Skip to main content
Log in

Labyrinthine lesions and motion sickness susceptibility

  • Rsearch Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The angular vestibulo-ocular reflex (aVOR) has a fast pathway, which mediates compensatory eye movements, and a slow (velocity storage) pathway, which determines its low frequency characteristics and orients eye velocity toward gravity. We have proposed that motion sickness is generated through velocity storage, when its orientation vector, which lies close to the gravitational vertical, is misaligned with eye velocity during head motion. The duration of the misalignment, determined by the dominant time constant of velocity storage, causes the buildup of motion sickness. To test this hypothesis, we studied bilateral labyrinthine-defective subjects with short vestibular time constants but normal aVOR gains for their motion sickness susceptibility. Time constants and gains were taken from rotational responses. Motion sickness was generated by rolling the head while rotating, and susceptibility was assessed by the number of head movements made before reaching intolerable levels of nausea. More head movements signified lower motion sickness susceptibility. Labyrinthine-defective subjects made more head movements on their first exposure to roll while rotating than normals (39.8 ± 7.2 vs 13.7 ± 5.5; P < 0.0001). Normals were tested eight times, which habituated their time constants and reduced their motion sickness susceptibility. Combining data from all subjects, there was a strong inverse relationship between time constants and number of head movements (r = 0.94), but none between motion sickness susceptibility and aVOR gains. This provides further evidence that motion sickness is generated through velocity storage, not the direct pathway, and suggests that motion sickness susceptibility can be reduced by reducing the aVOR time constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Balaban CD (1999) Vestibular autonomic regulation (including motion sickness and the mechanism of vomiting). Curr Opin Neurol 12:29–33

    Article  PubMed  CAS  Google Scholar 

  • Baloh RW, Hess K, Honrubia V, Yee RD (1984) Low and high frequency sinusoidal rotational testing in patients with vestibular lesions. Acta Otolaryngol Suppl 406:189–193

    PubMed  CAS  Google Scholar 

  • Baloh RW, Jacobson K, Honrubia V (1989) Idiopathic bilateral vestibulopathy. Neurology 39:272–275

    PubMed  CAS  Google Scholar 

  • Bard P (1945) Subcommittee on motion sickness; Committee on aviation medicine. In: National Research Council, National Academy of Science

  • Black FO, Gianna-Poulin C, Pesznecker SC (2001) Recovery from vestibular ototoxicity. Otol Neurotol 22:662–671

    Article  PubMed  CAS  Google Scholar 

  • Bles W (1988) Coriolis effects and motion sickness modeling. Brain Res Bull 543–549

  • Bos JE, Bles W, de Graaf B (2002) Eye movements to yaw, pitch, and roll about vertical and horizontal axes: adaptation and motion sickness. Aviat Space Environ Med 73:436–434

    PubMed  CAS  Google Scholar 

  • Bouyer LJ, Watt DG (1996) “Torso rotation” experiments; 1: adaptation to motion sickness does not correlate with changes in VOR gain. J Vestib Res 6:367–375

    Article  PubMed  CAS  Google Scholar 

  • Brandt T (1999) Vertigo. Springer, London

    Google Scholar 

  • Büttner U, Waespe W (1981) Vestibular nerve activity in the alert monkey during vestibular and optokinetic nystagmus. Exp Brain Res 41:310–315

    Article  PubMed  Google Scholar 

  • Cheung BS, Howard IP, Money KE (1991) Visually induced sickness in normal and bilaterally labyrinthine-defective subjects. Aviat Space Environ Med 62:527–531

    PubMed  CAS  Google Scholar 

  • Clément G, Deguine O, Parant M, Costes-Salon MC, Vasseur-Clausen P, Pavy-LeTraon A (2001) Effects of cosmonaut vestibular training on vestibular function prior to spaceflight. Eur J Appl Physiol 85:539–545

    PubMed  Google Scholar 

  • Cohen B, Uemura T, Takemori S (1973) Effects of labyrinthectomy on optokinetic nystagmus (OKN) and optokinetic after-nystagmus (OKAN). Int J Equilb Res 3:88–93

    CAS  Google Scholar 

  • Cohen B, Matsuo V, Raphan T (1977) Quantitative analysis of the velocity characteristics of optokinetic nystagmus and optokinetic after-nystagmus. J Physiol (Lond) 270:321–344

    CAS  Google Scholar 

  • Cohen B, Helwig D, Raphan T (1987) Baclofen and velocity storage: a model of the effects of the drug on the vestibulo-ocular reflex in the rhesus monkey. J Physiol 393:703–725

    PubMed  CAS  Google Scholar 

  • Cohen H, Cohen B, Raphan T, Waespe W (1992) Habituation and adaptation of the vestibulo-ocular reflex: a model of differential control by the vestibulo-cerebellum. Exp Brain Res 90:526–538

    Article  PubMed  CAS  Google Scholar 

  • Cohen B, Dai M, Raphan T (2003) The critical role of velocity storage in production of motion sickness. Ann NY Acad Sci 1004:359–376

    Article  PubMed  Google Scholar 

  • Correia MJ, Perachio AA, Dickman JD, Kozlovskaya IB, Sirota MG, Yakushin SB, Beloozerova IN (1992) Post-flight changes in yaw responses of horizontal semicircular canal afferents in rhesus monkey following 14 days of microgravity. In: XVIIth Barany Society Meeting, Czechoslovakia, June 1–5, pp 188–189

  • Dai M, Raphan T, Cohen B (1991) Spatial orientation of the vestibular system: dependence of optokinetic after nystagmus on gravity. J Neurophysiol 66:1422–1438

    PubMed  CAS  Google Scholar 

  • Dai M, Klein A, Cohen B, Raphan T (1999) Model-based study of the human cupular time constant. J Vestib Res 9:293–301

    PubMed  CAS  Google Scholar 

  • Dai M, Kunin M, Raphan T, Cohen B (2003) The relation of motion sickness to the spatial-temporal properties of velocity storage. Exp Brain Res 151:173–189

    Article  PubMed  Google Scholar 

  • Dai M, Raphan T, Cohen B (2005) Effects of baclofen on the angular vestibulo-ocular reflex. Exp Brain Res 1–10

  • Dichgans J, Schmidt CL, Graf W (1973) Visual input improves the speedometer function of the vestibular nuclei in the goldfish. Exp Brain Res 18:319–322

    PubMed  CAS  Google Scholar 

  • Dickman JD, Correia MJ (1989) Responses of pigeon horizontal semicircular canal afferent fibers. II. High-frequency mechanical stimulation. J Neurophysiol 62:1102–1112

    PubMed  CAS  Google Scholar 

  • Fanelli R, Raphan T, Schnabolk C (1990) Neural network modelling of eye compensation during off-vertical axis rotation. Neural Netw 3:265–276

    Article  Google Scholar 

  • Fernández C, Goldberg JM (1971) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system. J Neurophysiol 34:661–675

    PubMed  Google Scholar 

  • Fetter M, Zee DS (1988) Recovery from unilateral labyrinthectomy in rhesus monkey. J Neurophysiol 59:370–393

    PubMed  CAS  Google Scholar 

  • Galiana HL, Smith HL, Katsarkas A (2001) Modelling non-linearities in the vestibulo-ocular reflex (VOR) after unilateral or bilateral loss of peripheral vestibular function. Exp Brain Res 137:369–386

    Article  PubMed  CAS  Google Scholar 

  • Goldberg JM, Fernandez C (1971) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. I. Resting discharge and response to angular accelerations. J Neurophysiol 34:635–660

    PubMed  CAS  Google Scholar 

  • Golding JF, Kerguelen M (1992) A comparison of the nauseogenic potential of low-frequency vertical versus horizontal linear oscillation. Aviat Space Environ Med 63:491–497

    PubMed  CAS  Google Scholar 

  • Gordon CR, Spitzer O, Doweck I, Shupak A, Gadoth N (1996) The vestibulo-ocular reflex and seasickness susceptibility. J Vestib Res 6:229–233

    Article  PubMed  CAS  Google Scholar 

  • Graybiel A, Wood CD (1969) Rapid vestibular adaptation in a rotary environment by means of controlled head movements. Aerosp Med 40:638–643

    PubMed  CAS  Google Scholar 

  • Graybiel A, Miller EF II, Homick JL (1975) Individual differences in susceptibility to motion sickness among six Skylab astronauts. Acta Astronaut 2:155–174

    Article  PubMed  CAS  Google Scholar 

  • Guedry FE, Benson AJ (1978) Coriolis cross-coupling effects: disorienting and nauseogenic or not? Aviat Space Environ Med 49:29–35

    PubMed  Google Scholar 

  • Guedry FE, Collins WE, Graybiel A (1964) Vestibular habituation during repetitive complex stimulation: a study of transfer effects. J Appl Physiol 19:1005–1015

    PubMed  Google Scholar 

  • Hain T, Buettner UE (1990) Static roll and the vestibulo-ocular reflex (VOR). Exp Brain Res 82:463–471

    Article  PubMed  CAS  Google Scholar 

  • Hain TC, Zee DS, Maria BL (1988) Tilt suppression of vestibulo-ocular reflex in patients with cerebellar lesions. Acta Otolaryngol 105:13–20

    PubMed  CAS  Google Scholar 

  • Hecht H, Kavelaars J, Cheung CC, Young LR (2001) Orientation illusions and heart-rate changes during short-radius centrifugation. J Vestib Res 11:115–127

    PubMed  CAS  Google Scholar 

  • Hoffer ME, Gottshall K, Kopke RD, Weisskopf P, Moore R, Allen KA, Wester D (2003) Vestibular testing abnormalities in individuals with motion sickness. Otol Neurotol 24:633–636

    Article  PubMed  Google Scholar 

  • Holstein GR, Martinelli GP, Cohen B (1992) L-balcofen-sensitive GABAb binding sites in the medial vestibular nucleus localized by immunocytochemistry. Brain Res 581:175–180

    Article  PubMed  CAS  Google Scholar 

  • Holstein GR, Martinelli GP, Wearne S, Cohen B (1999) Ultrastructure of vestibular commissural neurons related to velocity storage in the monkey. Neuroscience 93:155–170

    Article  PubMed  CAS  Google Scholar 

  • Igarashi M, Kobayashi K (1985) Space motion sickness and space vestibulology. J UOEH 7 Suppl:228–236

    Google Scholar 

  • Johnson WH, Sunahara FA, Landolt JP (1999) Importance of the vestibular system in visually induced nausea and self-vection. J Vestib Res 9:83–87

    PubMed  CAS  Google Scholar 

  • Kucharczyk J, Stewart DJ, Miller AD (1991) Nausea And Vomitting, Recent Research And Clinical Advances. CRC Press, Boca Raton, Ann Arbor, Boston, London

  • Lackner JR, Graybiel A (1986) The effective intensity of Coriolis, cross-coupling stimulation is gravitoinertial force dependent: implications for space motion sickness. Aviat Space Environ Med 57:229–235

    PubMed  CAS  Google Scholar 

  • Lackner JR, Graybiel A (1994) Use of promethazine to hasten adaptation to provocative motion. J Clin Pharmacol 34:644–648

    PubMed  CAS  Google Scholar 

  • Lee MY, Kim MS, Park BR (2004) Adaptation of the horizontal vestibuloocular reflex in pilots. Laryngoscope 114:897–902

    Article  PubMed  Google Scholar 

  • Lisberger SG, Miles FA, Optican LM, Eighmy BB (1981) Optokinetic response in monkey: underlying mechanisms and their sensitivity to long-term adaptive changes in vestibulo-ocular reflex. J Neurophysiol 45:869–890

    PubMed  CAS  Google Scholar 

  • Lorente de No R (1933) Vestibular ocular reflec arc. Arch Neurol Psychiatry 30:245–291

    Google Scholar 

  • Mathew PJ, Madan R, Subramaniam R, Bhatia A, Mala CG, Soodan A, Kaul HL (2004) Efficacy of low-dose dexamethasone for preventing postoperative nausea and vomiting following strabismus repair in children. Anaesth Intensive Care 32:372–376

    PubMed  CAS  Google Scholar 

  • Matsnev EI, Yakovleva IY, Tarasov IK, Alekseev VN, Kornilova LN, Mateev AD, Gorgiladze GI (1983) Space motion sickness: phenomenology, countermeasures, and mechanisms. Aviat Space Environ Med 54:312–317

    PubMed  CAS  Google Scholar 

  • Matsuo V, Cohen B (1984) Vertical optokinetic nystagmus and vestibular nystagmus in the monkey: up-down asymmetry and effects of gravity. Exp Brain Res 53:197–216

    Article  PubMed  CAS  Google Scholar 

  • Miller EF, Graybiel A (1969) A standardized laboratory means of determining susceptibility to coriolis (motion) sickness. Aerospace Medical Institute NAMI-1058

  • Money KE (1972) Motion sickness. Physiol Rev 50:1–39

    Article  Google Scholar 

  • Money KE (1981) Biological effects of space travel. Can Aeronaut Space J 27:195–201

    PubMed  CAS  Google Scholar 

  • Nachum Z, Gordon CR, Shahal B, Spitzer O, Shupak A (2002) Active high-frequency vestibulo-ocular reflex and seasickness susceptibility. Laryngoscope 112:179–182

    Article  PubMed  Google Scholar 

  • Newlands SD, Dara S, Kaufman GD (2005) Relationship of static and dynamic mechanisms in vestibuloocular reflex compensation. Laryngoscope 115:191–204

    Article  PubMed  Google Scholar 

  • Palla A, Straumann D (2004) Recovery of the high-acceleration vestibulo-ocular reflex after vestibular neuritis. J Assoc Res Otolaryngol 5:427–435

    Article  PubMed  CAS  Google Scholar 

  • Putcha L, Berens KL, Marshburn TH, Ortega HJ, Billica RD (1999) Pharmaceutical use by US astronauts on space shuttle missions. Aviat Space Environ Med 70:705–708

    PubMed  CAS  Google Scholar 

  • Raphan T, Cohen B (1981) The role of integration in oculomotor control. In: Zuber BL (ed) Models of Oculomotor Behavior and Control. CRC Press, Boca Raton, Fla., pp 91–109

  • Raphan T, Cohen B (1988) Organizational principles of velocity storage in three dimensions: The effect of gravity on cross-coupling of optokinetic after-nystagmus. Ann NY Acad Sci 545:74–92

    Article  PubMed  CAS  Google Scholar 

  • Raphan T, Cohen B (2002) The vestibulo-ocular reflex (VOR) in three dimensions. Exp Brain Res 145:1–27

    Article  PubMed  Google Scholar 

  • Raphan T, Sturm D (1991) Modelling the spatiotemporal organization of velocity storage in the vestibuloocular reflex by optokinetic studies. J Neurophysiol 66:1410–1420

    PubMed  CAS  Google Scholar 

  • Raphan T, Dai M, Cohen B (1992) Spatial orientation of the vestibular system. Ann NY Acad Sci 656: 140–157

    Article  PubMed  CAS  Google Scholar 

  • Raphan T, Matsuo V, Cohen B (1979) Velocity storage in the vestibulo-ocular reflex arc (VOR). Exp Brain Res 35:229–248

    Article  PubMed  CAS  Google Scholar 

  • Reason JT, Brand JJ (1975) Motion sickness. Academic, London

    Google Scholar 

  • Reisine H, Raphan T (1992) Neural basis for eye velocity generation in the vestibular nuclei during off-vertical axis rotation. Exp Brain Res 92:209–226

    Article  PubMed  CAS  Google Scholar 

  • Schnabolk C, Raphan T (1992) Modelling 3-D slow phase velocity estimation during off-vertical axis rotation (OVAR). J Vest Res 2:1–14

    CAS  Google Scholar 

  • Sheliga BM, Yakushin SB, Silvers A, Raphan T, Cohen B (1999) Control of spatial orientation of the angular vestibulo-ocular reflex by the nodulus and uvula of the vestibulocerebellum. Ann NY Acad Sci 871:94–122

    Article  PubMed  CAS  Google Scholar 

  • Shupak A, Kerem D, Gordon C, Spitzer O, Mendelowitz N, Melamed Y (1990) Vestibulo-ocular reflex as a parameter of seasickness susceptibility. Ann Otol Rhinol Laryngol 99:131–136

    PubMed  CAS  Google Scholar 

  • Singleton GT (1967) Relationships of the cerebellar nodulus to vestibular function: a study of the effects of nodulectomy on habituation. Laryngoscope 77:1579–1620

    Article  PubMed  CAS  Google Scholar 

  • Solomon D, Cohen B (1994) Stimulation of the nodulus and uvula discharges velocity storage in the vestibulo-ocular reflex. Exp Brain Res 102:57–68

    Article  PubMed  CAS  Google Scholar 

  • Thornton WE, Uri JJ (1991) Oculomotor function during space flight and susceptibility to space motion sickness. Acta Astronaut 23:53–61

    Article  PubMed  CAS  Google Scholar 

  • Torte MP, Clément G, Courjon JH, Magenes G (1997) Absence of habituation of the vertical vestibulo-ocular reflex in the cat. Exp Brain Res 116:73–82

    Article  PubMed  CAS  Google Scholar 

  • Uemura T, Cohen B (1973) Effects of vestibular nuclei lesion on vestibulo-ocular reflexes and posture in monkeys. Acta Otolaryngol Suppl 315:1–71

    PubMed  CAS  Google Scholar 

  • Wade SW, Halmagyi GM, Black FO, McGarvie LA (1999) Time constant of nystagmus slow-phase velocity to yaw-axis rotation as a function of the severity of unilateral caloric paresis. Am J Otol 20:471–478

    PubMed  CAS  Google Scholar 

  • Waespe W, Cohen B, Raphan T (1985) Dynamic modification of the vestibulo-ocular reflex by the nodulus and uvula. Science 228:199–201

    Article  PubMed  CAS  Google Scholar 

  • Wang SC, Chinn HI (1956) Experimental motion sickness in dogs. Importance of labyrinth and vestibular cerebellum. Am J Physiol 185:617–623

    PubMed  CAS  Google Scholar 

  • Wearne S, Raphan T, Cohen B (1998) Control of spatial orientation of the angular vestibuloocular reflex by the nodulus and uvula. J Neurophysiol 79:2690–2715

    PubMed  CAS  Google Scholar 

  • Yakushin SB, Raphan T, Cohen B (2000) Context-specific adaptation of the vertical vestibuloocular reflex with regard to gravity. J Neurophysiol 84:3067–3071

    PubMed  CAS  Google Scholar 

  • Yardley L, Lerwill H, Hall M, Gresty M (1992) Visual destabilisation of posture in normal subjects. Acta Otolaryngol 112:14–21

    PubMed  CAS  Google Scholar 

  • Yates BJ (1992) Vestibular influences on the sympathetic nervous system. Brain Res Brain Res Rev 17:51–59

    Article  PubMed  CAS  Google Scholar 

  • Yates BJ, Miller AD (1998) Physiological evidence that the vestibular system participates in autonomic and respiratory control. J Vestib Res 8:17–25

    Article  PubMed  CAS  Google Scholar 

  • Yokota JI, Reisine H, Cohen B (1992) Nystagmus induced by electrical microstimulation of the vestibular and prepositus hypoglossi nuclei in the monkey. Exp Brain Res 92:123–138

    Article  PubMed  CAS  Google Scholar 

  • Young LR, Hecht H, Lyne L, Sienko K, Cheung C, Kavelaars J (2001) Artificial gravity: head movements during short-radius centrifugation. Acta Astronaut 49:215–226

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NASA NCC 9-58-25, NSBRI NA00406, NIDCD DC5222, NIDCD DC05204, and EY01867.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingjia Dai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, M., Raphan, T. & Cohen, B. Labyrinthine lesions and motion sickness susceptibility. Exp Brain Res 178, 477–487 (2007). https://doi.org/10.1007/s00221-006-0759-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0759-1

Keywords

Navigation