Skip to main content
Log in

γ-Heptalactone is an endogenously produced quorum-sensing molecule regulating growth and secondary metabolite production by Aspergillus nidulans

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Microbes monitor their population density through a mechanism termed quorum sensing. It is believed that quorum-sensing molecules diffuse from the microbial cells and circulate in the surrounding environment as a function of cell density. When these molecules reach a threshold concentration, the gene expression of the entire population is altered in a coordinated manner. This work provides evidence that Aspergillus nidulans produces at least one small diffusible molecule during its growth cycle which accumulates at high cell density and alters the organism's behaviour. When added to low-density cell cultures, ethyl acetate extracts from stationary phase culture supernatants of A. nidulans resulted in the abolition of the lag phase, induced an earlier deceleration phase with 16.3 % decrease in the final cell dry weight and resulted in a 37.8 % increase in the expression of ipnA::lacZ reporter gene construct, which was used as a marker for penicillin production compared to non-treated controls. The bioactive molecule present in the stationary phase extract was purified to homogeneity and was identified by liquid chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy to be γ-heptalactone. This study provides the first evidence that A. nidulans produces γ-heptalactone at a high cell density and it can alter the organism's behaviour at a low cell density. γ-Heptalactone hence acts as a quorum-sensing molecule in the producing strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adlard MW, Gordon BM, Keshavarz T, Bucke C, Lilly MD, Bull AT, Holt G (1991) An HPLC procedure for monitoring penicillin-G fermentations. Biotechnol Tech 5:121–126

    Article  CAS  Google Scholar 

  • Albuquerque P, Casadevall A (2012) Quorum sensing in fungi - a review. Med Mycol. May, 50(4):337–345

    Google Scholar 

  • Beppu T (1992) Secondary metabolites as chemical signals for cellular-differentiation. Gene 115:159–165

    Article  CAS  Google Scholar 

  • Beppu T (1995) Signal-transduction and secondary metabolism—prospects for controlling productivity. Trends Biotechnol 13:264–269

    Article  CAS  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Brakhage AA, Van Den Brulle J (1995) Use of reporter genes to identify recessive trans-acting mutations specifically involved in the regulation of Aspergillus nidulans penicillin biosynthesis genes. J Bacteriol 177:2781–2788

    CAS  Google Scholar 

  • Brakhage AA, Browne P, Turner G (1992) Regulation of Aspergillus nidulans penicillin biosynthesis and penicillin biosynthesis genes acvA and ipnA by glucose. J Bacteriol 174:3789–3799

    CAS  Google Scholar 

  • Brown SH, Zarnowski R, Sharpee WC, Keller NP (2008) Morphological transitions governed by density dependence and lipoxygenase activity in Aspergillus flavus. Appl Environ Microb 74:5674–5685

    Article  CAS  Google Scholar 

  • Chen H, Fujita M, Feng QH, Clardy J, Fink GR (2004) Tyrosol is a quorum-sensing molecule in Candida albicans. PNAS U S A 101:5048–5052

    Article  CAS  Google Scholar 

  • Dean J (1979) Lange's handbook of chemistry. McGraw-Hill, New York

    Google Scholar 

  • Eberhard A, Burlingame AL, Eberhard C, Kenyon GL, Nealson KH, Oppenheimer NJ (1981) Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20:2444–2449

    Article  CAS  Google Scholar 

  • Edward Burt E, Rau AH (1994) The determination of bicarbonate carbonate and carbon dioxide in aqueous solutions. Drug Dev Ind Pharm 20:2955–2964

    Article  Google Scholar 

  • Givskov M, DeNys R, Manefield M, Gram L, Maximilien R, Eberl L, Molin S, Steinberg PD, Kjelleberg S (1996) Eukaryotic interference with homoserine lactone-mediated prokaryotic signaling. J Bacteriol 178:6618–6622

    CAS  Google Scholar 

  • Horinouchi S, Beppu T (1994) A-Factor as a microbial hormone that controls cellular-differentiation and secondary metabolism in Streptomyces griseus. Mol Microbiol 12:859–864

    Article  CAS  Google Scholar 

  • Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B, Shoemaker R, Dussault P, Nickerson KW (2001) Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microb 67:2982–2992

    Article  CAS  Google Scholar 

  • Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y (2008) KEGG for linking genomes to life and the environment. Nucleic Acid Res 36:480–484

    Article  Google Scholar 

  • Lazazzera BA (2000) Quorum sensing and starvation: signals for entry into stationary phase. Curr Opin Microbiol 3:177–182

    Article  CAS  Google Scholar 

  • Manefield M, Rasmussen TB, Henzter M, Andersen JB, Steinberg P, Kjelleberg S, Givskov M (2002) Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology 148:1119–1127

    CAS  Google Scholar 

  • Mesmer MZ, Satzger RD (1998) Determination of gamma-hydroxybutyrate (GHB) and gamma-butyrolactone (GBL) by HPLC/UV-VIS spectrophotometry and HPLC/thermospray mass spectrometry. J Forensic Sci 43:489–492

    CAS  Google Scholar 

  • Monds RD, O'Toole GA (2008) Metabolites as intercellular signals for regulation of community-level traits. ASM, Washington

    Google Scholar 

  • Mosel DD, Dumitru R, Hornby JM, Atkin AL, Nickerson KW (2005) Farnesol concentrations required to block germ tube formation in Candida albicans in the presence and absence of serum. Appl Environ Microbiol 71:4938–4940

    Article  CAS  Google Scholar 

  • Murphy T, Parra R, Radman R, Roy I, Harrop A, Dixon K, Keshavarz T (2007) Novel application of oligosaccharides as elicitors for the enhancement of bacitracin A production in cultures of Bacillus licheniformis. Enzym Microb Tech 40:1518–1523

    Article  CAS  Google Scholar 

  • Muys GT, Van Der Ven B, De Jonge AP (1962) Synthesis of optically active γ- and Δ-lactones by microbiological reduction. Nature 194:995–996

    Article  CAS  Google Scholar 

  • Parra R, Aldred D, Magan N (2005) Medium optimization for the production of the secondary metabolite squalestatin S1 by a Phoma sp. combining orthogonal design and response surface methodology. Enzym Microb Tech 37:704–711

    Article  CAS  Google Scholar 

  • Parsek MR, Greenberg EP (2000) Acyl-homoserine lactone quorum sensing in Gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. PNAS U S A 97:8789–8793

    Article  CAS  Google Scholar 

  • Piper KR, Vonbodman SB, Farrand SK (1993) Conjugation factor of Agrobacterium tumefaciens regulates ti-plasmid transfer by autoinduction. Nature 362:448–450

    Article  CAS  Google Scholar 

  • Raina S, Odell M, Keshavarz T (2010) Quorum sensing as a method for improving sclerotiorin production in Penicillium sclerotiorum. J Biotechnol 148:91–98

    Article  CAS  Google Scholar 

  • Ramón D, Carramolino L, Patiño C, Sánchez F, Peñalva MA (1987) Cloning and characterization of the isopenicillin N synthetase gene mediating the formation of the β-lactam ring in Aspergillus nidulans. Gene 57:171–181

    Article  Google Scholar 

  • Reading NC, Sperandio V (2006) Quorum sensing: the many languages of bacteria. Fems Microbiol Lett 254:1–11

    Article  CAS  Google Scholar 

  • Schimmel TG, Coffman AD, Parsons SJ (1998) Effect of butyrolactone I on the producing fungus, Aspergillus terreus. Appl Environ Microb 64:3707–3712

    CAS  Google Scholar 

  • Shan R, Stadler M, Sterner O, Anke H (1996) New metabolites with nematicidal and antimicrobial activities from the ascomycete Lachnum papyraceum (Karst.) Karst. VIII. Isolation, structure determination and biological activities of minor metabolites structurally related to mycorrhizin A. J Antibiot 49:447–452

    Article  CAS  Google Scholar 

  • Soderbom F, Loomis WF (1998) Cell-cell signaling during Dictyostelium development. Trends Microbiol 6:402–406

    Article  CAS  Google Scholar 

  • Takahashi I, Ojima N, Ogura K, Seto S (1978) Purification and characterization of dimethylallyl pyrophosphate: aspulvinone dimethylallyltransferase from Aspergillus terreus. Biochemistry 17:2696–2702

    Article  CAS  Google Scholar 

  • Takano E, Nihira T, Hara Y, Jones JJ, Gershater CJL, Yamada Y, Bibb M (2000) Purification and structural determination of SCB1, a gamma-butyrolactone that elicits antibiotic production in Streptomyces coelicolor A3(2). J Biol Chem 275:11010–11016

    Article  CAS  Google Scholar 

  • Turner WB, Aldridge DC (1983) Polyketides, fungal metabolites II. Academic, New York

    Google Scholar 

  • von Bodman SB, Majerczak DR, Coplin DL (1998) A negative regulator mediates quorum-sensing control of exopolysaccharide production in Pantoea stewartii subsp. stewartii. PNAS U S A 95:7687–7692

    Article  Google Scholar 

  • Watson TG (1969) Steady state operation of a continuous culture at maximum growth rate by control of carbon dioxide production. J Gen Microbiol 59:83–89

    Article  CAS  Google Scholar 

  • Weichart DH, Kell DB (2001) Characterization of an autostimulatory substance produced by Escherichia coli. Microbiology 147:1875–1885

    CAS  Google Scholar 

  • Williams H (2009) Investigation of a quorum sensing molecule in Aspergillus nidulans. Dissertation. University of Westminster, London

    Google Scholar 

  • Winzer K, Hardie K, Williams P (2002) Bacterial cell-to-cell communication: sorry, can't talk now—gone to lunch! Curr Opin Microbiol 5:216–222

    Article  CAS  Google Scholar 

  • Yang YK, Morikawa M, Shimizu H, Shioya S, Suga K, Nihira T, Yamada Y (1996) Maximum virginiamycin production by optimization of cultivation conditions in batch culture with autoregulator addition. Biotechnol Bioeng 49:437–444

    Article  CAS  Google Scholar 

  • Yang YH, Lee TH, Kim JH, Kim EJ, Joo HS, Lee CS, Kim BG (2006) High-throughput detection method of quorum-sensing molecules by colorimetry and its applications. Anal Biochem 356:297–299

    Article  CAS  Google Scholar 

  • You ZY, Fukushima J, Tanaka K, Kawamoto S, Okuda K (1998) Induction of entry into the stationary growth phase in Pseudomonas aeruginosa by N-acylhomoserine lactone. FEMS Microbiol Lett 164:99–106

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tajalli Keshavarz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 304 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, H.E., Steele, J.C.P., Clements, M.O. et al. γ-Heptalactone is an endogenously produced quorum-sensing molecule regulating growth and secondary metabolite production by Aspergillus nidulans . Appl Microbiol Biotechnol 96, 773–781 (2012). https://doi.org/10.1007/s00253-012-4065-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4065-5

Keywords

Navigation