Skip to main content
Log in

The relation of motion sickness to the spatial–temporal properties of velocity storage

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Tilting the head in roll to or from the upright while rotating at a constant velocity (roll while rotating, RWR) alters the position of the semicircular canals relative to the axis of rotation. This produces vertical and horizontal nystagmus, disorientation, vertigo, and nausea. With recurrent exposure, subjects habituate and can make more head movements before experiencing overpowering motion sickness. We questioned whether promethazine lessened the vertigo or delayed the habituation, whether habituation of the vertigo was related to the central vestibular time constant, i.e., to the time constant of velocity storage, and whether the severity of the motion sickness was related to deviation of the axis of eye velocity from gravity. Sixteen subjects received promethazine and placebo in a double-blind, crossover study in two consecutive 4-day test series 1 month apart, termed series I and II. Horizontal and vertical eye movements were recorded with video-oculography while subjects performed roll head movements of approx. 45° over 2 s to and from the upright position while being rotated at 138°/s around a vertical axis. Motion sickness was scaled from 1 (no sickness) to an endpoint of 20, at which time the subject was too sick to continue or was about to vomit. Habituation was determined by the number of head movements that subjects made before reaching the maximum motion sickness score of 20. Head movements increased steadily in each session with repeated testing, and there was no difference between the number of head movements made by the promethazine and placebo groups. Horizontal and vertical angular vestibulo-ocular reflex (aVOR) time constants declined in each test, with the declines being closely correlated to the increase in the number of head movements. The strength of vertiginous sensation was associated with the amount of deviation of the axis of eye velocity from gravity; the larger the deviation of the eye velocity axis from gravity, the more severe the motion sickness. Thus, promethazine neither reduced the nausea associated with RWR, nor retarded or hastened habituation. The inverse relationship between the aVOR time constants and number of head movements to motion sickness, and the association of the severity of motion sickness with the extent, strength, and time of deviation of eye velocity from gravity supports the postulate that the spatiotemporal properties of velocity storage, which are processed between the nodulus and uvula of the vestibulocerebellum and the vestibular nuclei, are likely to represent the source of the conflict responsible for producing motion sickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5A, B.
Fig. 6A–D.
Fig. 7A–D.

Similar content being viewed by others

References

  • Arai Y, Yakushin SB, Suzuki J-I, Cohen B, Raphan T (2002) Spatial orientation of caloric nystagmus in canal plugged monkeys. J Neurophysiol 88:914–928

    PubMed  Google Scholar 

  • Bard P (1945) Committee on aviation medicine. Report No. 485, National Research Council

  • Barmack NH, Baughman RW, Eckenstein FP, Shojaku H (1992) Secondary vestibular cholinergic projection to the cerebellum of rabbit and rat as revealed by choline acetyltransferase immunohistochemistry, retrograde and orthograde tracers. J Comp Neurol 317:250–270

    CAS  PubMed  Google Scholar 

  • Benson AJ, Bodin MA (1966) Interaction of linear and angular accelerations on vestibular receptors in man. Aerosp Med 37:144–154

    CAS  PubMed  Google Scholar 

  • Bles W (1988) Coriolis effects and motion sickness modeling. Brain Res Bull 47:543–549

    Article  Google Scholar 

  • Bles W, Bos JE, Graaf B de, Groen E, Wertheim AH (1998) Motion sickness: only one provocative conflict? Brain Res Bull 47:481–487

    Google Scholar 

  • Bos JE, Bles W, Graaf B de (2002) Eye movements to yaw, pitch, and roll about vertical and horizontal axes: adaptation and motion sickness. Aviat Space Environ Med 73:436–434

    CAS  PubMed  Google Scholar 

  • Brandt T, Wist E, Dichgan J (1971) Optisch induzierte pseudocoriolis-effekten und circularvektion. Arch Psych Nervenkrank 214:365–389

    CAS  Google Scholar 

  • Büttner U, Waespe W (1981) Vestibular nerve activity in the alert monkey during vestibular and optokinetic nystagmus. Exp Brain Res 41:310–315

    PubMed  Google Scholar 

  • Cheung BS, Howard IP, Money KE (1991) Visually induced sickness in normal and bilaterally labyrinthine-defective subjects. Aviat Space Environ Med 62:527–531

    CAS  PubMed  Google Scholar 

  • Clément G, Deguine O, Parant M, Costes-Salon MC, Vasseur-Clausen P, Pavy-LeTraon A (2001) Effects of cosmonaut vestibular training on vestibular function prior to space flight. Eur J Appl Physiol 85:539–545

    PubMed  Google Scholar 

  • Cobb GW (1998) Design and analysis of experiments. Springer, New York

  • Cohen B, Uemura T, Takemori S (1973) Effects of labyrinthectomy on optokinetic nystagmus (OKN) and optokinetic after-nystagmus (OKAN). Equilib Res 3:88–93

    CAS  Google Scholar 

  • Cohen B, Matsuo V, Raphan T (1977) Quantitative analysis of the velocity characteristics of optokinetic nystagmus and optokinetic after-nystagmus. J Physiol (Lond) 270:321–344

    Google Scholar 

  • Cohen B, John P, Yakushin SB, Buettner-Ennever J, Raphan T (2002) The nodulus and uvula; source of cerebellar control of spatial orientation of the angular vestibulo-ocular reflex. Ann NY Acad Sci 978:28–45

    PubMed  Google Scholar 

  • Cohen H, Cohen B, Raphan T, Waespe W (1992) Habituation and adaptation of the vestibulo-ocular reflex: a model of differential control by the vestibulo-cerebellum. Exp Brain Res 90:526–538

    CAS  PubMed  Google Scholar 

  • Collins WE, Schroeder DJ, Elam GW (1982) A comparison of some effects of three antimotion sickness drugs on nystagmus responses to angular accelerations and to optokinetic stimuli. Aviat Space Environ Med 53:1182–1189

    CAS  PubMed  Google Scholar 

  • Dai M, Raphan T, Cohen B (1991) Spatial orientation of the vestibular system: dependence of optokinetic after nystagmus on gravity. J Neurophysiol 66:1422–1438

    CAS  PubMed  Google Scholar 

  • Dai M, Klein A, Cohen B, Raphan T (1999) Model-based study of the human cupular time constant. J Vest Res 9:293–301

    CAS  Google Scholar 

  • Dai M, Kaufmann H, Raphan T, Cohen B (2000) Promethazine affects optokinetic but not vestibular responses in monkeys. Aviat Space Environ Med 71:1003–1012

    CAS  PubMed  Google Scholar 

  • Davis JR, Vanderploeg JM, Santy PA, Jenings RT, Stewart DF (1988) Space motion sickness during 24 flights of the space shuttle. Aviat Space Environ Med 59:1185–1189

    CAS  PubMed  Google Scholar 

  • Deane FR, Wood CD, Graybiel A (1967) The effect of drugs in altering susceptibility to motion sickness in aerobatics and the slow rotation room. Aerosp Med 38:842–845

    CAS  PubMed  Google Scholar 

  • DiZio P, Lackner JR (1988) The effects of gravitoinertial force level and head movements on postrotational nystagmus and illusory after-rotation. Exp Brain Res 70:485–495

    CAS  PubMed  Google Scholar 

  • DiZio P, Lackner JR (1991) Motion sickness susceptibility in parabolic flight and velocity storage activity. Aviat Space Environ Med 62:300–307

    CAS  PubMed  Google Scholar 

  • Ebenholtz SM (1992) Motion sickness and oculomotor systems in virtual environments. Presence 1:302–305

    Google Scholar 

  • Gizzi M, Raphan T, Rudolph S, Cohen B (1994) Orientation of human optokinetic nystagmus to gravity: a model based approach. Exp Brain Res 99:347–360

    CAS  PubMed  Google Scholar 

  • Goldberg JM, Fernandez C (1971) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. I. Resting discharge and response to angular accelerations. J Neurophysiol 34:635–660

    CAS  PubMed  Google Scholar 

  • Graaf B de, Bles W, Bos JE (1999) Roll motion stimuli: sensory conflict, perceptual weighting and motion sickness. Brain Res Bull 47:489–495

    Article  Google Scholar 

  • Graybiel A, Knepton J (1977) Evaluation of a new antinauseant drug for the prevention of motion sickness. Aviat Space Environ Med 48:867–471

    CAS  PubMed  Google Scholar 

  • Graybiel A, Lackner JR (1987) Treatment of severe motion sickness with antimotion sickness drug injections. Aviat Space Environ Med 58:773–776

    CAS  PubMed  Google Scholar 

  • Graybiel A, Miller EF, Homick JL (1977) Experiment M131: human vestibular function. In: Johnston RS, Dietlein LF (eds) Biomedical results from Skylab, vol SP-377. Scientific and Technical Information Office, NASA, Washington, DC, pp 74–133

  • Grüsser O-J (1984) J. E. Purkinjě's contributions to the physiology of the visual, the vestibular and the oculomotor system. Hum Neurobiol 3:129–144

    PubMed  Google Scholar 

  • Guedry FE (1965) Habituation to complex vestibular stimulation in man: transfer and retention of effects from twelve days of rotation at 10 rpm. Percept Mot Skills 21:459–481

    PubMed  Google Scholar 

  • Guedry FE (1974) Psychophysics of vestibular sensation. In: Kornhuber HH (ed) Handbook of sensory physiology, vol 6. Springer, Berlin, Heidelberg, New York, pp 3–154

  • Guedry FE, Benson AJ (1978) Coriolis crosscoupling effects: disorienting and nauseogenic or not? Aviat Space Environ Med 49:29–35

    Google Scholar 

  • Guedry FE, Graybiel A, Collins WE (1962) Reduction of nystagmus and disorientation in human subjects. Aerospace Med 33:1356–1360

    Google Scholar 

  • Guedry FE, Collins WE, Graybiel A (1964) Vestibular habituation during repetitive complex stimulation: a study of transfer effects. J Appl Physiol 19:1005–15

    Google Scholar 

  • Guedry FE, Rupert AR, Reschke MF (1998) Motion sickness and development of synergy within the spatial orientation system. A hypothetical unifying concept. Brain Res Bull 47:475–480

    Article  CAS  PubMed  Google Scholar 

  • Hecht H, Kavelaars J, Cheung CC, Young LR (2001) Orientation illusions and heart-rate changes during short-radius centrifugation. J Vest Res 11:115–127

    CAS  Google Scholar 

  • Howard IP, Templeton WB (1966) Human spatial orientation. Wiley, New York

  • Kellogg RS, Kennedy RS, Graybiel A (1965) Motion sickness symptomatology of labyrinthine defective and normal subjects during zero gravity maneuvers. Aerosp Med 36:315–318

    CAS  Google Scholar 

  • Kennedy RS, Graybiel A (1962) Validity of tests of canal sickness in predicting susceptibility to airsickness and seasickness. Aerosp Med 33:935–938

    CAS  Google Scholar 

  • Kennedy RS, Graybiel A, McDonough RG, Beckwith RD (1968) Symptomatology under storm conditions in the North Atlantic in control subjects and in person with bilateral labyrinthine defects. Acta Otolaryngol (Stockh) 66:533–540

    Google Scholar 

  • Lackner JR, Graybiel A (1980) Elicitation of motion sickness by head movements in the microgravity phase of parabolic flight maneuvers. Aviat Space Environ Med 55:513–520

    Google Scholar 

  • Lackner JR, Graybiel A (1986) The effective intensity of Coriolis, crosscoupling stimulation is gravitoinertial force dependent: implications for space motion sickness. Aviat Space Environ Med 57:229–235

    CAS  PubMed  Google Scholar 

  • Lackner JR, Graybiel A (1994) Use of promethazine to hasten adaptation to provocative motion. J Clin Pharmacol 34:644–648

    CAS  PubMed  Google Scholar 

  • Matsuo V, Cohen B (1984) Vertical optokinetic nystagmus and vestibular nystagmus in the monkey: Up-down asymmetry and effects of gravity. Exp Brain Res 53:197–216

    CAS  PubMed  Google Scholar 

  • McCabe BE (1960) Vestibular suppression in figure skaters. Trans Am Acad Ophthalmol Otol 64:264–268

    Google Scholar 

  • Miller AD, Wilson VJ (1983) Vestibular-induced vomiting after vestibulocerebellar lesions. Brain Behav Evol 23:26–31

    CAS  PubMed  Google Scholar 

  • Miller EF, Graybiel A (1973) Experiment M-131—Human vestibular function. Aerospace Med 44:593–608

    Google Scholar 

  • Money KE (1972) Motion sickness. Physiol Rev 50:1–39

    Google Scholar 

  • Oman CM (1982) A heuristic mathematical model for the dynamics of sensory conflict and motion sickness. Acta Otolaryngol (Suppl) 392:4–44

    Google Scholar 

  • Oman CM, Balkwill MD (1993) Horizontal angular VOR, nystagmus dumping, and sensation duration in Spacelab SLS-1 crewmembers. J Vest Res 3:315–330

    CAS  Google Scholar 

  • Peterka RJ, Black FO, Schoenhoff MB (1987) Optokinetic and vestibulo-ocular reflex responses to an unpredictable stimulus. Aviat Space Environ Med 58:180–185

    PubMed  Google Scholar 

  • Purkinjě JE (1820) Beiträge zur näheren Kenntnis des Schwindels aus heutognostischen Daten. Med JB (Wien) 6:79–125

    Google Scholar 

  • Quarck G, Etard O, Oreel M, Denise P (2000) Motion sickness occurrence does not correlate with nystagmus characteristics. Neurosci Lett 287:49–52

    Article  CAS  PubMed  Google Scholar 

  • Raphan T, Cohen B (1988) Organizational principles of velocity storage in three dimensions: The effect of gravity on crosscoupling of optokinetic after-nystagmus. Ann NY Acad Sci 545:74–92

    CAS  PubMed  Google Scholar 

  • Raphan T, Cohen B (2002) The vestibulo-ocular reflex (VOR) in three dimensions. Exp Brain Res 145:1–27

    Article  PubMed  Google Scholar 

  • Raphan T, Sturm D (1991) Modelling the spatiotemporal organization of velocity storage in the vestibulo-ocular reflex by optokinetic studies. J Neurophysiol 66:1410–1420

    CAS  PubMed  Google Scholar 

  • Raphan T, Matsuo V, Cohen B (1979) Velocity storage in the vestibulo-ocular reflex arc (VOR). Exp Brain Res 35:229–248

    CAS  PubMed  Google Scholar 

  • Raphan T, Dai M, Cohen B (1992) Spatial orientation of the vestibular system. Ann NY Acad Sci 656:140–157

    CAS  PubMed  Google Scholar 

  • Raphan T, Wearne S, Cohen B (1996) Modeling the organization of the linear and angular vestibulo-ocular reflexes. Ann NY Acad Sci 781:348–363

    CAS  PubMed  Google Scholar 

  • Reason JT, Brand JJ (1975) Motion sickness. Academic, London

  • Schrader V, Koenig E, Dichgans J (1985a) Direction and angle of active head tilts influencing the Purkinjě effect and the inhibition of postrotatory nystagmus I and II. Acta Otolaryngol (Stockh) 100:337–343

    Google Scholar 

  • Schrader V, Koenig E, Dichgans J (1985b) The effect of lateral head tilt on horizontal postrotatory nystagmus I and II and the Purkinjě effect. Acta Otolaryngol (Stockh) 100:98–105

    Google Scholar 

  • Schroeder DJ, Collins WE, Elam GW (1985) Effects of some motion sickness suppressants on static and dynamic tracking performance. Aviat Space Environ Med 56:344–350

    CAS  PubMed  Google Scholar 

  • Sheliga BM, Yakushin SB, Silvers A, Raphan T, Cohen B (1999) Control of spatial orientation of the angular vestibulo-ocular reflex by the nodulus and uvula of the vestibulocerebellum. Ann NY Acad Sci 871:94–122

    CAS  PubMed  Google Scholar 

  • Singleton GT (1967) Relationships of the cerebellar nodulus to vestibular function: a study of the effects of nodulectomy on habituation. Laryngoscope 77:1579–1620

    CAS  PubMed  Google Scholar 

  • Solomon D, Cohen B (1992) Stabilization of gaze during circular locomotion in darkness; II. Contribution of velocity storage to compensatory eye and head nystagmus in the running monkey. J. Neurophysiol 67:1158–1170

    CAS  PubMed  Google Scholar 

  • Solomon D, Cohen B (1994) Stimulation of the nodulus and uvula discharges velocity storage in the vestibulo-ocular reflex. Exp Brain Res 102:57–68

    CAS  PubMed  Google Scholar 

  • Triesman M (1977) Motion sickness: an evolutionary hypothesis. Science 197:493–495

    PubMed  Google Scholar 

  • Tweed D, Fetter M, Sievering D, Misslisch H, Koenig E (1994a) Rotational kinematics of the human vestibulo-ocular reflex II. Gain matrices. J Neurophysiol 72:2480–2489

    CAS  PubMed  Google Scholar 

  • Tweed D, Sievering D, Misslisch H, Fetter M, Zee D, Koenig E (1994b) Rotational kinematics of the human vestibulo-ocular reflex I. Gain matrices. J Neurophysiol 72:2467–2479

    CAS  PubMed  Google Scholar 

  • Tyler DB, Bard P (1949) Motion sickness. Physiol Rev 29:311–369

    Google Scholar 

  • Waespe W, Cohen B, Raphan T (1985) Dynamic modification of the vestibulo-ocular reflex by the nodulus and uvula. Science 228:199–201

    CAS  PubMed  Google Scholar 

  • Wang SC, Chinn HI (1956) Experimental motion sickness in dogs. Importance of labyrinth and vestibular cerebellum. Am J Physiol 185:617–623

    Google Scholar 

  • Wearne S, Raphan T, Cohen B (1996) Nodulo-uvular control of central vestibular dynamics determines spatial orientation of the angular vestibulo-ocular reflex (aVOR). Ann NY Acad Sci 781:364–384

    CAS  PubMed  Google Scholar 

  • Wearne S, Raphan T, Cohen B (1998) Control of spatial orientation of the angular vestibulo-ocular reflex by the nodulus and uvula. J Neurophysiol 79:2690–2715

    CAS  PubMed  Google Scholar 

  • Wood CD, Graybiel A (1968) Evaluation of sixteen anti-motion sickness drugs under controlled laboratory conditions. Aerosp Med 39:1341–1344

    CAS  PubMed  Google Scholar 

  • Wood CD, Manno JE, Manno BR, Redetzki HM, Wood M, Vekovius WA (1984) Side effects of antimotion sickness drugs. Aviat Space Environ Med 55:113–116

    CAS  PubMed  Google Scholar 

  • Wood CD, Manno JE, Redetzki HM, Wood MJ, Mims ME (1985) Evaluation of antimotion sickness drug side effects on performance. Aviat Space Environ Med 56:310–316

    CAS  PubMed  Google Scholar 

  • Yates BJ, Miller AD (1998) Physiological evidence that the vestibular system participates in autonomic and respiratory control. J Vest Res 8:17–25

    Article  CAS  Google Scholar 

  • Yates BJ, Miller AD, Lucot JD (1998) Physiological basis and pharmacology of motion sickness: an update. Brain Res Bull 47:395–406

    Article  CAS  PubMed  Google Scholar 

  • Young LR (1999) Artificial gravity consideration for a Mars exploration mission. Ann NY Acad Sci 871:367–378

    CAS  PubMed  Google Scholar 

  • Young LR, Hecht H, Lyne L, Sienko K, Cheung C, Kavelaars J (2001) Artificial gravity: head movements during short-radius centrifugation. Acta Astronautica 49:215–226

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the subjects for their dedication and endurance throughout the experiments. Thanks are also extended to Drs. Laurence Young and Heiko Hecht of MIT for sharing their expertise on production and coding of motion sickness. The authors were supported by NSBRI NCC 9-58-25 (M.D.), NSBRI NCC9-58 (T.R.), DC05222 (T.R.), DC03284 (B.C.), DC05204 (B.C.), and EY01867.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingjia Dai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, M., Kunin, M., Raphan, T. et al. The relation of motion sickness to the spatial–temporal properties of velocity storage. Exp Brain Res 151, 173–189 (2003). https://doi.org/10.1007/s00221-003-1479-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-003-1479-4

Keywords

Navigation