Skip to main content

Advertisement

Log in

Isolation and Difference in Anti-Staphylococcus aureus Bioactivity of Curvularin Derivates from Fungus Eupenicillium sp.

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

With the anti-microbial and anti-tumor composite screening model, bioassay-guided fractionation led to the isolation of two structurally related bioactive compounds, curvularin and αβ-dehydrocurvularin, from ethyl acetate extract of Eupenicillium sp. associated with marine sponge Axinella sp. Further study on the structure–activity relationship demonstrated that both compounds exhibited differences in bioactive profiles which are highly associated with their minor structural differences. Both curvularin and αβ-dehydrocurvularin have similar level of anti-fungal and anti-tumorous activity, while αβ-dehydrocurvularin is active against Staphylococcus aureus with a minimal inhibitory concentration of 375 μg/ml but curvularin does not. No detectable activity against Gram-negative bacteria such as Escherichia coli and Pseudomonas aeruginosa exists for both compounds. It is suggested that the partial planar backbone structure, due to the conjugation of π electrons in the presence of a 3,4-double bond and the carbonyl group at position C-2 in αβ-dehydrocurvularin, acts as a key factor for the inhibition of S. aureus, a Gram-positive low G + C bacteria that are often the hospital-acquired and/or community-acquired pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1

Similar content being viewed by others

References

  1. Robeson, D. J., & Strobel, G. A. (1981). αβ-Dehydrocurvularin and curvularin from Alternaria cinerariae. Zeitschrift fur Naturforschung C—A Journal of Biosciences, 36(11–1), 1081–1083.

    Google Scholar 

  2. Kusano, M., Nakagami, K., Fujioka, S., Kawano, T., Shimada, A., & Kimura, Y. (2003). βγ-Dehydrocurvularin and related compounds as nematicides of Pratylenchus penetrans from the fungus Aspergillus sp. Bioscience, Biotechnology, and Biochemistry, 67(6), 1413–1416. doi:10.1271/bbb.67.1413.

    Article  CAS  Google Scholar 

  3. Ghisalberti, E. L., Hockless, D. C. R., Rowland, C. Y., & White, A. H. (1993). Structural study of curvularin, a cell division inhibitor. Australian Journal of Chemistry, 46(4), 571–575.

    CAS  Google Scholar 

  4. Almassi, F., Ghisalberti, E. L., Skelton, B. W., & White, A. H. (1994). Structural study of dehydrocurvularin, an inhibitor of microtubule assembly. Australian Journal of Chemistry, 47(6), 1193–1197.

    CAS  Google Scholar 

  5. Kobayashi, A., Hino, T., Yata, S., Itoh, T. J., Sato, H., & Kawazu, K. (1988). Unique spindle poisons, curvularin and its derivates, isolated from Penicillium species. Agricultural and Biological Chemistry, 52(12), 3119–3123.

    CAS  Google Scholar 

  6. Coombe, R. G., Jacobs, J. J., & Watson, T. R. (1968). Constituents of some Curvularia species. Australian Journal of Chemistry, 21(3), 783–788.

    CAS  Google Scholar 

  7. Caputo, O., & Viola, F. (1977). Isolation of αβ-dehydrocurvularin from Aspergillus aureofulgens. Planta Medica, 31(1), 31–32. doi:10.1055/s-0028-1097485.

    Article  CAS  Google Scholar 

  8. Arai, K., Rawlings, B. J., Yoshizawa, Y., & Vederas, J. C. (1989). Biosynthesis of antibiotic A26771B by Penicillium turbatum and dehydrocurvularin by Alternaria cinerariae: comparison of stereochemistry of polyketide and fatty acid enoyl thiol ester reductases. Journal of the American Chemical Society, 111(9), 3391–3399. doi:10.1021/ja00191a042.

    Article  CAS  Google Scholar 

  9. Zhan, J. X., Wijeratne, E. M. K., Seliga, C. J., Zhang, J., Pierson, E. E., Pierson, L. S., et al. (2004). A new anthraquinone and cytotoxic curvularins of a Penicillium sp. from the rhizosphere of Fallugia paradoxa of the Sonoran desert. The Journal of Antibiotics, 57(5), 341–344.

    CAS  Google Scholar 

  10. Schoenborn, L., Yates, P. S., Grinton, B. E., Hugenholtz, P., & Janssen, P. H. (2004). Liquid serial dilution is inferior to solid media for isolation of cultures representative of the phylum-level diversity of soil bacteria. Applied and Environmental Microbiology, 70(7), 4363–4366. doi:10.1128/AEM.70.7.4363-4366.2004.

    Article  CAS  Google Scholar 

  11. Nag Raj, T. R. (1995). What is Myrothecium prestonii. Mycotaxon, 53, 295–310.

    Google Scholar 

  12. Manwar, A., Khandelwal, S., Chaudhari, B., Meyer, J., & Chincholkar, S. (2004). Siderophore production by a marine Pseudomonas aeruginosa and its antagonistic action against phytopathogenic fungi. Applied Biochemistry and Biotechnology, 118(1–3), 243–251. doi:10.1385/ABAB:118:1-3:243.

    Article  CAS  Google Scholar 

  13. de Beer, E. J., & Sherwood, M. B. (1945). The paper-disc agar-plate method for the assay of antibiotic substances. Journal of Bacteriology, 50(4), 459–467.

    Google Scholar 

  14. Pass, D. M., Foley, W. J., & Bowden, B. (1998). Vertebrate herbivory on Eucalyptus—identification of specific feeding deterrents for common ringtail possums (Pseudocheirus peregrinus) by bioassay-guided fractionation of Eucalyptus ovata foliage. Journal of Chemical Ecology, 24(9), 1513–1527. doi:10.1023/A:1020911800847.

    Article  CAS  Google Scholar 

  15. Ter Laak, E. A., Pijpers, A., Noordergraaf, J. H., Schoevers, E. C., & Verheijden, J. H. (1991). Comparison of methods for in vitro testing of susceptibility of porcine Mycoplasma species to antimicrobial agents. Antimicrobial Agents and Chemotherapy, 35(2), 228–233.

    CAS  Google Scholar 

  16. Denizot, F., & Lang, R. (1986). Rapid colorimetric assay for cell growth and survival modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. Journal of Immunological Methods, 89(2), 271–275. doi:10.1016/0022-1759(86)90368-6.

    Article  CAS  Google Scholar 

  17. Musgrave O. C. (1957). Curvularin. 2. The constitution of an aromatic degradation product and the partial structure of curvularin. Journal of the Chemical Society, (3), 1104–1108.

  18. Munro, H. D., Musgrave, O. C., & Templeton, R. (1976). Curvularin. Part V. The compound C16H18O5, αβ-dehydrocurvularin. Journal of the Chemical Society C—Organic, (10), 947–948.

  19. Aragi, Y., Taga, N., & Simidu, U. (1977). Isolation and distribution of oligotrophic marine bacteria. Canadian Journal of Microbiology, 23(8), 981–987.

    Article  CAS  Google Scholar 

  20. Kuznetsov, S. I., Dubinina, G. A., & Lapteva, N. A. (1979). Biology of oligotrophic bacteria. Annual Review of Microbiology, 33, 377–387. doi:10.1146/annurev.mi.33.100179.002113.

    Article  CAS  Google Scholar 

  21. Durand, M. L., Calderwood, S. B., Weber, D. J., Miller, S. I., Southwick, F. S., Caviness Jr, V. S., et al. (1993). Acute bacterial meningitis in adults: a review of 493 episodes. The New England Journal of Medicine, 328(1), 21–28. doi:10.1056/NEJM199301073280104.

    Article  CAS  Google Scholar 

  22. Moreillon, P. (2008). New and emerging treatment of Staphylococcus aureus infections in the hospital setting. Clinical Microbiology and Infection, 14, 32–41. doi:10.1111/j.1469-0691.2008.01961.x.

    Article  CAS  Google Scholar 

  23. Zhang, S. Z., Yang, X. N., Coburn, R. A., & Morris, M. E. (2005). Structure activity relationships and quantitative structure activity relationships for the flavonoid-mediated inhibition of breast cancer resistance protein. Biochemical Pharmacology, 70(4), 627–639. doi:10.1016/j.bcp.2005.05.017.

    Article  CAS  Google Scholar 

  24. Dizhbite, T., Telysheva, G., Jurkjane, V., & Viesturs, U. (2004). Characterization of the radical scavenging activity of lignins—natural antioxidants. Bioresource Technology, 95(3), 309–317. doi:10.1016/j.biortech.2004.02.024.

    Article  CAS  Google Scholar 

  25. González-Díaz, H., Olazábal, E., Santana, L., Uriarte, E., González-Díaz, Y., & Castañedob, N. (2007). QSAR study of anticoccidial activity for diverse chemical compounds: prediction and experimental assay of trans-2-(2-nitrovinyl)furan. Bioorganic & Medicinal Chemistry, 15(2), 962–968. doi:10.1016/j.bmc.2006.10.032.

    Article  CAS  Google Scholar 

  26. Cheng, S. S., Liu, J. Y., Chang, E. H., & Chang, S. T. (2008). Antifungal activity of cinnamaldehyde and eugenol congeners against wood-rot fungi. Bioresource Technology, 99(11), 5145–5149. doi:10.1016/j.biortech.2007.09.013.

    Article  CAS  Google Scholar 

  27. Kojima, M. K., Takakuwa, T., Nakamura, S., & Kobayashi, A. (1986). Effects of curvularin, the mold metabolite, on cleavage in sea-urchin eggs. Cell Structure and Function, 11(4), 476–476.

    Google Scholar 

  28. Yao, Y., Hausding, M., Erkel, G., Anke, T., Forstermann, U., & Kleinert, H. (2003). Sporogen, S14–95, and S-curvularin, three inhibitors of human inducible nitric-oxide synthase expression isolated from fungi. Molecular Pharmacology, 63(2), 383–391. doi:10.1124/mol.63.2.383.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was partially funded by the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-YW-216, KZCX2-YW-211) and National Supportive Plan Project of Science and Technology (2006BAB19B02). Parts of this study were carried out at the Key Laboratory of Microbial Application and Innovative Technology of Guangdong Province as an open funding project. We also thank the financial support of the Hundred Talents Program of Chinese Academy of Sciences. Many thanks to Dr. K. J. Lee for identification of the marine sponge, to Prof. Zanmin Hu and Prof. Honghui Zhu for providing some of the indicator organisms, and to Dr. Donna Smith for critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Li.

Additional information

Lian Wu Xie and Yong Chang Ouyang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, L.W., Ouyang, Y.C., Zou, K. et al. Isolation and Difference in Anti-Staphylococcus aureus Bioactivity of Curvularin Derivates from Fungus Eupenicillium sp.. Appl Biochem Biotechnol 159, 284–293 (2009). https://doi.org/10.1007/s12010-009-8591-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8591-2

Keywords

Navigation