Skip to main content

Die Entstehung von Kinetosen

  • Conference paper
Hören und Gleichgewicht

Zusammenfassung

Die Erforschung der Bewegungskrankheit oder Kinetose ist lang, aber eine eindeutige oder nachweisbare Ursache liegt bis heute nicht vor. Schon der englische Begriff für übelkeit, nausea, kommt vom griechischen Wort naus (= Schiff) oder vom lateinischen Wort nauta (= Seemann), bedeutet also eigentlich nichts anderes als See(manns)krankheit. Ein kurzer Hinweis, dass zur See zu fahren den Körper in Unordnung bringt findet sich bereits bei Hippokrates (Hippokrates, Aphorismen section 4; paragraph 14): „Sailing on the sea shows that motion disorders the body“, im Internet einzusehen in englischer Übersetzung unter http://classics.mit.edu/Hippocrates/aphorisms.4.iv.html) Die Seeleute hatten also offenbar schon immer mit der Seekrankheit, einer Unterform der Kinetose zu kämpfen, einer der bedeutendsten war Admiral Lord Nelson. Besondere Bedeutung hat heutzutage die Kinetose in der Raumfahrt, weil man gerne wissen möchte, welcher Astronaut zur Kinetose eher neigt und welcher nicht.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Alexander SJ, Cotzin M, Hill CJ, Ricciuti EA, Wendt GR (1945) Weyslan University studies on motion sickness: I The effects of variation of time intervals between accelerations upon sickness rates. J Psychol. 19: 49–62

    Google Scholar 

  2. Bles W (1998) Coriolis effects and motion sickness modelling. Brain Res Bull. 47: 543–549

    Article  PubMed  CAS  Google Scholar 

  3. Bles W, Bos JE, de Graaf B, Groen E, Wertheim AH (1998) Motion sickness: only one provocative conflict? Brain Res Bull. 47: 481–487

    Article  PubMed  CAS  Google Scholar 

  4. Bos JE, Bles W (2004) Motion sickness induced by optokinetic drums. Aviat Space Environ Med. 75: 172–174

    PubMed  Google Scholar 

  5. Clement G, Deguine O, Parant M, Costes-Salon MC, Vasseur-Clausen P, Pavy-LeTraon A (2001) Effects of cosmonaut vestibular training on vestibular function prior to spaceflight. Eur J Appl Physiol. 85: 539–545

    Article  PubMed  CAS  Google Scholar 

  6. Correia MJ, Guedry FE Jr (1964) Influence of Labyrinth Orientation Relative to Gravity on Responses Elicited by Stimulation of the Horizontal Semicircular Canals. Proj Mr.005.13-6001, Subtask 1, Rep 100. Res Rep US Nav Sch Aviat Med.: 1–10

    Google Scholar 

  7. Dai M, Kunin M, Raphan T, Cohen B (2003) The relation of motion sickness to the spatialtemporal properties of velocity storage. Exp Brain Res. 151: 173–189

    Article  PubMed  Google Scholar 

  8. Dai M, Raphan T, Cohen B (2007) Labyrinthine lesions and motion sickness susceptibility. Exp Brain Res. 178: 477–487

    Article  PubMed  Google Scholar 

  9. Diamond SG, Markham CH (1992) Validating the hypothesis of otolith asymmetry as a cause of space motion sickness. Ann N Y Acad Sci. 656: 725–731

    Article  PubMed  CAS  Google Scholar 

  10. Diamond SG, Markham CH, Money KE (1990) Instability of ocular torsion in zero gravity: possible implications for space motion sickness. Aviat Space Environ Med. 61: 899–905

    PubMed  CAS  Google Scholar 

  11. Dichgans J, Brandt T (1973) Optokinetic motion sickness and pseudo-Coriolis effects induced by moving visual stimuli. Acta Otolaryngol Suppl. 76: 339–348

    Article  CAS  Google Scholar 

  12. Evans RW, Marcus D, Furman JM (2007) Motion sickness and migraine. Headache. 47: 607–610

    Article  PubMed  Google Scholar 

  13. Golding JF, Finch MI, Stott JR (1997) Frequency effect of 0.35–1.0 Hz horizontal translational oscillation on motion sickness and the somatogravic illusion. Aviat Space Environ Med. 68: 396–402

    PubMed  CAS  Google Scholar 

  14. Golding JF, Mueller AG, Gresty MA (2001) A motion sickness maximum around the 0.2 Hz frequency range of horizontal translational oscillation. Aviat Space Environ Med. 72: 188–192

    PubMed  CAS  Google Scholar 

  15. Golding JF, Stott JR (1997) Objective and subjective time courses of recovery from motion sickness assessed by repeated motion challenges. J Vestib Res. 7: 421–428

    Article  PubMed  CAS  Google Scholar 

  16. Graybiel A (1970) Susceptibility to acute motion sickness in blind persons. Aerosp Med. 41: 650–653

    PubMed  CAS  Google Scholar 

  17. Griffin MJ (1990) Handbook of human vibration. London: Academic Press

    Google Scholar 

  18. Griffin MJ, Mills KL (2002) Effect of frequency and direction of horizontal oscillation on motion sickness. Aviat Space Environ Med. 73: 537–543

    PubMed  Google Scholar 

  19. Guedry FE (1974) Psychophysics of vestibular sensation. In: Kornhuber HH, ed. Handbook of sensory physiology. Vol. VI/2. New York: Springer Verlag, 3–154

    Google Scholar 

  20. Guedry FE, Rupert AR, Reschke MF (1998) Motion sickness and development of synergy within the spatial orientation system. A hypothetical unifying concept. Brain Res Bull. 47: 475–480

    Article  PubMed  CAS  Google Scholar 

  21. Hecht H, Brown EL, Young LR (2002) Adapting to artificial gravity (AG) at high rotational speeds. J Gravit Physiol. 9: P1–5

    PubMed  Google Scholar 

  22. Helling K, Hausmann S, Flottmann T, Scherer H (1997) [Individual differences in susceptibility to motion sickness]. Hno. 45: 210–215

    Article  PubMed  CAS  Google Scholar 

  23. Howarth HV, Griffin MJ (2003) Effect of roll oscillation frequency on motion sickness. Aviat Space Environ Med. 74: 326–331

    PubMed  Google Scholar 

  24. Jennings RT (1998) Managing space motion sickness. JVestib Res. 8: 67–70

    Article  CAS  Google Scholar 

  25. Kayan A, Hood JD (1984) Neuro-otological manifestations of migraine. Brain. 107: 1123–1142

    Article  PubMed  Google Scholar 

  26. Manning GW (1943) Failure of a vertical accelerator to produce motion sickness. National Research Council of Canada. Rept. No. C2649: 1–6

    Google Scholar 

  27. Money KE (1970) Motion sickness. Physiolical Reviews. 50: 1–39

    CAS  Google Scholar 

  28. Money KE, Friedberg J (1964) The role of the semicircular canals in causation of motion sickness and nystagmus in the dog. Can J Physiol Pharmacol. 42: 793–801

    PubMed  CAS  Google Scholar 

  29. Neimer J, Eskiizmirliler S, Ventre-Dominey J, Darlot C, M. Luyat, Gresty MA, Ohlmann T (2001) Trains with a view to sickness. Current Biology. 11: 549–550

    Article  Google Scholar 

  30. O’Hanlon JF, McCauley ME (1974) Motion sickness incidence as a function of the frequency and acceleration of vertical sinusoidal motion. Aerosp Med. 45: 366–369

    PubMed  Google Scholar 

  31. Purkinje JE (1820) Beiträge zur näheren Kenntnis des Schwindels aus heutognostischen Daten. Med JB (Wien) 6: 79–125

    Google Scholar 

  32. Reason JT (1978) Motion sickness adaptation: a neural mismatch model. Journal of the Royal Society of Medicine. 71: 819–829

    PubMed  CAS  Google Scholar 

  33. Reason JT, Brand JJ (1975) Motion sickness. London Academic press

    Google Scholar 

  34. Takeda N, Morita M, Hasegawa S, Kubo T, Matsunaga T (1989) Neurochemical mechanisms of motion sickness. Am J Otolaryngol. 10: 351–359

    Article  PubMed  CAS  Google Scholar 

  35. Takeda N, Morita M, Horii A, Nishiike S, Kitahara T, Uno A (2001) Neural mechanisms of motion sickness. J Med Invest. 48: 44–59

    PubMed  CAS  Google Scholar 

  36. Tal D, Gilbey P, Bar R, Shupak A (2007) Seasickness pathogenesis and the otolithic organs: vestibular evoked myogenic potentials study — preliminary results. Isr Med Assoc J. 9: 641–644

    PubMed  Google Scholar 

  37. Tal D, Hershkovitz D, Kaminski G, Bar R (2006) Vestibular evoked myogenic potential threshold and seasickness susceptibility. JVestib Res. 16: 273–278

    Google Scholar 

  38. Treisman M (1977) Motion sickness: an evolutionary hypothesis. Science. 197: 493–495

    Article  PubMed  CAS  Google Scholar 

  39. Wertheim AH, Bos JE, Bles W (1998) Contributions of roll and pitch to sea sickness. Brain Res Bull. 47: 517–524

    Article  PubMed  CAS  Google Scholar 

  40. Wyllie IH, Griffin MJ (2007) Discomfort from sinusoidal oscillation in the roll and lateral axes at frequencies between 0.2 and 1.6 Hz. J Acoust Soc Am. 121: 2644–2654

    Article  PubMed  CAS  Google Scholar 

  41. Young LR (1999) Artificial gravity considerations for a mars exploration mission. Ann N Y Acad Sci. 871: 367–378

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag/Wien

About this paper

Cite this paper

Hegemann, S. (2010). Die Entstehung von Kinetosen. In: Plinkert, P.K., Klingmann, C. (eds) Hören und Gleichgewicht. Springer, Vienna. https://doi.org/10.1007/978-3-211-99270-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-99270-8_19

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-99269-2

  • Online ISBN: 978-3-211-99270-8

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics