholar 

  130. Kumar CG et al (2013) Metabolite profiling and biological activities of bioactive compounds produced by Chrysosporium lobatum strain BK-3 isolated from Kaziranga National Park, Assam, India. SpringerPlus 2(1):122

    Article  CAS  Google Scholar 

  131. Xie L et al (2009) Isolation and difference in anti-Staphylococcus aureus bioactivity of curvularin derivates from fungus Eupenicillium sp. Appl Biochem Biotechnol 159(1):284–293

    Article  CAS  Google Scholar 

  132. Gutiérrez M et al (2005) Bioactive metabolites from the fungus Nectria galligena, the main apple canker agent in Chile. J Agric Food Chem 53(20):7701–7708

    Article  CAS  Google Scholar 

  133. Nakada T, Yamamura S (2000) Three new metabolites of hybrid strain KO 0231, derived from Penicillium citreo-viride IFO 6200 and 4692. Tetrahedron 56(17):2595–2602

    Article  CAS  Google Scholar 

  134. Murakami Y et al (1999) Sporostatin, a novel and specific inhibitor of EGF receptor kinase. Anticancer Res 19(5B):4145–4149

    CAS  Google Scholar 

  135. Edrada RA et al (2002) Online analysis of xestodecalactones A−C, novel bioactive metabolites from the fungus Penicillium cf. montanense and their subsequent isolation from the sponge Xestospongia exigua. J Nat Prod 65(11):1598–1604

    Article  CAS  Google Scholar 

  136. Ebrahim W et al (2012) Decalactone derivatives from Corynespora cassiicola, an endophytic fungus of the mangrove plant Laguncularia racemosa. Eur J Org Chem 2012(18):3476–3484

    Article  CAS  Google Scholar 

  137. Peterson DH et al (1953) Microbiological transformations of steroids. IX. Degradation of C21 steroids to C19 ketones and to testololactone. J Am Chem Soc 75(22):5768–5769

    Article  CAS  Google Scholar 

  138. Fried J, Thoma RW, Klingsberg A (1953) Oxidation of steroids by micro örganisms. III. Side chain degradation, ring D-cleavage and dehydrogenation in ring A. J Am Chem Soc 75(22):5764–5765

    Article  CAS  Google Scholar 

  139. Fraaije MW et al (2002) Identification of a Baeyer–Villiger monooxygenase sequence motif. FEBS Lett 518(1–3):43–47

    Article  CAS  Google Scholar 

  140. Brondani PB et al (2014) Finding the switch: turning a Baeyer–Villiger monooxygenase into a NADPH oxidase. J Am Chem Soc 136(49):16966–16969

    Article  CAS  Google Scholar 

  141. Rebehmed J et al (2013) Evolution study of the Baeyer–Villiger monooxygenases enzyme family: functional importance of the highly conserved residues. Biochimie 95(7):1394–1402

    Article  CAS  Google Scholar 

  142. Alphand V et al (2003) Towards large-scale synthetic applications of Baeyer-Villiger monooxygenases. Trends Biotechnol 21(7):318–323

    Article  CAS  Google Scholar 

  143. Leisch H, Morley K, Lau PCK (2011) Baeyer − Villiger monooxygenases: more than just green chemistry. Chem Rev 111(7):4165–4222

    Article  CAS  Google Scholar 

  144. Torres Pazmiño DE, Dudek HM, Fraaije MW (2010) Baeyer–Villiger monooxygenases: recent advances and future challenges. Curr Opin Chem Biol 14(2):138–144

    Article  CAS  Google Scholar 

  145. Butinar L et al (2015) Prevalence and specificity of Baeyer–Villiger monooxygenases in fungi. Phytochemistry 117:144–153

    Article  CAS  Google Scholar 

  146. Khosla C, Harbury PB (2001) Modular enzymes. Nature 409(6817):247–252

    Article  CAS  Google Scholar 

  147. Rees GD, Robinson BH, Stephenson GR (1995) Macrocyclic lactone synthesis by lipases in water-in-oil microemulsions. Biochim Biophys Acta 1257(3):239–248

    Article  Google Scholar 

  148. Hertweck C (2015) Decoding and reprogramming complex polyketide assembly lines: prosects for synthetic biology. Trends Biochem Sci 40(4):189–199

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jolanta Krzyczkowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Krzyczkowska, J., Phan-Thi, H., Waché, Y. (2017). Lactone Formation in Yeast and Fungi. In: Mérillon, JM., Ramawat, K. (eds) Fungal Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-25001-4_13

Download citation

Publish with us

Policies and ethics