Skip to main content

Genome evolution in Triticeae

  • Chapter
Chromosomes Today

Abstract

The Triticeae, a tribe of the familyPoaceae (Gramineae)contains about five hundred annual and perennial species, among which the three major cereals, wheat, barley and rye, and a number of forage and pasture grasses are included. Wild species of the tribe are valuable sources of germplasm that can be used for gene introgression due to the many possibilities for interspecific and intergeneric hybridisation. Diploid species diverged from a common ancestor with a basic number of x = 7 chromosomes. Many species of the tribe are polyploids. The polyploid species consist of autopolyploids that evolved through genome duplication or allopolyploids that arose after hybridisation between different species. The existence of autopolyploid species of various ploidy level and the complexity of allopolyploids with several genomes involved, in addition to the possible existence of recurrent polyploidisation, make it difficult to understand the phylogenetic structure of the whole tribe. Gene trees based on three nuclear loci and the chloroplast genome led to a reconstruction of the phylogeny of genera with diploid species [1]. The common ancestor of the Triticeae gave rise to the lineage leading to presentdayCritesion Hordeum andPsathyrostachys. The genusSecale diverged next. Subsequent divergence resulted in two branches, one leading toPseudoroegneria Agropyron andAustralopyrum and the other leading toAegilops Crithopsis Lophopyrum Taeniatherum and Thinopyrum (the “ACTL clade”). Diploid species of the genus Triticum are assumed to have generated from introgression that occurred between a member of the ACTL clade and an early-diverg-ing member of the tribe, perhaps one closely related to Secale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kellogg EA, Appels R, Mason-Gamer Ri (1996) When genes tell different stories: the diploid genera of Triticeae (Gramineae).Syst Bot21: 321–347

    Article  Google Scholar 

  2. Dvofák J, di Terlizzi P, Zhang HB, Resta P (1993) The evolution of polyploid wheats: identification of the A genome donor species.Genome36: 21–31

    Article  Google Scholar 

  3. Kihara H (1944) Discovery of the DD analyser, one of the ancestors ofTriticum vulgare(In Japanese).Agric Hortic19: 13–14

    Google Scholar 

  4. McFadden ES, Sears ER (1946) The origin ofTriticum speltaand its free-threshing hexaploid relatives.J Hered37: 81–89

    PubMed  Google Scholar 

  5. Sears ER (1966) Nullisomic-tetrasomic combinations in hexaploid wheat. In: R Riley, KR Lewis (eds):Chromosome manipulation and plant genetics. Heredity(Suppl) 20: 29–45

    Google Scholar 

  6. Naranjo T, Roca A, Goicoechea PG, Giráldez R (1987) Arm homoeology of wheat and rye chromosomes.Genome29: 873–882

    Article  Google Scholar 

  7. Liu CJ, Atkinson MD, Chinoy CN, Devos KM, Gale MD (1992) Nonhomoeologous translocations between group 4, 5, and 7 chromosomes within wheat and rye.TheorAppl Genet83: 305–312

    Google Scholar 

  8. Jiang J, Gill BS (1994) New 18S•26S ribosomal RNA gene loci: chromosomal landmarks for the evolution of polyploid wheats.Chromosoma103: 179–185

    Article  CAS  PubMed  Google Scholar 

  9. Jiang J, Gill BS (1994) Different species-specific chromosome translocations inTriticum timopheeviiand T.turgidumsupport the diphyletic origin of polyploid wheats.Chromosome Res2: 59–64

    Article  CAS  PubMed  Google Scholar 

  10. Friebe B, Gill BS (1996) Chromosome banding and genome analysis in diploid and cultivated polyploid wheats. In: PP Jauhar (ed.):Methods of genome analysis in plants.CRC Press, Boca Raton, New York, London, Tokyo, 39–60

    Google Scholar 

  11. Lukaszewski AJ, Gustafson JP (1983) Translocations and modifications of chromosomes in Triticale x wheat hybrids.TheorAppl Genet64: 239–248

    Article  Google Scholar 

  12. Gill BS, Friebe B, Endo TR (1991) Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat(Triticum aestivum). Genome34: 830–839

    Article  Google Scholar 

  13. Sears ER (1976) Genetic control of chromosome pairing in wheat.Ann Rev Genet10: 31–51

    Article  CAS  PubMed  Google Scholar 

  14. Sears ER (1977) An induced mutant with homoeologous pairing in wheat.Can J Genet Cytol19: 585–593

    Google Scholar 

  15. Sears ER (1982) A wheat mutation conditioning an intermediate level of homoeologous chromosome pairing.Can J Genet Cytol24: 715–719

    Google Scholar 

  16. Sears ER (1984) Mutations in wheat that raise the level of meiotic chromosome pairing. In: JP Gustafson (ed.):Gene manipulation in plant improvement.The 16th Stadler Genetics Symposium. Plenum Press, New York, 295–300

    Google Scholar 

  17. Naranjo T, Fernández-Rueda P, Goicoechea PG, Roca A, Giráldez R (1989) Homoeologous pairing and recombination between the long arm of group 1 chromosomes in wheat x rye hybrids.Genome32: 293–301

    Article  Google Scholar 

  18. Naranjo T, Fernández–Rueda P (1996) Pairing and recombination between individual chromo-somes of wheat and rye in hybrids carrying thephibmutation.Theor Appl Genet93: 242–248

    Article  Google Scholar 

  19. Naranjo T (1990) Chromosome structure of dumm wheat.TheorAppl Genet79: 397–400

    Article  Google Scholar 

  20. Anderson JA, Ogihara Y, Sorrels ME, Tanksley SD (1992) Development of a chromosomal arm map for wheat based on RFLP markers.TheorAppl Genet83: 1035–1043

    CAS  Google Scholar 

  21. Devos KM, Dubcovsky J, Dvofák J, Chinoy CN, Gale MD (1995) Structural evolution of wheat chromosomes 4A, 5A and 7B and its impact on recombination.Theor Appl Genet91: 282–288

    Article  CAS  Google Scholar 

  22. King IP, Purdie KA, Liu CJ, Reader SM, Pittaway TS, Orford SE, Miller TE (1994) Detection of interchromosomal translocations within the Triticeae by RFLP analysis.Genome37: 882–887

    Article  CAS  PubMed  Google Scholar 

  23. Zeller FJ, Hsam SLK (1983) Broadening the genetic variability of cultivated wheat by utilizing rye 166 B. Maestra and T. Naranjo chromatin. In: S Sakamoto (ed.):Proc 6th Int Wheat Genet SympKyoto, 161–173

    Google Scholar 

  24. Miller TE (1984) The homoeologous relationships between the chromosomes of rye and wheat. Current status.Can J Genet Cytol26: 578–589

    Google Scholar 

  25. Naranjo T, Fernández-Rueda P (1991) Homoeology of rye chromosome arms to wheat.Theor Appl Genet82: 577–586

    Article  Google Scholar 

  26. Devos KM, Atkinson MD, Chinoy CN, Francis HA, Harcourt RL, Koebner RMD, Liu CJ, Masoje P, Xie DX, Gale MD (1993) Chromosomal rearrangements in the rye genome relative to that of wheat.Theor Appl Genet85: 673–680

    Article  CAS  Google Scholar 

  27. Hart GE, Tuleen N (1983) Characterizing and selecting alien genetic material in derivatives of wheat-alien species hybrids by analyses of isozyme variation. In: S Sakamoto (ed.):Proc 6th Int Wheat Genet SympKyoto, 377–385

    Google Scholar 

  28. Friebe B, Tuleen N, Jiang J, Gill BS (1993) Standard karyotype ofTriticum longissimumand its cytogenetic relationship with T.aestivum. Genome36: 731–742

    Article  CAS  Google Scholar 

  29. Miller TE, Hutchinson J, Chapman V (1982) Investigation of a preferentially transmittedAegilops sharonensischromosome in wheat.Theor Appl Genet61: 27–33

    Article  Google Scholar 

  30. Naranjo T (1995) Chromosome structure ofTriticum longissimumrelative to wheat.Theor Appl Genet91: 105–109

    Google Scholar 

  31. Naranjo T, Maestra B (1995) The effect ofphmutations on homoeologous pairing in hybrids of wheat withTriticum longissimum. Theor Appl Genet91: 1265–1270

    Google Scholar 

  32. Maestra B, Naranjo T (1997) Homoeologous relationships ofTriticum sharonensechromosomes to Taestivum. Theor Appl Genet94: 657–663

    Article  Google Scholar 

  33. Maestra B, Naranjo T (1998) Homoeologous relationships ofAegilops speltoideschromosomes to bread wheat.Theor Appl Genet97: 181–186

    Article  Google Scholar 

  34. Kerby K, Kuspira J (1987) The phylogeny of the polyploid wheatsTriticum aestivum(bread wheat) andTriticum turgidum(macaroni wheat).Genome29: 722–737

    Article  Google Scholar 

  35. Gill BS, Appels R (1987) Relationships between NOR-loci from different Triticeae species.Plant Syst Evol160: 77–89

    Article  Google Scholar 

  36. Dvofák J, Zhang HB (1990) Variation in repeated nucleotide sequences sheds light on the phylogeny of the wheat B and G genomes.Proc Natl Acad Sci USA87: 9640–9644

    Article  Google Scholar 

  37. Badaeva ED, Friebe B, Gill BS (1996) Genome differentiation inAegilops.1. Distribution of highly repetitive DNA sequences on chromosomes of diploid species.Genome39: 293–306

    Article  CAS  PubMed  Google Scholar 

  38. Badaeva ED, Friebe B, Gill BS (1996) Genome differentiation inAegilops.2. Physical mapping of 5S and 18S•26S ribosomal RNA gene families in diploid species.Genome39: 1150–1158

    Article  CAS  PubMed  Google Scholar 

  39. Daud HM, Gustafson JP (1996) Molecular evidence forTriticum speltoidesas a B-genome progenitor of wheat(Triticum aestivum). Genome39: 543–548

    Article  CAS  PubMed  Google Scholar 

  40. Sasanuma T, Miyashita NT, Tsunewaki K (1996) Wheat phylogeny determined by RFLP analysis of nuclear DNA. 3. Intra-and interspecific variations of fiveAegilopsSitopsis species.Theor Appl Genet92: 928–934

    Article  CAS  Google Scholar 

  41. Ogihara Y, Tsunewaki K (1988) Diversity and evolution of chloroplast DNA inTriticumandAegilopsas revealed by restriction fragment analysis.Theor Appl Genet76: 321–332

    Article  CAS  Google Scholar 

  42. Miyashita NT, Mori N, Tsunewaki K (1994) Molecular variation in chloroplast DNA regions in ancestral species of wheat.Genetics137: 883–889

    CAS  PubMed  Google Scholar 

  43. Terachi T, Ogihara Y, Tsunewaki K (1990) The molecular basis of genetic diversity among cytoplasms ofTriticumandAegilops.7. Restriction endonuclease analysis of mitochondrial DNAs from polyploid wheats and their ancestral species.Theor Appl Genet80: 366–373

    Article  CAS  Google Scholar 

  44. Feldman M (1966) Identification of unpaired chromosomes in Fl hybrids involvingTriticum aestivumand T.timopheevii. Can J Genet Cytol8: 144–151

    Google Scholar 

  45. Hutchinson J, Miller TE, Jahier J, Shepherd KW (1982) Comparison of the chromosomes ofTriticum timopheeviiwith related wheats using the techniques of C-banding andin situhybridization.Theor Appl Genet64: 31–40

    Article  Google Scholar 

  46. Gill BS, Chen PD (1987) Role of cytoplasm-specific introgression in the evolution of the polyploid wheats.Proc Natl Acad Sci USA84: 6800–6804

    Article  CAS  PubMed  Google Scholar 

  47. Maestra B, Naranjo T (1999) Structural chromosome differentiation betweenTriticum timopheeviiand T.turgidumand T.aestivum. Theor Appl Genet98: 744–750

    Article  CAS  Google Scholar 

  48. Badaeva ED, Badaev NS, Gill BS, Filatenko AA (1994) Intraspecific karyotype divergence inTriticum araraticum (Poaceae). Plant Syst Evol192: 117–145

    Article  Google Scholar 

  49. Wagenaar EB (1961) Studies on the genome constitution ofTriticum timopheeviZhuk. I. Evidence for genetic control of meiotic irregularities in tetraploid hybrids.Can J Genet Cytol3: 47–60

    Google Scholar 

  50. Tanaka M, Kawahara T, Sano J (1978) The evolution of wild tetraploid wheats. In: S Ramanujan (ed.):Proc. 5th Int. Wheat Genet. Symp.Indian Soc Genet Plant Breeding, India, 73–80

    Google Scholar 

  51. Mori N, Liu YG, Tsunewaki K (1995) Wheat phylogeny determined by RFLP analysis of nuclear DNA. 2. Wild tetraploid wheats.Theor Appl Genet90: 129–134

    Article  CAS  Google Scholar 

  52. Dubcovsky J, Luo MC, Zhong GY, Bransteitter R, Desai A, Kilian A, Kleinhofs A, Dvorák J (1996) Genetic map of diploid wheatTriticum monococcumL. and its comparison with maps of Hordeum vulgareL. Genetics143: 983–999

    CAS  PubMed  Google Scholar 

  53. Zhang H, Jia J, Gale MD, Devos KM (1998) Relationships between the chromosomes ofAegilops umbellulataand wheat.Theor Appl Genet96: 69–75

    Article  CAS  Google Scholar 

  54. Riley R, Chapman V (1960) The D genome of hexaploid wheat.Wheat Inf Sery 11:18–19

    Google Scholar 

  55. Leitch IJ, Bennett MD (1997) Polyploidy in angiosperms.Trends Plant Sci2: 470–476

    Article  Google Scholar 

  56. Feldman M, Liu B, Segal G, Abbo S, Levy AA, Vega JM (1997) Rapid elimination of low-copy DNA sequences in polyploid wheat: a possible mechanism for differentiation of homoeologous chromosomes.Genetics147: 1381–1387

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this chapter

Cite this chapter

Maestra, B., Naranjo, T. (2000). Genome evolution in Triticeae. In: Olmo, E., Redi, C.A. (eds) Chromosomes Today. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8484-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8484-6_12

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9587-3

  • Online ISBN: 978-3-0348-8484-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics