We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Populations and Communities | SpringerLink

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Populations and Communities

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • First Online:
Jervis's Insects as Natural Enemies: Practical Perspectives

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In nature, any particular terrestrial habitat contains animal, plant, fungi, and microbe species that exist together in both time and space. Many of these species will interact with each other, for example when one species feeds on another or when two species compete for the same food or other resource.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott, I., Burbidge, T., Williams, M., & van Heurck, P. (1992). Arthropod fauna of jarrah (Eucalyptus marginata) foliage in Mediterranean forest of Western Australia: Spatial and temporal variation in abundance, biomass, guild structure and species composition. Australian Journal of Ecology, 17, 263–274.

    Article  Google Scholar 

  • Abensperg-Traun, M., & Steven, D. (1995). The effects of pitfall trap diameter on ant species richness (Hymenoptera: Formicidae) and species composition of the catch in a semi-arid eucalypt woodland. Australian Journal of Ecology, 20, 282–287.

    Article  Google Scholar 

  • Abram, P. K., Brodeur, J., Burte, V., & Boivin, G. (2016). Parasitoid-induced host egg abortion: An underappreciated component of biological control services provided by egg parasitoids. Biological Control, 98, 52–60.

    Article  Google Scholar 

  • Abram, P. K., Brodeur, J., Urbaneja, A., & Tena, A. (2019). Nonreproductive effects of insect parasitoids on their hosts. Annual Review of Entomology, 64, 259–276.

    Article  CAS  PubMed  Google Scholar 

  • Abram, P. K., Gariepy, T. D., Boivin, G., & Brodeur, J. (2014). An invasive stink bug as an evolutionary trap for an indigenous egg parasitoid. Biological Invasions, 16, 1387–1395.

    Article  Google Scholar 

  • Abram, P. K., Haye, T., Mason, P. G., Cappuccino, N., Boivin, G., & Kuhlmann, U. (2012). Biology of Synopeas myles, a parasitoid of the swede midge, Contarinia nasturtii, in Europe. BioControl, 57, 789–800.

    Article  Google Scholar 

  • Abrams, P. A., Menge, B. A., Mittelbach, G. G., Spiller, D. A., & Yodzis, P. (1996). The role of indirect effects in food webs. In G. A. Polis, & K. O. Winemiller (Eds.), Food webs: Integration of patterns and dynamics (pp. 371–395). Chapman and Hall.

    Chapter  Google Scholar 

  • Adachi-Hagimori, T., Miura, K., & Stouthamer, R. (2008). A new cytogenetic mechanism for bacterial endosymbiont-induced parthenogenesis in Hymenoptera. Proceedings of the Royal Society of London B, 275, 2667–2673.

    Google Scholar 

  • Adis, J. (1979). Problems of interpreting arthropod sampling with pitfall traps. Zoologischer Anzeiger, 202, 177–184.

    Google Scholar 

  • Adis, J., & Kramer, E. (1975). Formaldehyd-Losung attrahiert Carabus problematicus (Coleoptera: Carabidae). Entomologia Germanica, 2, 121–125.

    Article  Google Scholar 

  • Adis, J., Basset, Y., Floren, A., Hammond, P. M., & Linsenmair, K. E. (1998). Canopy fogging of an over-storey tree–recommendations for standardization. Ecotropica, 4, 93–97.

    Google Scholar 

  • Agustí, N., de Vicente, M. C., & Gabarra, R. (1999). Development of sequence amplified characterized region (SCAR) markers of Helicoverpa armigera: A new polymerase chain reaction-based technique for predator gut analysis. Ecology, 8, 1467–1474.

    Google Scholar 

  • Agustí, N., de Vicente, M. C., & Gabarra, R. (2000). Developing SCAR markers to study predation on Trialeurodes vaporariorum. Insect Molecular Biology, 9, 263–268.

    Article  PubMed  Google Scholar 

  • Ahmed, M. Z., Li, S. J., Xue, X., Yin, X. J., Ren, S. X., Jiggins, F. M., Greeff, J. M., & Qui, B.-L. (2015). The intracellular bacterium Wolbachia uses parasitoid wasps as phoretic vectors for efficient horizontal transmission. PLoS Pathogens, 11, e1004672. https://doi.org/10.1371/journal.ppat.1004672

  • Akey, D. H. (1991) A review of marking techniques in arthropods and an introduction to elemental marking. Southwestern Entomologist, Supplement, 14, 1–8.

    Google Scholar 

  • Albrecht, A. (1990). Revision, phylogeny and classification of the genus Dorylomorpha (Diptera, Pipunculidae). Acta Zoologica Fennica, 188, 1–240.

    Google Scholar 

  • Alderweireldt, M. (1987). Density fluctuations of spiders on maize and Italian ryegrass fields. Mededelingen Van De Fakulteit Landbouwwetenschappen Rijksuniversiteit Gent, 52, 273–282.

    Google Scholar 

  • Alderweireldt, M. (1994). Prey selection and prey capture strategies of linyphiid spiders in high-input agricultural fields. Bulletin of the British Arachnological Society, 9, 300–308.

    Google Scholar 

  • Alderweireldt, M., & Desender, K. (1990). Variation of carabid diel activity patterns in pastures and cultivated fields. In N. E. Stork (Ed.), The role of ground beetles in ecological and environmental studies (pp. 335–338). Intercept.

    Google Scholar 

  • Alderweireldt, M., & Desender, K. (1992). Diel activity patterns of carabid beetles in some crop-rotated fields studied by means of time-sorting pitfall traps. Mededelingen Van De Fakulteit Landbouwwetenschappen Rijksuniversiteit Gent, 57, 603–612.

    Google Scholar 

  • Aldrich, J. R., Khrimian, A., & Camp, M. J. (2007). Methyl 2, 4, 6-decatrienoates attract stink bugs and tachinid parasitoids. Journal of Chemical Ecology, 33, 801–815.

    Article  CAS  PubMed  Google Scholar 

  • Aldrich, J. A., Zanuncio, J. C., Vilela, E. F., Torres, J. B., & Cave, R. D. (1997). Field tests of predaceous pentatomid pheromones and semiochemistry of Podisus and Supputius species (Heteroptera: Pentatomidae: Asopinae). Anais de Sociedade Entomologia do Brasil, 26, 1–14.

    Google Scholar 

  • Allemand, R., Pompanon, F., Fleury, F., Fouillet, P., & Bouletreau, M. (1994). Behavioural circadian rhythms measured in real-time by automatic image analysis: Applications in parasitoid insects. Physiological Entomology, 19, 1–8.

    Google Scholar 

  • Allen, W. R., Trimble, R. M., & Vickers, P. M. (1992). ELISA used without host trituration to detect larvae of Phyllonorycter blancardella (Lepidoptera: Gracillariidae) parasitized by Pholetesor ornigis (Hymenoptera: Braconidae). Environmental Entomology, 21, 50–56.

    Article  Google Scholar 

  • Allendorf, F. W. (2017). Genetics and the conservation of natural populations: Allozymes to genomes. Molecular Ecology, 26, 420–430.

    Article  CAS  PubMed  Google Scholar 

  • Allesina, S., & Tang, S. (2012). Stability criteria for complex ecosystems. Nature, 483, 205–208.

    Article  CAS  PubMed  Google Scholar 

  • Altieri, M. A., Hagen, K. S., Trujillo, J., & Caltagirone, L. E. (1982). Biological control of Limax maximus and Helix aspersa by indigenous predators in a daisy field in central coastal California. Acta Oecologia, 3, 387–390.

    Google Scholar 

  • Amalin, D. M., Pena, J. E., Duncan, R. E., Browning, H. W., & McSorley, R. (2002). Natural mortality factors acting on citrus leafminer, Phyllocnistis citrella, in lime orchards in South Florida. BioControl, 47, 327–347.

    Article  Google Scholar 

  • Amalin, D. M., Reiskind, J., Peña, J. E., & McSorley, R. (2001). Predatory behaviour of three species of sac spiders attacking citrus leafminer. Journal of Arachnology, 29, 72–81.

    Article  Google Scholar 

  • Amornsak, W., Gordh, G., & Graham, G. (1998). Detecting parasitised eggs with polymerase chain reaction and DNA sequence of Trichogramma australicum Girault (Hymenoptera: Trichogrammatidae). Australian Journal of Entomology, 37, 174–179.

    Article  Google Scholar 

  • Anbutsu, H., & Fukatsu, T. (2011). Spiroplasma as a model insect endosymbiont. Environmental Microbiology Reports, 3, 144–153.

    Article  CAS  PubMed  Google Scholar 

  • Anbutsu, H., Moriyama, M., Nikoh, N., Hosokawa, T., Futahashi, R., Tanahashi, M., Meng, X.-Y., Kuriwada, T., Mori, N., Oshima, K., Hattori, M., Fujie, M., Satoh, N., Maeda, T., Shigenobu, S., Koga, R., & Fukatsu T. (2017). Small genome symbiont underlies cuticle hardness in beetles. Proceedings of the National Academy of Sciences USA, 114, E8382–E8391.

    Google Scholar 

  • Anders, K. L., Indriani, C., Ahmad, R. A., Tantowijoyo, W., Arguni, E., Andari, B., Jewell, N. P., Rances, E., O'Neill, S. L., Simmons, C. P., & Utarini, A. (2018). The AWED trial (Applying Wolbachia to Eliminate Dengue) to assess the efficacy of Wolbachia-infected mosquito deployments to reduce dengue incidence in Yogyakarta, Indonesia: study protocol for a cluster randomised controlled trial. Trials, 19, 302. https://doi.org/10.1186/s13063-018-2670-z

  • Andersen, J. (1995). A comparison of pitfall trapping and quadrat sampling of Carabidae (Coleoptera) on river banks. Entomologica Fennica, 6, 65–77.

    Article  Google Scholar 

  • Andow, D. A. (1990). Characterization of predation on egg masses of Ostrinia nubilalis (Lepidoptera: Pyralidae). Annals of the Entomological Society of America, 83, 482–486.

    Article  Google Scholar 

  • Andow, D. A. (1992). Fate of eggs of first-generation Ostrinia nubilalis (Lepidoptera: Pyralidae) in three conservation tillage systems. Environmental Entomology, 21, 388–393.

    Article  Google Scholar 

  • Antolin, M. F., & Strong, D. R. (1987). Long-distance dispersal by a parasitoid (Anagrus delicatus, Mymaridae) and its host. Oecologia, 73, 288–292.

    Article  CAS  PubMed  Google Scholar 

  • Aquino, M., Dias, A. M., Borges, M., Moraes, M. C. B., & Laumann, R. A. (2012). Influence of visual cues on host-searching and learning behaviour of the egg parasitoids Telenomus podisi and Trissolcus basalis. Entomologia Experimentalis et Applicata, 145, 162–174.

    Google Scholar 

  • Arakaki, N., Miyoshi, T., & Noda, H. (2001). Wolbachia-mediated parthenogenesis in the predatory thrips Franklintothrips vespiformis (Thysanoptera: Insecta). Proceedings of the Royal Society of London B, 268, 1011–1016.

    Google Scholar 

  • Arneberg, P., & Andersen, J. (2003). The energetic equivalence rule rejected because of a potentially common sampling error: Evidence from carabid beetles. Oikos, 101, 367–375.

    Google Scholar 

  • Arnold, A. J., Needham, P. H., & Stevenson, J. H. (1973). A self-powered portable insect suction sampler and its use to assess the effects of azinphos methyl and endosulfan in blossom beetle populations on oilseed rape. Annals of Applied Biology, 75, 229–233.

    Article  CAS  Google Scholar 

  • Arnoldi, D., Stewart, R. K., & Boivin, G. (1991). Field survey and laboratory evaluation of the predator complex of Lygus lineolaris and Lygocoris communis (Hemiptera: Miridae) in apple orchards. Journal of Economic Entomology, 84, 830–836.

    Article  Google Scholar 

  • Arthofer, W., Riegler, M., Schneider, D., Krammer, M., Miller, W. J., & Stauffer, C. (2009). Hidden Wolbachia diversity in field populations of the European cherry fruit fly, Rhagoletis cerasi (Diptera, Tephritidae). Molecular Ecology, 18, 3816–3830.

    Google Scholar 

  • Asahida, T., Yamashita, Y., & Kobayashi, T. (1997). Identification of consumed stone flounder, Kareius bicoloratus (Basilewsky), from the stomach contents of sand shrimp, Crangon affinis (De Haan) using mitochondrial DNA analysis. Journal of Experimental Marine Biology and Ecology, 217, 153–163.

    Article  CAS  Google Scholar 

  • Ashby, J. W., & Pottinger, R. P. (1974). Natural regulation of Pieris rapae Linnaeus (Lepidoptera: Pieridae) in Canterbury, New Zealand. New Zealand Journal of Agricultural Research, 17, 229–239.

    Article  Google Scholar 

  • Askew, R. R. (1984). The biology of gall wasps. In T. N. Ananthakrishnan (Ed.), Biology of gall insects (pp. 223–271). Edward Arnold.

    Google Scholar 

  • Askew, R. R., & Shaw, M. R. (1986). Parasitoid communities: Their size, structure and development. In J. K. Waage, & D. Greathead (Eds.), Insect parasitoids (pp. 225–264). Academic Press.

    Google Scholar 

  • Askew, R. R. (1985). A London fog. Chalcid Forum, 4, 17

    Google Scholar 

  • Asplen, M. K., Chacón, J. M., & Heimpel, G. E. (2016). Sex-specific dispersal by a parasitoid wasp in the field. Entomologia Experimentalis et Applicata, 159, 252–259.

    Article  Google Scholar 

  • Ausden, M. (1996). Invertebrates. In W. J. Sutherland (Ed.), Ecological census techniques (pp. 139–177). Cambridge University Press.

    Google Scholar 

  • Avise, J. C. (1994). Molecular markers, natural history and evolution. Chapman and Hall.

    Google Scholar 

  • Ayre, G. L., & Trueman, D. K. (1974). A battery operated time-sort pitfall trap. The Manitoba Entomologist, 8, 37–40.

    Google Scholar 

  • van Baarlen, P., Sunderland, K. D., & Topping, C. J. (1994). Eggsac parasitism of money spiders (Araneae, Linyphiidae) in cereals, with a simple method for estimating percentage parasitism of Erigone spp. eggsacs by Hymenoptera. Journal of Applied Entomology, 118, 217–223.

    Article  Google Scholar 

  • Baars, M. A. (1979a). Catches in pitfall traps in relation to mean densities of carabid beetles. Oecologia, 41, 25–46.

    Google Scholar 

  • Baars, M.A. (1979b). Patterns of movement of radioactive carabid beetles. Oecologia, 44, 125–140.

    Google Scholar 

  • Baehaki, S. E. (1995). The use of egg masses for egg parasitoid monitoring of white rice stem borer (Tryporyza (Scirpophaga) innotata). Indonesian Journal of Crop Science, 10, 1–10.

    Google Scholar 

  • Bailey, N. T. J. (1951). On estimating the size of mobile populations from recapture data. Biometrika, 38, 293–306.

    Article  Google Scholar 

  • Bailey, N. T. J. (1952). Improvements in the interpretation of recapture data. Journal of Animal Ecology, 21, 120–127.

    Article  Google Scholar 

  • Bailey, S. E. R. (1989). Foraging behaviour of terrestrial gastropods: Integrating field and laboratory studies. Journal of Molluscan Studies, 55, 263–272.

    Article  Google Scholar 

  • Baldo, L., Dunning Hotopp, J. C., Jolley, K. A., Bordenstein, S. R., Biber, S. A., Choudhury, R. R. et al. (2006). Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Applied and Environmental Microbiology, 72, 7098–7110.

    Google Scholar 

  • Ballard, J. W. O., & Melvin, R. G. (2007). Tetracycline treatment influences mitochondrial metabolism and mtDNA density two generations after treatment in Drosophila. Insect Molecular Biology, 16, 799–802.

    Article  CAS  PubMed  Google Scholar 

  • Ballinger, M. J., & Perlman, S. J. (2017). Generality of toxins in defensive symbiosis: Ribosome-inactivating proteins and defense against parasitic wasps in Drosophila. PLoS Pathogens, 13, e1006431. https://doi.org/10.1371/journal.ppat.1006431

  • Ballinger, M. J., & Perlman, S. J. (2019). The defensive Spiroplasma. Current Opinion in Insect Science, 32, 36–41.

    Google Scholar 

  • Bandi, C., Anderson, T. J. C., Genchi, C., & Blaxter, M. L. (1998). Phylogeny of Wolbachia in filarial nematodes. Proceedings of the Royal Society of London B, 265, 2407–2413.

    Google Scholar 

  • Bandi, C., Damiani, G., Magrassi, L., Grigolo, A., Fani, R., & Sacchi, L. (1994). Flavobacteria as intracellular symbionts in cockroaches. Proceedings of the Royal Society of London B, 257, 43–48.

    Article  CAS  Google Scholar 

  • Bandi, C., McCall, J. W., Genchi, C., Corona, S., Venco, L., & Sacchi, L. (1999). Effects of tetracycline on the filarial worms Brugia pahangi and Dirofilaria immitis and their bacterial endosymbionts Wolbachia. International Journal for Parasitology, 29, 357–364.

    Google Scholar 

  • Barbosa, M., Fernandes, G. W., Lewis, O. T., & Morris, R. J. (2017). Experimentally reducing species abundance indirectly affects food web structre and robustness. Journal of Animal Ecology, 86, 327–336.

    Article  PubMed  Google Scholar 

  • Barndt, D. (1976). Untersuchungen der diurnalen und siasonalen Activitat von Kafern mit einer neu entwickelten Elektro-Bodenfalle. Verhandlungen des Botanischen Vereins der Provinz Brandenberg, 112, 103–122.

    Google Scholar 

  • De Barro, P. J. (1991). A cheap lightweight efficient vacuum sampler. Journal of the Australian Entomological Society, 30, 207–208.

    Article  Google Scholar 

  • Basedow, T. (1973). Der Einfluss epigäischer Rauparthropoden auf die Abundanz phytophager Insekten in der Agrarlandschaft. Pedobiologia, 13, 410–422.

    Article  Google Scholar 

  • Basedow, T. (1996). Phenology and population density of predatory bugs (Nabis spp.; Heteroptera: Nabidae) in different fields of winter wheat in Germany, 1993/94. Bulletin SROP/WPRS, 19, 70–76.

    Google Scholar 

  • Basedow, T., Klinger, K., Froese, A., & Yanes, G. (1988). Aufschwemmung mit Wasser zur Scnellbestimmung der Abundanz epigäischer Raubarthropoden auf Äckern. Pedobiologia, 32, 317–322.

    Article  Google Scholar 

  • Basedow, T., & Rzehak, H. (1988). Abundanz und Aktivitätsdichte epigäischer Rauparthropoden auf Ackerflächen–ein Vergleich. Zoologischer Jahrbucher, Abteilung für Systematik Okologie und Geographie der Tiere, 115, 495–508.

    Google Scholar 

  • Basset, Y. (1988). A composite interception trap for sampling arthropods in tree canopies. Journal of the Australian Entomological Society, 27, 213–219.

    Article  Google Scholar 

  • Basset, Y. (1990). The arboreal fauna of the rainforest tree Agyrodendron actinophyllum as sampled with restricted canopy fogging: composition of the fauna. Entomologist, 109, 173–183.

    Google Scholar 

  • Basset, Y., Springate, N. D., Aberlenc, H. P., & Delvare, G. (1997). A review of methods for sampling arthropods in tree canopies. In N. E. Stork, J. Adis, & R. K. Didham (Eds.), Canopy arthropods (pp. 27–52). Chapman and Hall.

    Google Scholar 

  • Bay, E. C. (1974). Predator-prey relationships among aquatic insects. Annual Review of Entomology, 19, 441–453.

    Article  Google Scholar 

  • Bayon, F., Fougeroux, A., Reboulet, J. N., & Ayrault, J. P. (1983). Utilisation et intérêt de l’aspirateur “D-vac” pour la détection et le suivi des populations de ravageurs et d’auxiliaires sur blé au printemps. La Défense des Végétaux, 223, 276–297.

    Google Scholar 

  • Bayram, A. (1996). A study on the diel activity of Pardosa spiders (Araneae, Lycosidae) sampled by the time-sorting pitfall trap in different habitats. Turkish Journal of Zoology, 20, 381–387.

    Article  Google Scholar 

  • Beckmann, J. F., Bonneau, M., Chen, H., Hochstrasser, M., Poinsot, D., Merçot, H., et al. (2019). The toxin–antidote model of cytoplasmic incompatibility: Genetics and evolutionary implications. Trends in Genetics, 35, 175–185.

    Google Scholar 

  • Bedding, R. A. (1973). The immature stages of Rhinophorinae (Diptera: Calliphoridae) that parasitise British woodlice. Transactions of the Royal Entomological Society of London, 125, 27–44.

    Article  Google Scholar 

  • Beerwinkle, K. R., Coppedge, J. R., & Hoffman, C. (1999). A new mechanical method for sampling selected beneficial and pest insects on corn–the corn KISS. Southwestern Entomologist, 24, 107–113.

    Google Scholar 

  • Begon, M. (1979). Investigating animal abundance–capture-recapture for biologists. Edward Amold.

    Google Scholar 

  • Begon, M. (1983). Abuses of mathematical techniques in ecology: Applications of Jolly’s capture-recapture method. Oikos, 40, 155–158.

    Article  Google Scholar 

  • Bellamy, D. E., & Byrne, D. N. (2001). Effects of gender and mating status on self-directed dispersal by the whitefly parasitoid Eretmocerus eremicus. Ecological Entomology, 26, 571–577.

    Article  Google Scholar 

  • Belshaw, R. (1993). Malaise traps and Tachinidae (Diptera): A study of sampling efficiency. The Entomologist, 112, 49–54.

    Google Scholar 

  • Benest, G. (1989). The sampling of a carabid community. II. Traps and trapping. Revue d’Écologie et de Biologie du Sol, 26, 505–514.

    Google Scholar 

  • Bennett, G. M., & Moran, N. A. (2015). Heritable symbiosis: The advantages and perils of an evolutionary rabbit hole. Proceedings of the National Academy of Sciences USA, 112, 10169–10176.

    Article  CAS  Google Scholar 

  • Benson, J., Pasquale, A., Van Driesche, R., & Elkinton, J. (2003). Assessment of risk posed by introduced braconid wasps to Pieris virginiensis, a native woodland butterfly in New England. Biological Control, 26, 83–93.

    Article  Google Scholar 

  • Benton, F. (1975). Larval Taxonomy and Bionomics of some British Pipunculidae. Imperial College, University of London, Ph.D. Thesis.

    Google Scholar 

  • van den Berg, H., Ankasah, D., Muhammad, A., Rusli, R., Widayanto, H. A., Wirasto, H. B., & Yully, I. (1997). Evaluating the role of predation in population fluctuations of the soybean aphid Aphis glycines in farmers’ fields in Indonesia. Journal of Applied Ecology, 34, 971–984.

    Article  Google Scholar 

  • Berger, S. L., & Kimmel, A. R. (1987). Methods in enzymology (Vol. 152). Academic.

    Google Scholar 

  • Best, R. L., Beegle, C. C., Owens, J. C., & Oritz, M. (1981). Population density, dispersion, and dispersal estimates for Scarites substriatus, Pterostichus chalcites, and Harpalus pennsylvanicus (Carabidae) in an Iowa cornfield. Environmental Entomology, 10, 847–856.

    Article  Google Scholar 

  • Besuchet, C., Burckhardt, D. H., & Löbl, I. (1987). The “Winkler/Moczarski” eclector as an efficient extractor for fungus and litter Coleoptera. The Coleopterist’s Bulletin, 41, 392–394.

    Google Scholar 

  • Betelman, K., Caspi-Fluger, A., Shamir, M., & Chiel, E. (2017). Identification and characterization of bacterial symbionts in three species of filth fly parasitoids. FEMS Microbiology Ecology, 93, 107. https://doi.org/10.1093/femsec/fix107

  • Bhattacharya, T., Newton, I. L. G., & Hardy, R. W. (2017). Wolbachia elevates host methyltransferase expression to block an RNA virus early during infection. PLoS Pathogens, 13, e1006427. https://doi.org/10.1371/journal.ppat.1006427

  • Biever, K. D., & Boldt, P. E. (1970). Utilization of soft X-rays for determining pupal parasitism of Pieris rapae. Annals of the Entomological Society of America, 63, 1482–1483.

    Google Scholar 

  • Bigler, F., Babendreier, D., & Kuhlmann, U. (Eds.). (2006). Environmental impact of invertebrates for biological control of arthropods: Methods and risk assessment. CABI.

    Google Scholar 

  • Bigler, F., Suverkropp, B. P., & Cerutti, F. (1997). Host searching by Trichogramma and its implications for quality control and release techniques. In D. A. Andow, D. A. Ragsdale, & R. F. Nyvall (Eds.), Ecological interactions and biological control (pp. 240–253). WestView Press.

    Google Scholar 

  • Black, W. C., Duteau, N. M., Puterka, G. J., Nechols, J. R., & Pettorini, J. M. (1992). Use of random amplified polymorphic DNA polymersae chain reaction (RAPD-PCR) to detect DNA polymorphisms in aphids. Bulletin of Entomological Research, 82, 151–159.

    Google Scholar 

  • Black, W. C., McLain, D.K., & Rai, K. S. (1989). Patterns of variation in the rDNA cistron within and among world populations of a mosquito Aedes albopictus (Skuse). Genetics, 121, 539–550.

    Google Scholar 

  • Blandenier, G., & Fürst, P. A. (1998). Ballooning spiders caught by a suction trap in an agricultural landscape in Switzerland. In Proceedings of the 17th European Colloquium of Arachnology, British Arachnological Society (pp. 177–186). Buckinghamshire.

    Google Scholar 

  • Blann, A. D. (1984). Cell fusion and monoclonal antibodies. The Biologist, 31, 288–291.

    Google Scholar 

  • Blower, J. G., Cook, L. M., & Bishop, J. A. (1981). Estimating the size of animal populations. George Allen and Unwin.

    Google Scholar 

  • Blüthgen, N. (2010). Why network analysis is often disconnected from community ecology: A critique and an ecologist’s guide. Basic and Applied Ecology, 11, 185–195.

    Google Scholar 

  • Bock, D., Medeiros, J. M., Tsao, H. F., Penz, T., Weiss, G. L., Aistleitner, K., Horn, M., & Pilhofer, M. (2017). In situ architecture, function, and evolution of a contractile injection system. Science, 357, 713–717.

    Google Scholar 

  • Böckmann, E., & Meyhöfer, R. (2017). Sticky trap monitoring of a pest–predator system in glasshouse tomato crops: Are available trap colours sufficient? Journal of Applied Entomology, 141, 339–351.

    Google Scholar 

  • den Boer, P. J. (1979). The individual behaviour and population dynamics of some carabid beetles of forests. In P. J. den Boer, H. U. Thiele, & F. Weber (Eds.), On the evolution of behaviour in carabid beetles (pp. 151–166). Miscellaneous Papers 18, University of Wageningen. H. Veenman and Zanen.

    Google Scholar 

  • Bogya, S., Marko, V., & Szinetar, C. (2000). Effect of pest management systems on foliage- and grass-dwelling spider communities in an apple orchard in Hungary. International Journal of Pest Management, 46, 241–250.

    Google Scholar 

  • Bohan, D. A., Bohan, A. C., Glen, D. M., Symondson, W. O., Wiltshire, C. W., & Hughes, L. (2000). Spatial dynamics of predation by carabid beetles on slugs. Journal of Animal Ecology, 69, 367–379.

    Google Scholar 

  • Boiteau, G., Bousquet, Y., & Osborn, W. P. L. (1999). Vertical and temporal distribution of Coccinellidae (Coleoptera) in flight over an agricultural landscape. Canadian Entomologist, 131, 269–277.

    Google Scholar 

  • Boiteau, G., Bousquet, Y., & Osborn, W. P. L. (2000a). Vertical and temporal distribution of Carabidae and Elateridae in flight above an agricultural landscape. Environmental Entomology, 29, 1157–1163.

    Google Scholar 

  • Boiteau, G., & Colpitts, B. (2001). Electronic tags for tracking of insects in flight: Effect of weight on flight performance of adult Colorado potato beetles. Entomologia Experimentalis et Applicata, 100, 187–193.

    Google Scholar 

  • Boiteau, G., Osborn, W. P. L., Xiong, X., & Bousquet, Y. (2000b). The stability of vertical distribution profiles of insects in air layers near the ground. Canadian Journal of Zoology, 78, 2167–2173.

    Google Scholar 

  • Bombosch, S. (1962). Untersuchungen über die Auswertbarkeit von Fallenfangen. Zeitschrift für Angewandte Zoologie, 49, 149–160.

    Google Scholar 

  • Bonkowska, T., & Ryszkowski, L. (1975). Methods of density estimation of carabids (Carabidae, Coleoptera) in field under cultivation. Polish Ecological Studies, 1, 155–171.

    Google Scholar 

  • Bosch, J. (1990). Die Arthropodenproduktion des Ackerbodens. Mitteilungen der Biologische Bundesanstalt für Land- und Forstwirtschaft, 266, 74.

    Google Scholar 

  • van den Bosch, R., Horn, R., Matteson, P., Frazer, B. D., Messenger, P. S., & Davis, C. S. (1979). Biological control of the walnut aphid in California: Impact of the parasite Trioxys pallidus. Hilgardia, 47, 1–13.

    Article  Google Scholar 

  • Bostanian, G., Boivin, G., & Goulet, H. (1983). Ramp pitfall trap. Journal of Economic Entomology, 76, 1473–1475.

    Article  Google Scholar 

  • Bouchon, D., Rigaud, T., & Juchault, P. (1998). Evidence for widespread Wolbachia infection in isopod crustaceans: Molecular identification and host feminization. Proceedings of the Royal Society of London B, 265, 1081–1090.

    Article  CAS  Google Scholar 

  • Bowden, J. (1981) The relationship between light-and suction-trap catches of Chrysoperla carnea. (Stephens) (Neuroptera: Chrysopidae) and the adjustment of light-trap catches to allow for variation in moonlight. Bulletin of Entomological Research, 71, 621–629.

    Google Scholar 

  • Bowden, J. (1982). An analysis of factors affecting catches of insects in light traps. Bulletin of Entomological Research, 72, 535–556.

    Article  Google Scholar 

  • Bowden, J., Brown, G., & Stride, T. (1979). The application of X-ray spectrometry to analysis of elemental composition (chemoprinting) in the study of migration of Noctua pronuba L. Ecological Entomology, 4, 199–204.

    Google Scholar 

  • Bowie, M. H., Gurr, G. M., Hossain, Z., Baggen, L. R., & Frampton, C. M. (1999). Effects of distance from field edge on aphidophagous insects in a wheat crop and observations on trap design and placement. International Journal of Pest Management, 45, 69–73.

    Article  Google Scholar 

  • Boyer, S., Snyder, W. E., & Wratten, S. D. (2016). Molecular and isotopic approaches to food webs in agroecosystems. Food Webs, 9, 1–3.

    Article  Google Scholar 

  • Brandon-Mong, G. J., Littlefair, J. E., Sing, K. W., Lee, Y. P., Gan, H. M., Clare, E. L., & Wilson, J. J. (2018). Temporal changes in arthropod activity in tropical anthropogenic forests. Bulletin of Entomological Research, 108, 792–799.

    Article  PubMed  Google Scholar 

  • Brandt, J. W., Chevignon, G., Oliver, K.M., & Strand, M. R. (2017). Culture of an aphid heritable symbiont demonstrates its direct role in defence against parasitoids. Proceedings of the Royal Society of London B, 284: 1925. https://doi.org/10.1098/rspb.2017.1925

  • Braun, D. M., Goyer, R. A., & Lenhard, G. J. (1990). Biology and mortality agents of the fruittree leafroller (Lepidoptera: Tortricidae), on bald cypress in Louisiana. Journal of Entomological Science, 25, 176–184.

    Article  Google Scholar 

  • Breene, R. G., Sweet, M. H., & Olson, J. K. (1988). Spider predators of mosquito larvae. Journal of Arachnology, 16, 275–277.

    Google Scholar 

  • Breeuwer, J. A. J., & Werren, J. H. (1990). Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature, 346, 558–560.

    Article  CAS  PubMed  Google Scholar 

  • Brenøe, J. (1987). Wet extraction–a method for estimating populations of Bembidion lampros (Herbst) (Col., Carabidae). Journal of Applied Entomology, 103, 124–127.

    Article  Google Scholar 

  • Bressan, A., Semetey, O., Arneodo, J., Lherminier, J., & Boudon-Padieu, E. (2009). Vector transmission of a plant-pathogenic bacterium in the Arsenophonus clade sharing ecological traits with facultative insect endosymbionts. Phytopathology, 99, 1289–1296.

    Article  CAS  PubMed  Google Scholar 

  • Bressan, A., Terlizzi, F., & Credi, R. (2012). Independent origins of vectored plant pathogenic bacteria from arthropod-associated Arsenophonus endosymbionts. Microbial Ecology, 63, 628–638.

    Article  PubMed  Google Scholar 

  • Brodeur, J., & McNeil, J. N. (1992). Host behaviour modification by the endoparasitoid Aphidius nigripes: a strategy to reduce hyperparasitisrn. Ecological Entomology, 17, 97–104.

    Google Scholar 

  • Brodeur, J., & Rosenheim, J. A. (2000). Intraguild interactions in aphid parasitoids. Entomologia Experimentalis et Applicata, 97, 93–108.

    Article  Google Scholar 

  • Brose, U. (2002). Estimating species richness of pitfall catches by non-parametric estimators. Pedobiologia, 46, 101–107.

    Article  Google Scholar 

  • Brower, A. V. Z., & DeSalle, R. (1994). Practical and theoretical considerations for choice of a DNA sequence region in insect molecular systematics, with a short review of published studies using nuclear gene regions. Annals of the Entomological Society of America, 87, 702–716.

    Article  CAS  Google Scholar 

  • Brown, L. D., Christofferson, R. C., Banajee, K. H., Del Piero, F., Foil, L. D., & Macaluso, K. R. (2015). Cofeeding intra- and interspecific transmission of an emerging insect-borne rickettsial pathogen. Molecular Ecology, 24, 5475–5489.

    Google Scholar 

  • Brown, C. T., Hug, L. A., Thomas, B. C., Sharon, I., Castelle, C. J., Singh, A., Wilkins, M. J., Wrighton, K. C., Williams, K. H., & Banfield, J. F. (2015). Unusual biology across a group comprising more than 15% of domain Bacteria. Nature, 523, 208–211.

    Google Scholar 

  • Brown, A. M. V., Wasala, S. K., Howe, D. K., Peetz, A. B., Zasada, I. A., & Denver, D. R. (2016). Genomic evidence for plant-parasitic nematodes as the earliest Wolbachia hosts. Scientific Reports, 6, 34955. https://doi.org/10.1038/srep34955

  • Brown, A. M. V., Wasala, S. K., Howe, D. K., Peetz, A. B., Zasada, I. A., & Denver, D. R. (2018). Comparative genomics of Wolbachia-Cardinium dual endosymbiosis in a plant-parasitic Nematode. Frontiers in Microbiology, 9, 2482. https://doi.org/10.3389/fmicb.2018.02482

  • Brown, R. A., White, J. A., & Everett, C. J. (1988). How does an autumn applied pyrethroid affect the terrestrial arthropod community? In M. P. Greaves, B. D. Smith, & P. W. Grieg-Smit (Eds.), Field methods for the study of environmental effects of pesticides (pp. 137–146). BCPC Monograph No. 40. BCPC. Farnham.

    Google Scholar 

  • Brownlie, J. C., Cass, B. N., Riegler, M., Witsenburg, J. J., Iturbe-Ormaetxe, I., McGraw, E. A., & O'Neill, S. L. (2009). Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional stress. PLoS Pathogens, 5, e1000368. https://doi.org/10.1371/journal.ppat.1000368

  • Bruck, D. J., & Lewis, L. C. (1998). Influence of adjacent cornfield habitat, trap location, and trap height on capture numbers of predators and a parasitoid of the European corn borer (Lepidoptera: Pyralidae) in central Iowa. Environmental Entomology, 27, 1557–1562.

    Article  Google Scholar 

  • Bruinink, P. J. (1990). Some notes on the diet of the ground beetle Pterostichus versicolor Sturm (Coleoptera, Carabidae). Polskie Pismo Entomologiczne, 60, 153–166.

    Google Scholar 

  • Brunsting, A. M. H., Siepel, H., & van Schaick Zillesen, P. G. (1986). The role of larvae in the population ecology of Carabidae. In P. J. den Boer, M. L. Luff, D. Mossakowski, & F. Weber (Eds.), Carabid beetles. their adaptations and dynamics (pp. 399–411). Gustav Fischer.

    Google Scholar 

  • Brust, G. E. (1991). A method for observing below-ground pest-predator interactions in corn agroecosystems. Journal of Entomological Science, 26, 1–8.

    Article  Google Scholar 

  • Brust, G. E., Stinner, B. R., & McCartney, D. A. (1986a). Predation by soil-inhabiting arthropods in intercropped and monoculture agroecosystems. Agriculture, Ecosystems and Environment, 18, 145–154.

    Google Scholar 

  • Brust, G. E., Stinner, B. R., & McCartney, D. A. (1986b). Predator activity and predation in corn agroecosystems. Environmental Entomology, 15, 1017–1021.

    Google Scholar 

  • Büchs, W. (1991). Einfluss verschiedener land-wirtschaftlicher Produktionsintensitäten auf die Abundanz von Arthropoden in Zuckerrübenfeldern. Verhandlungen der Gesellschaft für Ökologie, 20, 1–12.

    Google Scholar 

  • Büchs, W. (1993). Auswirkungen unterschiedlicher Bewirtschaftlungsintensitäten auf die Arthropodenfauna in Winterweizenfeldern. Verhandlungen der Gesellschaft für Ökologie, 22, 27–34.

    Google Scholar 

  • Buck, J. C., & Ripple, W. J. (2017). Infectious agents trigger trophic cascades. Trends in Ecology and Evolution, 32, 681–694.

    Article  PubMed  Google Scholar 

  • Buckland, S. T., Anderson, D. R., Burnham, K. P., & Laake, J. L. (1993). Distance sampling. Chapman and Hall.

    Book  Google Scholar 

  • Bugg, R. L., Ehler, L. E., & Wilson, L. T. (1987). Effect of common knotweed (Polygonum aviculare) on abundance and efficiency of insect predators of crop pests. Hilgardia, 55, 1–52.

    Article  Google Scholar 

  • van Bukovinszky, T., Veen, F. J. F., Jongema, Y., & Dicke, M. (2008). Direct and indirect effects of resource quality on food web structure. Science, 319, 804–807.

    Article  CAS  PubMed  Google Scholar 

  • Burbutis, P. P., & Stewart, J. A. (1979). Blacklight trap collecting of parasitic Hymenoptera. Entomology News, 90, 17–22.

    Google Scholar 

  • Burgess, L., & Hinks, C. F. (1987). Predation on adults of the crucifer flea beetle, Phyllotreta cruciferae (Goeze), by the northern fall field cricket, Gryllus pennsylvanicus Burmeister (Orthoptera: Gryllidae). Canadian Entomologist, 119, 495–496.

    Google Scholar 

  • Burn, A. J. (1989). Long-term effects of pesticides on natural enemies of cereal crop pests. In P. C. Jepson (Ed.), Pesticides and non-target invertebrates (pp. 177–193). Intercept.

    Google Scholar 

  • Buschman, L. L., Whitcomb, W. H., Hemenway, R. C., Mays, D. L., Roo, N., Leppla, N. C., & Smittle, B. J. (1977). Predators of velvetbean caterpillar eggs in Florida soybeans. Environmental Entomology, 6, 403–407.

    Article  Google Scholar 

  • Butler, G. D. (1965). A modified Malaise insect trap. Pan-Pacific Entomology, 41, 51–53.

    Google Scholar 

  • Cameron, E. A., & Reeves, R. M. (1990). Carabidae (Coleoptera) associated with Gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae), populations, subjected to Bacillus thuringiensis Berliner treatments in Pennsylvania. Canadian Entomologist, 122, 123–129.

    Google Scholar 

  • Campbell, B. C., & Purcell, A. H. (1993). Phylogenetic affiliation of BEV, a bacterial parasite of the leafhopper Euscelidus variegatus, on the basis of 16S rDNA sequences. Current Microbiology, 26, 37–41.

    Article  CAS  PubMed  Google Scholar 

  • Campos, W. G., Pereira, D. B. S., & Schoereder, J. H. (2000). Comparison of the efficiency of flight-interception trap models for sampling Hymenoptera and other insects. Anais da Sociedade Entomologica do Brasil, 29, 381–389.

    Article  Google Scholar 

  • Čapek, M. (1970). A new classification of the Braconidae (Hymenoptera) based on the cephalic structures of the final instar larva and biological evidence. Canadian Entomologist, 102, 846–875.

    Article  Google Scholar 

  • Čapek, M. (1973). Key to the final instar larvae of the Braconidae (Hymenoptera). Acta Instituti Forstalis Zvolenensis, 1973, 259–268.

    Google Scholar 

  • Caragata, E. P., Rances, E., Hedges, L. M., Gofton, A. W., Johnson, K. N., O'Neill, S. L., & McGraw, E. A. (2013). Dietary cholesterol modulates pathogen blocking by Wolbachia. PLoS Pathogens, 9, e1003459. https://doi.org/10.1371/journal.ppat.1003459

  • Carcamo, H. A., & Spence, J. R. (1994). Crop type effects on the activity and distribution of ground beetles (Coleoptera, Carabidae). Environmental Entomology, 23, 684–692.

    Article  Google Scholar 

  • Carlson, D. A., Geden, C. J., & Bernier, U. R. (1999). Identification of pupal exuviae of Nasonia vitripennis and Muscidifurax raptorellus parasitoids using cuticular hydrocarbons. Biological Control, 15, 97–106.

    Article  Google Scholar 

  • Carroll, C. R., & Risch, S. (1990). An evaluation of ants as possible candidates for biological control in tropical agroecosystems. In S. R. Gliessman (Ed.), Agroecology: Researching the ecological basis for sustainable agriculture (pp. 30–46). Springer.

    Chapter  Google Scholar 

  • Carter, N., & Dixon, A. F. G. (1981). The ‘natural enemy ravine’ in cereal aphid population dynamics: A consequence of predator activity or aphid biology? Journal of Animal Ecology, 50, 605–611.

    Article  Google Scholar 

  • Carter, M. C., & Dixon, A. F. G. (1982). Habitat quality and the foraging behaviour of coccinellid larvae. Journal of Animal Ecology, 51, 865–878.

    Article  Google Scholar 

  • Carter, M. C., Sutherland, K. D., & Dixon, A. F. G. (1984). Plant structure and the searching efficiency of coccinellid larvae. Oecologia, 63, 394–397.

    Article  CAS  PubMed  Google Scholar 

  • Carton, Y., Capy, P., & Nappi, A. J. (1989). Genetic variability of host-parasite relationship traits: utilization of isofemale lines in a Drosophila simulans parasitic wasp. Genetics Selection Evolution, 21, 437–446.

    Google Scholar 

  • Caspi-Fluger, A., Inbar, M., Mozes-Daube, N., Katzir, N., Portnoy, V., Belausov, E., Hunter, M.S., & Zchori-Fein, E. (2012). Horizontal transmission of the insect symbiont Rickettsia is plant-mediated. Proceedings of the Royal Society of London B, 279, 1791–1796.

    Google Scholar 

  • Cass, B. N., Himler, A. G., Bondy, E. C., Bergen, J. E., Fung, S. K., Kelly, S. E., & Hunter, M. S. (2016). Conditional fitness benefits of the Rickettsia bacterial symbiont in an insect pest. Oecologia, 180, 169–179.

    Article  PubMed  Google Scholar 

  • Cass, B. N., Yallouz, R., Bondy, E. C., Mozes-Daube, N., Horowitz, A. R., Kelly, S. E., Zchori-Fein, E., & Hunter, M. S. (2015). Dynamics of the endosymbiont Rickettsia in an insect pest. Microbial Ecology, 70, 287–297.

    Google Scholar 

  • Caterino, M. S., Cho, S., & Sperling, F. A. H. (2000). The current state of insect molecular systematics: A thriving tower of Babel. Annual Review of Entomology, 45, 1–54.

    Article  CAS  PubMed  Google Scholar 

  • Cattel, J., Nikolouli, K., Andrieux, T., Martinez, J., Jiggins, F., Charlat, S., et al. (2018). Back and forth Wolbachia transfers reveal efficient strains to control spotted wing drosophila populations. Journal of Applied Ecology, 55, 2408–2418.

    Google Scholar 

  • Chambers, R. J., & Adams, T. H. L. (1986). Quantification of the impact of hoverflies (Diptera: Syrphidae) on cereal aphids in winter wheat: An analysis of field populations. Journal of Applied Ecology, 23, 895–904.

    Article  Google Scholar 

  • Chang, S. C., Hu, N. T., Hsin, C. Y., & Sun, C. N. (2001). Characterization of differences between two Trichogramma wasps by molecular markers. Biological Control, 21, 75–78.

    Article  CAS  Google Scholar 

  • Chant, D. A., & Muir, R. C. (1955). A comparison of the imprint and brushing machine methods for estimating the numbers of fruit tree red spider mite, Metatetranychus ulmi (Koch), on apple leaves. Report of the East Malling Research Station for, 1954, 141–145.

    Google Scholar 

  • Chapman, P. A., & Armstrong, G. (1996). Daily dispersal of beneficial ground beetles between areas of contrasting vegetation density within agricultural habitats. In Proceedings of the Brighton Crop Protection Conference–Pests and Diseases 1996, BCPC (pp. 623–628) Farnham.

    Google Scholar 

  • Chapman, P. A., & Armstrong, G. (1997). Design and use of a time-sorting pitfall trap for predatory arthropods. Agriculture, Ecosystems and Environment, 65, 15–21.

    Article  Google Scholar 

  • Chapman, P. A., Armstrong, G., & McKinlay, R. G. (1999). Daily movements of Pterostichus melanarius between areas of contrasting vegetation density within crops. Entomologia Experimentalis et Applicata, 91, 477–480.

    Article  Google Scholar 

  • Chapman, J., Reynolds, D., & Smith, A. (2004). Migratory and foraging movements in beneficial insects: A review of radar monitoring and tracking methods. International Journal of Pest Management, 50, 225–232.

    Article  Google Scholar 

  • Charles, J. G., & White, V. (1988). Airborne dispersal of Phytoseiulus persimilis (Acarina: Phytoseiidae) from a raspberry garden in New Zealand. Experimental and Applied Acarology, 5, 47–54.

    Article  Google Scholar 

  • Chen, C. C., & Chang, K. P. (1991). Marking Trichogramma ostriniae Pang and Chen (Hymenoptera: Trichogrammatidae) with radioactive phosphorus. Chinese Journal of Entomology, 11, 148–152.

    Google Scholar 

  • Chen, X., Li, S., Li, C. B., & Zhao, S. Y. (1999). Phylogeny of genus Glossina (Diptera: Glossinidae) according to ITS2 sequences. Science in China Series C-Life Sciences, 42, 249–258.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., Giles, K. L., Payton, M. E., & Greenstone, M. H. (2000). Identifying key cereal aphid predators by molecular gut analysis. Molecular Ecology, 9, 1887–1898.

    Article  CAS  PubMed  Google Scholar 

  • Cherix, D., & Bourne, J. D. (1980). A field study on a super-colony of the Red Wood Ant Formica lugubris Zett. in relation to other predatory arthropods (spiders, harvestmen and ants). Revue Suisse de Zoologie, 87, 955–973.

    Google Scholar 

  • Chey, V. K., Holloway, J. D., Hambler, C., & Speight, M. R. (1998). Canopy knockdown of arthropods in exotic plantations and natural forest in Sabah, north-east Borneo, using insecticidal mist-blowing. Bulletin of Entomological Research, 88, 15–24.

    Google Scholar 

  • Childers, C. C., & Abou-Setta, M. M. (1999). Yield reduction in ‘Tahiti’ lime from Panonychus citri feeding injury following different pesticide treatment regimes and impact on the associated predacious mites. Experimental and Applied Acarology, 23, 771–783.

    Google Scholar 

  • Chiverton, P. A. (1984). Pitfall-trap catches of the carabid beetle Pterostichus melanarius, in relation to gut contents and prey densities, in treated and untreated spring barley. Entomologia Experimentalis et Applicata, 36, 23–30.

    Article  CAS  Google Scholar 

  • Chiverton, P. A. (1987). Predation of Rhopalosiphum padi (Homoptera: Aphididae) by polyphagous predatory arthropods during the aphids’ pre-peak period in spring barley. Annals of Applied Biology, 111, 257–269.

    Article  Google Scholar 

  • Chiverton, P. A. (1989). The creation of within-field overwintering sites for natural enemies of cereal aphids. In Proceedings of the 1979 British Crop Protection Conference–Weeds, BCPC (pp. 1093–1096). Farnham.

    Google Scholar 

  • Chong, R. A., & Moran, N. A. (2018). Evolutionary loss and replacement of Buchnera, the obligate endosymbiont of aphids. ISME Journal, 12, 898–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chrambach, A., & Rodbard, D. (1971). Polyacrylamide gel electrophoresis. Science, 172, 440–451.

    Article  CAS  PubMed  Google Scholar 

  • Clare, E. L., Fazekas, A. J., Ivanova, N. V., Floyd, R. M., Hebert, P. D. N., Adams, A. M., Nagel, J., Girton, R., Newmaster, S. G., & Fenton, M. B. (2019). Three approaches to integrating genetic data into ecological networks. Molecular Ecology, 28, 503–519.

    Article  PubMed  Google Scholar 

  • Clare, E. L., Symondson, W. O. C., & Fenton, M. B. (2014). An inordinate fondness for beetles? Variation in seasonal dietary preferences of night-roosting big brown bats (Eptesicus fuscus). Molecular Ecology, 23, 3633–3647.

    Article  PubMed  Google Scholar 

  • Claridge, M. F., & Askew, R. R. (1960). Sibling species in the Eurytoma rosae group (Hym., Eurytomidae). Entomophaga, 5, 141–153.

    Article  Google Scholar 

  • Claridge, M. F., & Dawah, H. A. (1993). Assemblages of herbivorous chalcid wasps and their parasitoids associated with grasses – problems of species and specificity. In M. A. J. Williams (Ed.), Plant galls: Organisms, interactions, populations. Systematics Association Special Volume 49 (pp. 313–29). Clarendon Press.

    Google Scholar 

  • Clark, D. L., & Uetz, G. W. (1990). Video image recognition by the jumping spider, Maevia inclemens (Araneae: Salticidae). Animal Behaviour, 40, 884–890.

    Article  Google Scholar 

  • De Clercq, R., & Pietraszko, R. (1983). Epigeal arthropods in relation to predation of cereal aphids. In R. Cavalloro (Ed.), Aphid antagonists (pp. 88–92). A.A. Balkema.

    Google Scholar 

  • Cloarec, A. (1977). Alimentation des Larves d’Anax imperator Leach dans un milieu naturel (Anisoptera, Aeschnidae). Odontologica, 6, 227–243.

    Google Scholar 

  • Cochran, W. G. (1983). Planning and analysis of observational studies. Wiley.

    Book  Google Scholar 

  • Coddington, J. A., Young, L. H., & Coyle, F. A. (1996). Estimating spider species richness in a southern Appalachian cove hardwood forest. The Journal of Arachnology, 24, 111–128.

    Google Scholar 

  • Cohen, A. C. (1995). Extra-oral digestion in predaceous terrestrial Arthropoda. Annual Review of Entomology, 40, 85–103.

    Article  CAS  Google Scholar 

  • Cohen, J. E., & Briand, F. (1984). Trophic links of community food webs. Proceedings of the National Academy of Sciences USA, 81, 4105–4109.

    Article  CAS  Google Scholar 

  • Cohen, J. E., Schoenly, K., Heong, K. L., Justo, H., Arida, G., Barrion, A. T., & Litsinger, J. A. (1994). A food web approach to evaluating the effect of insecticide spraying on insect pest population dynamics in a Philippine irrigated rice ecosystem. Journal of Applied Ecology, 31, 747–763.

    Article  Google Scholar 

  • Colfer, R. G., & Rosenheim, J. A. (2001). Predation on immature parasitoids and its impact on aphid suppression. Oecologia, 126, 292–304.

    Article  CAS  PubMed  Google Scholar 

  • Coll, M., & Bottrell, D. G. (1996). Movement of an insect parasitoid in simple and diverse plant assemblages. Ecological Entomology, 21, 141–149.

    Article  Google Scholar 

  • Coll, M., & Guershon, M. (2002). Omnivory in terrestrial arthropods: Mixing plant and prey diets. Annual Review of Entomology, 47, 85–103.

    Article  Google Scholar 

  • Colunga-Garcia, M., Gage, S. H., & Landis, D. A. (1997). Response of an assemblage of Coccinellidae (Coleoptera) to a diverse agricultural landscape. Environmental Entomology, 26, 797–804.

    Google Scholar 

  • Condon, M. A., Scheffer, S. J., Lewis, M. L., Wharton, R., Adams, D. C., & Forbes, A. A. (2014). Lethal interactions between parasites and prey increase niche diversity in a tropical community. Science, 343, 1240–1244.

    Article  CAS  PubMed  Google Scholar 

  • Conn, D. L. T. (1976). Estimates of population size and longevity of adult narcissus bulb fly Merodon equestris Fab. (Diptera: Syrphidae). Journal of Applied Ecology, 13, 429–434.

    Article  Google Scholar 

  • Conrad, K. F., & Herman, T. B. (1990). Seasonal dynamics, movements and the effects of experimentally increased female densities on a population of imaginal Calopteryx aequabilis (Odonata: Calopterygidae). Ecological Entomology, 15, 119–129.

    Article  Google Scholar 

  • Cook, L. M., Bower, P. P., & Croze, H. J. (1967). The accuracy of a population estimation from multiple recapture data. Journal of Animal Ecology, 36, 57–60.

    Article  Google Scholar 

  • Coombes, D. S., & Sotherton, N. W. (1986). The dispersal and distribution of polyphagous predatory Coleoptera in cereals. Annals of Applied Biology, 108, 461–474.

    Article  Google Scholar 

  • Cooper, B. A. (1945). Hymenopterist’s handbook. The Amateur Entomologist, 7, 1–160.

    Google Scholar 

  • Corbett, A., Murphy, B. C., Rosenheim, J. A., & Bruins, P. (1996). Labelling an egg parasitoid, Anagrus epos (Hymenoptera: Mymaridae), with rubidium within an overwintering refuge. Environmental Entomology, 25, 29–38.

    Article  Google Scholar 

  • Corbett, A., & Plant, R. E. (1993). Role of movement in the response of natural enemies to agroecosystem diversification: A theoretical evaluation. Environmental Entomology, 22, 519–531.

    Article  Google Scholar 

  • Corbett, A., & Rosenheim, J. A. (1996). Quantifying movement of a minute parasitoid, Anagrus epos (Hymenoptera, Mymaridae) using fluorescent dust marking and recapture. Biological Control, 6, 35–44.

    Article  Google Scholar 

  • Cornelius, M. L., Duan, J. J., & Messing, R. H. (1999). Visual stimuli and response of female Oriental fruit flies (Diptera: Tephritidae) to fruit-mimicking traps. Journal of Economic Entomology, 92, 121–129.

    Article  Google Scholar 

  • Costamagna, A. C., Landis, D. A., & Difonzo, C. D. (2007). Suppression of soybean aphid by generalist predators results in a trophic cascade in soybeans. Ecological Applications, 17, 441–451.

    Article  PubMed  Google Scholar 

  • Couchoux, C., Seppä, P., & van Nouhuys, S. (2016). Strong dispersal in a parasitoid wasp overwhelms habitat fragmentation and host population dynamics. Molecular Ecology, 25, 3344–3355.

    Article  CAS  PubMed  Google Scholar 

  • Coulson, R. M. R., Curtis, C. F., Ready, P. D., Hill, N., & Smith, D. F. (1990). Amplification and analysis of human DNA present in mosquito bloodmeals. Medical and Veterinary Entomology, 4, 357–366.

    Article  CAS  PubMed  Google Scholar 

  • Craig, C. C. (1953). On the utilisation of marked specimens in estimating populations of flying insects. Biometrika, 40, 170–176.

    Article  Google Scholar 

  • Crawley, M. J. (1993). GLIM for ecologists. Blackwell Scientific Publishing.

    Google Scholar 

  • Crawley, M. J. (2002). Statistical computing: An introduction to data analysis using S-Plus. Wiley.

    Google Scholar 

  • Cresswell, M. J. (1995). Malaise trap: Collection attachment modification and collection fluid. Weta, 18, 10–11.

    Google Scholar 

  • Crocker, R. L., Rodriguez-del-Bosque, L. A., Nailon, W. T., & Wei, X. (1996). Flight periods in Texas of three parasites (Diptera: Pyrgotidae) of adult Phyllophaga spp. (Coleoptera: Scarabaeidae), and egg production by Pyrgota undata. Southwestern Entomologist, 21, 317–324.

    Google Scholar 

  • Crook, N. E., & Sunderland, K. D. (1984). Detection of aphid remains in predatory insects and spiders by ELISA. Annals of Applied Biology, 105, 413–422.

    Article  Google Scholar 

  • Crumb, S. E., Eide, P. M., & Bonn, A. E. (1941). The European earwig. USDA Technical Bulletin, 766, 1–76.

    Google Scholar 

  • Culin, J. D., & Rust, R. W. (1980). Comparison of the ground surface and foliage dwelling spider communities in a soybean habitat. Environmental Entomology, 9, 577–582.

    Article  Google Scholar 

  • Culin, J. D., & Yeargan, K. V. (1983). Comparative study of spider communities in alfalfa and soybean ecosystems: Ground-surface spiders. Annals of the Entomological Society of America, 76, 832–838.

    Article  Google Scholar 

  • Curry, M. M., Paliulis, L. V., Welch, K. D., Harwood, J. D., & White, J. A. (2015). Multiple endosymbiont infections and reproductive manipulations in a linyphiid spider population. Heredity, 115, 146–152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danet, J. L., Foissac, X., Zreik, L., Salar, P., Verdin, E., Nourrisseau, J. G., & Garnier, M. (2003). Candidatus Phlomobacter fragariae is the prevalent agent of marginal chlorosis of strawberry in French production fields and is transmitted by the planthopper Cixius wagneri (China). Phytopathology, 93, 644–649.

    Article  PubMed  Google Scholar 

  • Danks, H. V. (1971). Biology of some stem-nesting Aculeate Hymenoptera. Transactions of the Royal Entomological Society of London, 122, 323–399.

    Article  Google Scholar 

  • Davis, J. R., & Kirkland, R. L. (1982). Physiological and environmental factors related to the dispersal flight of the convergent lady beetle Hippodamia convergens. Journal of the Kansas Entomological Society, 55, 187–196.

    Google Scholar 

  • Dawah, H. A., Hawkins, B. A., & Claridge, M. F. (1995). Structure of the parasitoid communities of grass-feeding chalcid wasps. Journal of Animal Ecology, 64, 708–720.

    Article  Google Scholar 

  • Day, W. H. (1994). Estimating mortality caused by parasites and diseases of insects: Comparisons of the dissection and rearing methods. Environmental Entomology, 23, 543–550.

    Article  Google Scholar 

  • Day, S. E., & Jeanne, R. L. (2001). Food volatiles as attractants for yellowjackets (Hymenoptera: Vespidae). Environmental Entomology, 30, 157–165.

    Article  CAS  Google Scholar 

  • Dean, D. A., & Sterling, W. L. (1990). Seasonal patterns of spiders captured in suction traps in Eastern Texas. Southwestern Entomologist, 15, 399–412.

    Google Scholar 

  • Dean, G. J., Jones, M. G., & Powell, W. (1981). The relative abundance of the hymenopterous parasites attacking Metopolophium dirhodum (Walker) and Sitobion avenae (F.) (Hemiptera. Aphididae) on cereals during 1973–1979 in southern England. Bulletin of Entomological Research, 71, 307–315.

    Article  Google Scholar 

  • Decker, U. M. (1988). Evidence for semiochemicals affecting the reproductive behaviour of the aphid parasitoids Aphidius rhopalosiphi De Stefani-Perez and Praon volucre Haliday (Hymenoptera: Aphidiidae)–a contribution towards integrated pest management in cereals. University of Hohenheim, Ph.D. Thesis.

    Google Scholar 

  • Decker, U. M., Powell, W., & Clark, S. J. (1993). Sex pheromones in the cereal aphid parasitoids Praon volucre and Aphidius rhopalosiphi. Entomologia Experimentalis et Applicata, 69, 33–39.

    Article  CAS  Google Scholar 

  • Dedeine, F., Vavre, F., Fleury, F., Loppin, B., Hochberg, M. E., & Bouletreau, M. (2001). Removing symbiotic Wolbachia bacteria specifically inhibits oogenesis in a parasitic wasp. Proceedings of the National Academy of Sciences USA, 98, 6247–6252.

    Article  CAS  Google Scholar 

  • Delettre, Y. R., Morvan, N., Tréhen, P., & Grootaert, P. (1998). Local biodiversity and multi-habitat use in empidoid flies (Insecta: Diptera, Empidoidea). Biodiversity and Conservation, 7, 9–25.

    Article  Google Scholar 

  • Dell, A. I., Bender, J. A., Branson, K., Couzin, I. D., de Polavieja, G. G., Noldus, L. P., Pérez-Escudero, A., Perona, P., Straw, A. D., Wikelski, M., & Brose, U. (2014). Automated image-based tracking and its application in ecology. Trends in Ecology and Evolution, 29, 417–428.

    Google Scholar 

  • DeLong, D. M. (1932). Some problems encountered in the estimation of insect populations by the sweeping method. Annals of the Entomological Society of America, 25, 13–17.

    Article  Google Scholar 

  • Demichelis, S., & Manino, A. (1998). Electrophoretic detection of parasitism by Dryinidae in Typhlocybinae leafhoppers (Homoptera: Auchenorrhyncha). Canadian Entomologist, 130, 407–414.

    Article  Google Scholar 

  • Dempster, J. P. (1989). Insect introductions: Natural dispersal and population persistence in insects. The Entomologist, 108, 5–13.

    Google Scholar 

  • Dempster, J. P., Lakhani, K. H., & Coward, P. A. (1986). The use of chemical composition as a population marker in insects: A study of the Brimstone butterfly. Ecological Entomology, 11, 51–65.

    Article  Google Scholar 

  • Deng, D. A., & Li, B. Q. (1981). Collecting ground beetles (Carabidae) in baited pitfall traps. Insect Knowledge, 18, 205–207.

    Google Scholar 

  • Dennis, P. (1991). Temporal and spatial distribution of arthropod predators of the aphids Rhopalosiphum padi (L.) and Sitobion avenae (F.) in cereals next to field margin habitats. Norwegian Journal of Agricultural Science, 5, 79–88.

    Google Scholar 

  • Dennison, D. F., & Hodkinson, I. D. (1983). Structure of the predatory beetle community in woodland soil ecosystem. 1. Prey selection. Pedobiologia, 25, 109–115.

    Google Scholar 

  • Dennison, D. F., & Hodkinson, I. D. (1984). Structure of the predatory beetle community in a woodland soil ecosystem. IV. Population densities and community composition. Pedobiologia, 26, 157–170.

    Google Scholar 

  • Denno, R. F., Gratton, C., Peterson, M. A., Langellotto, G. A., Finke, D. L., & Huberty, A. F. (2002). Bottom-up forces mediate natural-enemy impact in a phytophagous insect community. Ecology, 83, 1443–1458.

    Article  Google Scholar 

  • Derocles, S. A., Plantegenest, M., Simon, J. C., Taberlet, P., & Le Ralec, A. (2012). A universal method for the detection and identification of Aphidiinae parasitoids within their aphid hosts. Molecular Ecology Resources, 12, 634–645.

    Google Scholar 

  • Derocles, S. A. P., Le Ralec, A., Besson, M. M., Maret, M., Walton, A., Evans, D. M., & Plantegenest, M. (2014). Molecular analysis reveals high compartmentalization in aphid-primary parasitoid networks and low panasitoid sharing between crop and non-crop habitats. Molecular Ecology, 23, 3900–3911.

    Article  PubMed  Google Scholar 

  • Desender, K., van den Broeck, D., & Maelfait, J. P. (1985). Population biology and reproduction in Pterostichus melanarius III. (Coleoptera, Carabidae) from a heavily grazed pasture ecosystem. Mededelingen van de Fakulteit Landbouwwetenschappen Rijksuniversiteit Gent, 50, 567–575.

    Google Scholar 

  • Desender, K., & Maelfait, J. P. (1983). Population restoration by means of dispersal, studied for different carabid beetles (Coleoptera, Carabidae) in a pasture ecosystem. In P. Lebrun, H. M. Andre, A. De Medts, C. Grégoire-Wibo, & G. Wauthy (Eds.), New trends in soil biology (pp. 541–550). Dieu-Brichart.

    Google Scholar 

  • Desender, K., & Maelfait, J. P. (1986). Pitfall trapping within enclosures: A method for estimating the relationship between the abundances of coexisting carabid species (Coleoptera: Carabidae). Holarctic Ecology, 9, 245–250.

    Google Scholar 

  • Desender, K., Maelfait, J. P., D’Hulster, M., & Vanhereke, L. (1981). Ecological and faunal studies on Coleoptera in agricultural land I. Seasonal occurrence of Carabidae in the grassy edge of a pasture. Pedobiologia, 22, 379–384.

    Article  Google Scholar 

  • Desender, K., Mertens, J., D’Hulster, M., & Berbiers, P. (1984). Diel activity patterns of Carabidae (Coleoptera), Staphylinidae (Coleoptera) and Collembola in a heavily grazed pasture. Revue d’Écologie et de Biologie du Sol, 21, 347–361.

    Google Scholar 

  • Desender, K., & Segers, R. (1985). A simple device and technique for quantitative sampling of riparian beetle populations with some carabid and staphylinid abundance estimates on different riparian habitats (Coleoptera). Revue d’Écologie et de Biologie du Sol, 22, 497–506.

    Google Scholar 

  • Desjardins, C. A., Cerqueira, G. C., Goldberg, J. M., Hotopp, J. C. D., Haas, B. J., Zucker, J., Ribeiro, J. M., Saif, S., Levin, J. Z., Fan, L., Zeng, Q., Russ, C., Wortman, J. R., Fink, D. L., Birren, B. W., & Nutman, T. B. (2013). Genomics of Loa loa, a Wolbachia-free filarial parasite of humans. Nature Genetics, 45, 495-U455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desouhant, E., Driessen, G., Lapchin, L., Wielaard, S., & Bernstein, C. (2003). Dispersal between host populations in field conditions: Navigation rules in the parasitoid Venturia canescens. Ecological Entomology, 28, 257–267.

    Article  Google Scholar 

  • Dewar, A. M., Dean, G. J., & Cannon, R. (1982). Assessment of methods for estimating the numbers of aphids (Hemiptera: Aphididae) in cereals. Bulletin of Entomological Research, 72, 675–685.

    Article  Google Scholar 

  • Dheilly, N. M., Maure, F., Ravallec, M., Galinier, R., Doyon, J., Duval, D., Leger, L., Volkoff, A. N., Missé, D., Nidelet, S., Demolombe, V., Brodeur, J., Gourbal, B., Thomas, F., & Mitta, G. (2015). Who is the puppet master? Replication of a parasitic wasp-associated virus correlates with host behaviour manipulation. Proceedings of the Royal Society of London B, 282, 28220142773.

    Google Scholar 

  • Dieckhoff, C., Tatman, K. M., & Hoelmer, K. A. (2017). Natural biological control of Halyomorpha halys by native egg parasitoids: A multi-year survey in northern Delaware. Journal of Pest Science, 90, 1143–1158.

    Article  Google Scholar 

  • Dietrick, E. J. (1961). An improved back pack motor fan for suction sampling of insect populations. Journal of Economic Entomology, 54, 394–395.

    Article  Google Scholar 

  • Dietrick, E. J., Schlinger, E. I., & van den Bosch, R. (1959). A new method for sampling arthropods using a suction collecting machine and modified Berlese funnel separator. Journal of Economic Entomology, 52, 1085–1091.

    Article  Google Scholar 

  • Digby, P. G. N., & Kempton, R. A. (1987). Multivariate analysis of ecological communities. Chapman and Hall.

    Book  Google Scholar 

  • Digweed, S. C. (1993). Selection of terrestrial gastropod prey by Cychrine and Pterostichine ground beetles (Coleoptera: Carabidae). Canadian Entomologist, 125, 463–472.

    Article  Google Scholar 

  • Digweed, S. C., Currie, C. R., Cárcamo, H. A., & Spence, J. R. (1995). Digging out the “digging-in effect” of pitfall traps; influences of depletion and disturbance on catches of ground beetles (Coleoptera; Carabidae). Pedobiologia, 39, 561–576.

    Google Scholar 

  • Dillon, R. J., & Dillon, V. M. (2004). The gut bacteria of insects: Nonpathogenic interactions. Annual Review of Entomology, 49, 71–92.

    Article  CAS  PubMed  Google Scholar 

  • Dinter, A. (1995). Estimation of epigeic spider population densities using an intensive D-vac sampling technique and comparison with pitfall trap catches in winter wheat. Acta Jutlandica, 70, 23–32.

    Google Scholar 

  • Dinter, A., & Poehling, H. M. (1992). Spider populations in winter wheat fields and the side-effects of insecticides. Aspects of Applied Biology, 31, 77–85.

    Google Scholar 

  • Dixon, T. J. (1959). Studies on oviposition behaviour of Syrphidae. Transactions of the Royal Entomological Society of London, 111, 57–80.

    Article  Google Scholar 

  • Dixon, P. L., & McKinlay, R. G. (1989). Aphid predation by harvestmen in potato fields in Scotland. Journal of Arachnology, 17, 253–255.

    Google Scholar 

  • Dixon, P. L., & McKinlay, R. G. (1992). Pitfall trap of and predation by Pterostichus melanarius and Pterostichus madidus in insecticide treated and untreated potatoes. Entomologia Experimentalis et Applicata, 64, 63–72.

    Article  Google Scholar 

  • Docherty, M., & Leather, S. R. (1997). Structure and abundance of arachnid communities in Scots and lodgepole pine plantations. Forest Ecology and Management, 95, 197–207.

    Article  Google Scholar 

  • Dondale, C. D., Parent, B., & Pitre, D. (1979). A 6-year study of spiders (Araneae) in a Quebec apple orchard. Canadian Entomologist, 111, 377–380.

    Article  Google Scholar 

  • Dondale, C. D., Redner, J. H., Farrell, E., Semple, R. B., & Turnbull, A. L. (1970). Wandering of hunting spiders in a meadow. Bulletin du Musée Nationale d’Histoire Naturelle (Canada), 41, 61–64.

    Google Scholar 

  • Dormann, W. (2000). A new pitfall trap for use in periodically inundated habitats. In P. Brandmayr, G. L. Lövei, T. Z. Brandmayr, A. Casale, & A. V. Taglianti (Eds.), Natural history and applied ecology of carabid beetles (pp. 247–250). Pensoft Publishers.

    Google Scholar 

  • Dowell, F. E., Broce, A. B., Xie, F., Throne, J. E., & Baker, J. E. (2000). Detection of parasitised fly puparia using near infrared spectroscopy. Journal of near Infrared Spectroscopy, 8, 259–265.

    Article  CAS  Google Scholar 

  • Drew, G., Frost, C., & Hurst, G. D. (2019). Reproductive parasitism and positive fitness effects of heritable microbes. eLS. https://doi.org/10.1002/9780470015902.a0028327

  • Driessen, G., & Hemerik, L. (1992). The time and egg budget of Leptopilina clavipes, a parasitoid of larval Drosophila. Ecological Entomology, 17, 17–27.

    Article  Google Scholar 

  • Dubrovskaya, N. A. (1970). Field carabid beetles (Coleoptera, Carabidae) of Byelorussia. Entomological Review, 49, 476–483.

    Google Scholar 

  • DuDevoir, D. S., & Reeves, R. M. (1990). Feeding activity of carabid beetles and spiders on gypsy moth larvae (Lepidoptera: Lymantriidae) at high density prey populations. Journal of Entomological Science, 25, 341–356.

    Article  Google Scholar 

  • Duelli, P. (1980). Adaptive dispersal and appetitive flight in the green lacewing, Chrysopa carnea. Ecological Entomology, 5, 213–220.

    Article  Google Scholar 

  • Duelli, P., Obrist, M. K., & Schmatz, D. R. (1999). Biodiversity evaluation in agricultural landscapes: Above-ground insects. Agriculture, Ecosystems and Environment, 74, 33–64.

    Article  Google Scholar 

  • Duelli, P., Studer, M., Marchand, I., & Jakob, S. (1990). Population movements of arthropods between natural and cultivated areas. Biological Conservation, 54, 193–207.

    Article  Google Scholar 

  • Duffey, E. (1962). A population study of spiders in limestone grassland. Journal of Animal Ecology, 31, 571–599.

    Article  Google Scholar 

  • Duffey, E. (1974). Comparative sampling methods for grassland spiders. Bulletin of the British Arachnological Society, 3, 34–37.

    Google Scholar 

  • Duffey, E. (1978). Ecological strategies in spiders including some characteristics of species in pioneer and mature habitats. Symposia of the Zoological Society of London, 42, 109–123.

    Google Scholar 

  • Duffey, E. (1980). The efficiency of the Dietrick Vacuum Sampler (D-VAC) for invertebrate population studies in different types of grassland. Bulletin d’Écologie, 11, 421–431.

    Google Scholar 

  • Durkis, T. J., & Reeves, R. M. (1982). Barriers increase efficiency of pitfall traps. Entomological News, 93, 8–12.

    Google Scholar 

  • Duron, O. (2014). Arsenophonus insect symbionts are commonly infected with APSE, a bacteriophage involved in protective symbiosis. FEMS Microbiology Ecology, 90, 184–194.

    Article  CAS  PubMed  Google Scholar 

  • Duron, O., Bouchon, D., Boutin, S., Bellamy, L., Zhou, L. Q., Engelstadter, J., & Hurst, G. D. D. (2008). The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biology, 6, 27. https://doi.org/10.1186/1741-7007-6-27

  • Duron, O., Doublet, P., Vavre, F., & Bouchon, D. (2018). The importance of revisiting Legionellales diversity. Trends in Parasitology, 34, 1027–1037.

    Google Scholar 

  • Duron, O., Fort, P., & Weill, M. (2006). Hypervariable prophage WO sequences describe an unexpected high number of Wolbachia variants in the mosquito Culex pipiens. Proceedings of the Royal Society of London B, 273, 495–502.

    Google Scholar 

  • Duron, O., Hurst, G. D. D., Hornett, E. A., Josling, J. A., & Engelstadter, J. (2008b). High incidence of the maternally inherited bacterium Cardinium in spiders. Molecular Ecology, 17, 1427–1437.

    Article  CAS  PubMed  Google Scholar 

  • Duron, O., Wilkes, T. E., & Hurst, G. D. D. (2010). Interspecific transmission of a male-killing bacterium on an ecological timescale. Ecology Letters, 13, 1139–1148.

    Article  PubMed  Google Scholar 

  • Dutton, A., & Bigler, F. (1995). Flight activity assessment of the egg parasitoid Trichogramma brassicae (Hym.: Trichogrammatidae) in laboratory and field conditions. Entomophaga, 40, 223–233.

    Article  Google Scholar 

  • East, R. (1974). Predation on the soil dwelling stages of the winter moth at Wytham Wood, Berkshire. Journal of Animal Ecology, 43, 611–626.

    Article  Google Scholar 

  • Eastop, V. F., & Pope, R. D. (1969). Notes on the biology of some British Coccinellidae. The Entomologist, 102, 162–164.

    Google Scholar 

  • Eberhardt, L. L., & Thomas, J. M. (1991). Designing environmental field studies. Ecological Monographs, 61, 53–73.

    Article  Google Scholar 

  • Ebert, D. (2013). The epidemiology and evolution of symbionts with mixed-mode transmission. Annual Review of Ecology, Evolution, and Systematics, 44, 623–643.

    Article  Google Scholar 

  • Edwards, C. A. (1991). The assessment of populations of soil-inhabiting invertebrates. Agriculture, Ecosystems and Environment, 34, 145–176.

    Article  Google Scholar 

  • Edwards, O. R., & Hoy, M. A. (1995). Random Amplified Polymorphic DNA markers to monitor laboratory-selected, pesticide-resistant Trioxys pallidus (Hymenoptera: Aphidiidae) after release into three California walnut orchards. Environmental Entomology, 24, 487–496.

    Article  Google Scholar 

  • Edwards, C. A., Sunderland, K. D., & George, K. S. (1979). Studies on polyphagous predators of cereal aphids. Journal of Applied Ecology, 16, 811–823.

    Article  Google Scholar 

  • Edwards, C. A., & Fletcher, K. E. (1971). A comparison of extraction methods for terrestrial arthropods. In J. Phillipson (Ed.), Methods of study in quantitative soil ecology, production and energy flow (Vol. 18, pp. 150–185). IBP Handbooks.

    Google Scholar 

  • Eggers, T., & Jones, T. H. (2000). You are what you eat… or are you? Trends in Ecology and Evolution, 15, 265–266.

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg, R. M., Hurd, L. E., Fagan, W. F., Tilmon, K. J., Snyder, W. E., Vandersall, K. S., Datz, S. G., & Welch, J. D. (1992). Adult dispersal of Tenodera aridifolia sinensis (Mantodea: Mantidae). Environmental Entomology, 21, 350–353.

    Article  Google Scholar 

  • Eitzinger, B., Abrego, N., Gravel, D., Huotari1, T., Vesterinen, E.J., & Roslin T. (2019). Assessing changes in arthropod predator-prey interactions through DNA-based gut content analysis–variable environment, stable diet. Molecular Ecology, 28, 266–280.

    Google Scholar 

  • Ekblom, R., & Galindo, J. (2011). Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity, 107, 1–15.

    Article  CAS  PubMed  Google Scholar 

  • van Ellers, J., Alphen, J. J. M., & Sevenster, J. G. (1998). A field study of size-fitness relationships in the parasitoid Asobara tabida. Journal of Animal Ecology, 67, 318–324.

    Article  Google Scholar 

  • Ellington, J., Kiser, K., Ferguson, G., & Cardenas, M. (1984). A comparison of sweepnet, absolute, and Insectavac sampling methods in cotton ecosystems. Journal of Economic Entomology, 77, 599–605.

    Article  Google Scholar 

  • Elliott, J. M. (1967). Invertebrate drift in a Dartmoor stream. Archives of Hydrobiology, 63, 202–237.

    Google Scholar 

  • Elliott, J. M. (1970). Methods of sampling invertebrate drift in running water. Annals of Limnology, 6, 133–159.

    Article  Google Scholar 

  • Elliott, N. C., & Michels, G. J. (1997). Estimating aphidophagous coccinellid populations in alfalfa. Biological Control, 8, 43–51.

    Article  Google Scholar 

  • van Emden, H. F., & Hagen, K. S. (1976). Olfactory reactions of the green lacewing, Chrysopa carnea to tryptophan and certain breakdown products. Environmental Entomology, 5, 469–473.

    Google Scholar 

  • Engel, P., & Moran, N. A. (2013). The gut microbiota of insects—diversity in structure and function. FEMS Microbiology Reviews, 37, 699–735.

    Article  CAS  PubMed  Google Scholar 

  • Engelstadter, J., & Hurst, G. D. D. (2009). The ecology and evolution of microbes that manipulate host reproduction. Annual Review of Ecology Evolution and Systematics, 40, 127–149.

    Article  Google Scholar 

  • Engl, T., Eberl, N., Gorse, C., Kruger, T., Schmidt, T. H. P., Plarre, R., Adler, C., & Kaltenpoth, M. (2018). Ancient symbiosis confers desiccation resistance to stored grain pest beetles. Molecular Ecology, 27, 2095–2108.

    Article  CAS  PubMed  Google Scholar 

  • Epstein, M. E., & Kulman, H. M. (1984). Effects of aprons on pitfall trap catches of carabid beetles in forests and fields. Great Lakes Entomologist, 17, 215–221.

    Google Scholar 

  • Ericson, D. (1977). Estimating population parameters of Pterostichus cupreus and P. melanarius (Carabidae) in arable fields by means of capture-recapture. Oikos, 29, 407–417.

    Article  Google Scholar 

  • Ericson, D. (1978). Distribution, activity and density of some Carabidae (Coleoptera) in winter wheat fields. Pedobiologia, 18, 202–217.

    Article  Google Scholar 

  • Ericson, D. (1979). The interpretation of pitfall catches of Pterostichus cupreus and P. melanarius (Coleoptera, Carabidae) in cereal fields. Pedobiologia, 19, 320–328.

    Article  Google Scholar 

  • Ernsting, G., & Joosse, E. N. G. (1974). Predation on two species of surface dwelling Collembola. A study with radio-isotope labelled prey. Pedobiologia, 14, 222–231.

    Article  Google Scholar 

  • Estoup, A., & Guillemaud, T. (2010). Reconstructing routes of invasion using genetic data: Why, how and so what? Molecular Ecology, 19, 4113–4130.

    Article  PubMed  Google Scholar 

  • Eubanks, M. D. (2001). Estimates of the direct and indirect effects of red imported fire ants on biological control in field crops. Biological Control, 21, 35–43.

    Article  Google Scholar 

  • Evans, D. A., Miller, B. R., & Bartlett, C. B. (1973). Host searching range of Dasymutilla nigripes (Fabricius) as investigated by tagging (Hymenoptera: Mutillidae). Journal of the Kansas Entomological Society, 46, 343–346.

    Google Scholar 

  • Everts, J. W., Willemsen, I., Stulp, M., Simons, L., Aukema, B., & Kammenga, J. (1991). The toxic effect of deltamethrin on linyphiid and erigonid spiders in connection with ambient temperature, humidity and predation. Archives of Environmental Contamination and Toxicology, 20, 20–24.

    Article  CAS  PubMed  Google Scholar 

  • Eyre, M. D., Luff, M. L., & Rushton, S. P. (1990). The ground beetle (Coleoptera, Carabidae) fauna of intensively managed agricultural grasslands in northern England and southern Scotland. Pedobiologia, 34, 11–18.

    Google Scholar 

  • Eyre, M. D., & Luff, M. L. (1990). A preliminary classification of European grassland habitats using carabid beetles. In N.E. Stork (Ed.), The role of ground beetles in ecological and environmental studies (pp. 227–236). Intercept.

    Google Scholar 

  • Fagan, W. F. (1997). Introducing a boundary-flux approach to quantifying insect diffusion rates. Ecology, 78, 579–587.

    Google Scholar 

  • Fagan, W. F., Hakim, A. L., Ariawan, H., & Yuliyantiningsih, S. (1998). Interactions between biological control efforts and insecticide applications in tropical rice agroecosystems: The potential role of intraguild predation. Biological Control, 13, 121–126.

    Article  Google Scholar 

  • Fantle, M. S., Dittel, A. I., Schwalm, S. M., Epifanio, C. E., & Fogel, M. L. (1999). A food web analysis of the juvenile blue crab, Callinectes sapidus, using stable isotopes in whole animals and individual amino acids. Oecologia, 120, 416–426.

    Article  PubMed  Google Scholar 

  • Fatouros, N. E., Dicke, M., Mumm, R., Meiners, T., & Hilker, M. (2008). Foraging behavior of egg parasitoids exploiting chemical information. Behavioral Ecology, 19, 677–689.

    Article  Google Scholar 

  • Faulds, W., & Crabtree, R. (1995) A system for using a Malaise trap in the forest canopy. New Zealand Entomologist, 18, 97–99.

    Google Scholar 

  • Fedorenko, A. Y. (1975). Instar and species-specific diets in two species of Chaoborus. Limnology and Oceanography, 20, 238–242.

    Article  Google Scholar 

  • Feldhaar, H. (2011). Bacterial symbionts as mediators of ecologically important traits of insect hosts. Ecological Entomology, 36, 533–543.

    Article  Google Scholar 

  • Feng, J. G., Zhang, Y., Tao, X., & Chen, X. L. (1988). Use of radioisotope 32P to evaluate the parasitization of Adoxophyes orana (Lep.: Tortricidae) by mass released Trichogramma dendrolimi (Hym.: Trichogrammatidae) in an apple orchard. Chinese Journal of Biological Control, 4, 152–154.

    Google Scholar 

  • Feng, M. G., & Nowierski, R. M. (1992). Spatial patterns and sampling plans for cereal aphids (Hem.: Aphididae) killed by entomophthoralean fungi and hymenopterous parasitoids in spring wheat. Entomophaga, 37, 265–275.

    Article  Google Scholar 

  • Ferri, E., Bain, O., Barbuto, M., Martin, C., Lo, N., Uni, S., Landmann, F., Baccei, S. G., Guerrero, R., Lima, S. S., Bandi, C., Wanji, S., Diagne, M., & Casiraghi, M. (2011). New insights into the evolution of Wolbachia infections in filarial nematodes inferred from a large range of screened species. PLoS ONE, 6, e20843. https://doi.org/10.1371/journal.pone.0020843

  • Fichter, B. L., & Stephen, W. P. (1979). Selection and use of host-specific antigens. Entomological Society of America, Miscellaneous Publication, 11, 25–33.

    Google Scholar 

  • Field, J. (1992). Guild structure in solitary spider-hunting wasps (Hymenoptera: Pompilidae) compared with null model predictions. Ecological Entomology, 17, 198–208.

    Article  Google Scholar 

  • Finch, S. (1992). Improving the selectivity of water traps for monitoring populations of the cabbage root fly. Annals of Applied Biology, 120, 1–7.

    Article  Google Scholar 

  • Finch, S. (1996). Effect of beetle size on predation of cabbage root fly eggs by ground beetles. Entomologia Experimentalis et Applicata., 81, 199–206.

    Article  Google Scholar 

  • Finlayson, T. (1967). A classification of the subfamily Pimplinae (Hymenoptera: Ichneumonidae) based on final-instar larval characteristics. Canadian Entomologist, 99, 1–8.

    Article  Google Scholar 

  • Finlayson, T. (1990). The systematics and taxonomy of final-instar larvae of the family Aphidiidae (Hymenoptera). Memoirs of the Entomological Society of Canada, 152, 1–74.

    Google Scholar 

  • Finlayson, T., & Hagen, K. S. (1977). Final-instar larvae of parasitic Hymenoptera. Pest Management Papers, Simon Fraser University, 10, 1–111.

    Google Scholar 

  • Fisher, R. A., & Ford, E. B. (1947). The spread of a gene in natural conditions in a colony of the moth Panaxia dominulua L. Heredity, 1, 143–174.

    Article  Google Scholar 

  • Fleischer, S. J., Gaylor, M. J., & Edelson, J. V. (1985). Estimating absolute density from relative sampling of Lygus lineolaris (Heteroptera: Miridae) and selected predators in early to mid-season cotton. Environmental Entomology, 14, 709–717.

    Article  Google Scholar 

  • Fleischer, S. J., Gaylor, M. J., Hue, N. V., & Graham, L. C. (1986). Uptake and elimination of rubidium, a physiological marker, in adult Lygus lineolaris (Hemiptera: Miridae). Annals of the Entomological Society of America, 79, 19–25.

    Article  CAS  Google Scholar 

  • Fletcher, B. S., Kapatos, E., & Southwood, T. R. E. (1981). A modification of the Lincoln Index for estimating the population densities of mobile insects. Ecological Entomology, 6, 397–400.

    Article  Google Scholar 

  • Fleury, F., Allemand, R., Fouillet, P., & Bouletreau, M. (1995). Genetic variation in locomotor activity rhythm among populations of Leptopilina heterotoma (Hymenoptera: Eucoilidae), a larval parasitoid of Drosophila species. Behavior Genetics, 25, 81–89.

    Article  CAS  PubMed  Google Scholar 

  • Flint, H. M., Merkle, J. R., & Sledge, M. (1981). Attraction of male Collops vittatus in the field by caryophyllene alcohol. Environmental Entomology, 10, 301–304.

    Article  CAS  Google Scholar 

  • Flint, H. M., Salter, S. S., & Walters, S. (1979). Caryophylene: An attractant for the green lacewing. Environmental Entomology, 8, 1123–1125.

    Article  CAS  Google Scholar 

  • Floren, A., & Linsenmair, K. E. (1998). Non-equilibrium communities of Coleoptera in trees in a lowland rain forest of Borneo. Ecotropica, 4, 55–67.

    Google Scholar 

  • Florez, L. V., Biedermann, P. H. W., Engl, T., & Kaltenpoth, M. (2015). Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Natural Product Reports, 32, 904–936.

    Article  CAS  PubMed  Google Scholar 

  • Folmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294–299.

    CAS  PubMed  Google Scholar 

  • Folsom, T. C., & Collins, N. C. (1984). The diet and foraging behavior of the larval dragonfly Anax junius (Aeshnidae), with an assessment of the role of refuges and prey activity. Oikos, 42, 105–113.

    Article  Google Scholar 

  • Fontaine, C., Guimarães, P. R., Jr., Kéfi, S., Loeuille, N., Memmott, J., van der Putten, W. H., van Veen, F. J. F., & Thébault, E. (2011). The ecological and evolutionary implications of merging different types of networks. Ecology Letters, 14, 1170–1181.

    Article  PubMed  Google Scholar 

  • Foray, V., Perez-Jimenez, M. M., Fattouh, N., & Landmann, F. (2018). Wolbachia control stem cell behavior and stimulate germline proliferation in filarial nematodes. Developmental Cell, 45, 198–211.

    Article  CAS  PubMed  Google Scholar 

  • Fournier, E., & Loreau, M. (2000). Movement of Pterostichus melanarius in agricultural field margins in relation to hunger state. In P. Brandmayr, G. L. Lövei, T. Z. Brandmayr, A. Casale, & A. V. Taglianti (Eds.), Natural history and applied ecology of carabid beetles (pp. 207–219). Pensoft Publishers.

    Google Scholar 

  • Fournier, E., & Loreau, M. (2002). Foraging activity of the carabid beetle Pterostichus melanarius III. In field margin habitats. Agriculture, Ecosystems and Environment, 89, 253–259.

    Google Scholar 

  • Fowler, H. G. (1987). Field behaviour of Euphasiopteryx depleta (Diptera: Tachinidae): Phonotactically orienting parasitoids of mole crickets (Orthoptera: Cryllotalpidae: Scapteriscus). Journal of the New York Entomological Society, 95, 474–480.

    Google Scholar 

  • Frago, E. (2016). Interactions between parasitoids and higher order natural enemies: Intraguild predation and hyperparasitoids. Current Opinion in Insect Science, 14, 81–86.

    Article  PubMed  Google Scholar 

  • Frago, E., & Godfray, H. C. J. (2014). Avoidance of intraguild predation leads to a long-term positive trait-mediated indirect effect in an insect community. Oecologia, 174, 943–2952.

    Article  PubMed  Google Scholar 

  • Frago, E., Mala, M., Weldegergis, B. T., Yang, C. J., McLean, A., Godfray, H. C. J., Gols, R., & Dicke, M. (2017). Symbionts protect aphids from parasitic wasps by attenuating herbivore-induced plant volatiles. Nature Communications, 8, 1860.

    Google Scholar 

  • Frank, J. H. (1968). Notes on the biology of Philonthus decorus (Grav.) (Col., Staphylinidae). Entomologist’s Monthly Magazine, 103, 273–277.

    Google Scholar 

  • Franke, U., Friebe, B., & Beck, L. (1988). Methodisches zur Ermittlung der Siedlungsdichte von Bodentieren aus Quadratproben und Barberfallen. Pedobiologia, 32, 253–264.

    Article  Google Scholar 

  • Frazer, B. D. (1988). Coccinellidae. In A. K. Minks, & P. Harrewijn (Eds.), World crop pests. Aphids, their biology, natural enemies and control (Vol. 2B, pp. 231–248). Elsevier.

    Google Scholar 

  • Frazer, B. D. & Gilbert, N. (1976). Coccinelliids and aphids: a quantitative study of the impact of adult ladybirds (Coleoptera: Coccinellidae) preying on field populations of pea aphids (Homoptera: Aphididae). Journal of the Entomological Society of British Columbia, 73, 33–56.

    Google Scholar 

  • Frazer, B. D., & Gill, B. (1981). Hunger, movement and predation of Coccinella californica on pea aphids in the laboratory and in the field. Canadian Entomologist, 113, 1025–1033.

    Article  Google Scholar 

  • Frazer, B. D., & Raworth, D. A. (1985). Sampling for adult coccinellids and their numerical response to strawberry aphids (Coleoptera: Coccinellidae: Homoptera: Aphididae). Canadian Entomologist, 117, 153–161.

    Article  Google Scholar 

  • Freeman, J. A. (1946). The distribution of spiders and mites up to 300 feet in the air. Journal of Animal Ecology, 15, 69–74.

    Article  Google Scholar 

  • French, B. W., Elliott, N. C., Berberet, R. C., & Burd, J. D. (2001). Effects of riparian and grassland habitats on ground beetle (Coleoptera: Carabidae) assemblages in adjacent wheat fields. Environmental Entomology, 30, 225–234.

    Article  Google Scholar 

  • Frost, C. M., Peralta, G., Rand, T. A., Didham, R. K., Varsani, A., & Tylianakis, J. M. (2016). Apparent competition drives community-wide parasitism rates and changes in host abundance across ecosystem boundaries. Nature Communications, 7, 12644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frydman, H. M., Li, J. M., Robson, D. N., & Wieschaus, E. (2006). Somatic stem cell niche tropism in Wolbachia. Nature, 441, 509–512.

    Article  CAS  PubMed  Google Scholar 

  • Fuester, R. W., & Taylor, P. B. (1996). Differential mortality in male and female gypsy moth (Lepidoptera: Lymantriidae) pupae by invertebrate natural enemies and other factors. Environmental Entomology, 25, 536–547.

    Article  Google Scholar 

  • Fukatsu, T., & Ishikawa, H. (1992). A novel eukaryotic extracellular symbiont in an aphid, Astegopteryx styraci (Homoptera, Aphididae, Hormaphidinae). Journal of Insect Physiology, 38, 765–773.

    Article  Google Scholar 

  • Funke, W. (1971). Food and energy turnover of leaf-eating insects and their influence on primary production. Ecological Studies, 2, 81–93.

    Article  Google Scholar 

  • Funke, W., Jans, W., & Manz, W. (1995). Temporal and spatial niche differentiation of predatory arthropods of the soil surface in two forest ecosystems. Acta Zoologica Fennica, 196, 111–114.

    Google Scholar 

  • Fye, R. E. (1965). Methods for placing wasp trap nests in elevated locations. Journal of Economic Entomology, 58, 803–804.

    Article  Google Scholar 

  • Gagnon, A. È., Heimpel, G. E., & Brodeur, J. (2011). The ubiquity of intraguild predation among predatory arthropods. PLoS ONE, 6, e28061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Salazar, C., & Landis, D. A. (1997). Marking Trichogramma brassicae (Hymenoptera: Trichogrammatidae) with fluorescent marker dust and its effect on survival and flight behavior. Journal of Economic Entomology, 90, 1546–1550.

    Article  Google Scholar 

  • Gariepy, T. D., Bruin, A., Konopka, J., Scott-Dupree, C., Fraser, H., Bon, M.-C., & Talamas, E. (2019). A modified DNA barcode approach to define trophic interactions between native and exotic pentatomids and their parasitoids. Molecular Ecology, 28, 456–470.

    Article  CAS  PubMed  Google Scholar 

  • Gariepy, T. D., Haye, T., & Shang, J. (2014). A molecular diagnostic tool for the preliminary assessment of host-parasitoid associations in biological control programmes for a new invasive pest. Molecular Ecology, 23, 3912–3924.

    Article  CAS  PubMed  Google Scholar 

  • Gariepy, T. D., Kuhlmann, U., Gillott, C., & Erlandson, M. (2007). Parasitoids, predators and PCR: The use of diagnostic molecular markers in biological control of arthropods. Journal of Applied Entomology, 131, 225–240.

    Article  CAS  Google Scholar 

  • Gariepy, T. D., Kuhlmann, U., Haye, T., Gillott, C., & Erlandson, M. (2005). A single-step multiplex PCR assay for the detection of European Peristenus spp., parasitoids of Lygus spp. Biocontrol Science and Technology, 15, 481–495.

    Article  Google Scholar 

  • Gariepy, T. D., Lindsay, R., Ogden, N., & Gregory, T. R. (2012). Identifying the last supper: Utility of the DNA barcode library for bloodmeal identification in ticks. Molecular Ecology Resources, 12, 646–652.

    Article  CAS  PubMed  Google Scholar 

  • Gaston, K. J., & Gauld, I. D. (1993). How many species of pimplines (Hymenoptera: Ichneumonidae) are there in Costa Rica? Journal of Tropical Ecology, 9, 491–499.

    Article  Google Scholar 

  • Gauld, I., & Bolton, B. (1988). The Hymenoptera. Oxford University Press.

    Google Scholar 

  • Gebiola, M., White, J. A., Cass, B. N., Kozuch, A., Harris, L. R., Kelly, S. E., Karimi, J., Giorgini, M., Perlman, S. J., & Hunter, M. S. (2016). Cryptic diversity, reproductive isolation and cytoplasmic incompatibility in a classic biological control success story. Biological Journal of the Linnean Society, 117, 217–230.

    Article  Google Scholar 

  • Geden, C. J., Bernier, U. R., Carlson, D. A., & Sutton, B. D. (1998). Identification of Muscidifurax spp., parasitoids of muscoid flies, by composition patterns of cuticular hydrocarbons. Biological Control, 12, 200–207.

    Article  Google Scholar 

  • Gehrer, L., & Vorburger, C. (2012). Parasitoids as vectors of facultative bacterial endosymbionts in aphids. Biology Letters, 8, 613–615.

    Article  PubMed  PubMed Central  Google Scholar 

  • Geoghegan, I. E., Chudek, J. A., Mackay, R. L., Lowe, C., Moritz, S., McNicol, R. J., Birch, N. E., Hunter, G., & Majerus, M. E. N. (2000). Study of anatomical changes in Coccinella septempunctata (Coleoptera: Coccinellidae) induced by diet and by infection with the larva of Dinocampus coccinellae (Hymenoptera: Braconidae) using magnetic resonance microimaging. European Journal of Entomology, 97, 457–461.

    Article  CAS  Google Scholar 

  • Geoghegan, V., Stainton, K., Rainey, S. M., Ant, T. H., Dowle, A. A., Larson, T., Hester, S., Charles, P. D., Thomas, B., & Sinkins, S. P. (2017). Perturbed cholesterol and vesicular trafficking associated with dengue blocking in Wolbachia-infected Aedes aegypti cells. Nature Communications, 8, 526.

    Google Scholar 

  • Gerber, G. H., Walkof, J., & Juskiw, D. (1992). Portable, solar-powered charging system for blacklight traps. Canadian Entomologist, 124, 553–554.

    Article  Google Scholar 

  • Gerking, S. D. (1957). A method of sampling the littoral macrofauna and its application. Ecology, 38, 219–226.

    Article  Google Scholar 

  • Gherna, R. L., Werren, J. H., Weisburg, W., Cote, R., Woese, C. R., Mandelco, L., & Brenner, D. J. (1991). Arsenophonus nasoniae gen. nov., sp. nov., the causative agent of the son-killer trait in the parasitic wasp Nasonia vitripennis. International Journal of Systematic Bacteriology, 41, 563–565.

    Article  Google Scholar 

  • Gibson, C. M., & Hunter, M. S. (2009). Negative fitness consequences and transmission dynamics of a heritable fungal symbiont of a parasitic wasp. Applied and Environmental Microbiology, 75, 3115–3119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson, C. M., & Hunter, M. S. (2010). Extraordinarily widespread and fantastically complex: Comparative biology of endosymbiotic bacterial and fungal mutualists of insects. Ecology Letters, 13, 223–234.

    Article  PubMed  Google Scholar 

  • Gilbert, F. S., & Owen, J. (1990). Size, shape, competition, and community structure in hoverflies (Diptera: Syrphidae). Journal of Animal Ecology, 59, 21–39.

    Article  Google Scholar 

  • Gillespie, D. R., & Finlayson, T. (1983). Classification of final-instar larvae of the Ichneumoninae (Hymenoptera: Lchneumonidae). Memoirs of the Entomological Society of Canada, 124, 1–81.

    Google Scholar 

  • Gilpin, M., & Hanski, I. (1991). Metapopulation dynamics–empirical and theoretical investigations. Academic.

    Google Scholar 

  • Giorgini, M., Bernardo, U., Monti, M. M., Nappo, A. G., & Gebiola, M. (2010). Rickettsia symbionts cause parthenogenetic reproduction in the parasitoid wasp Pnigalio soemius (Hymenoptera: Eulophidae). Applied and Environmental Microbiology, 76, 2589–2599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giorgini, M., Monti, M. M., Caprio, E., Stouthamer, R., & Hunter, M. S. (2009). Feminization and the collapse of haplodiploidy in an asexual parasitoid wasp harboring the bacterial symbiont Cardinium. Heredity, 102, 365–371.

    Article  CAS  PubMed  Google Scholar 

  • Gist, C. S., & Crossley, D. A. (1973). A method for quantifying pitfall trapping. Environmental Entomology, 2, 951–952.

    Article  Google Scholar 

  • Glen, D. M., Milsom, N. F., & Wiltshire, C. W. (1989). Effects of seed-bed conditions on slug numbers and damage to winter wheat in a clay soil. Annals of Applied Biology, 115, 177–190.

    Article  Google Scholar 

  • Godfray, H. C. J., Agassiz, D. J. L., Nash, D. R., & Lawton, J. H. (1995). The recruitment of parasitoid species to two invading herbivores. Journal of Animal Ecology, 64, 393–402.

    Article  Google Scholar 

  • Godfray, H. C. J., & May, R. M. (2014). Open questions: Are the dynamics of ecological communities predictable? BMC Biology, 12, 22.

    Article  PubMed  PubMed Central  Google Scholar 

  • Godfray, H. C. J., & Müller, C. B. (1999). Host-parasitoid dynamics. In J. P. Dempster, & I. McLean (Eds.), Insect populations: In theory and practice (pp. 135–165). Kluwer.

    Google Scholar 

  • Goding, J. W. (1986). Monoclonal antibodies: Principles and practice. Academic.

    Google Scholar 

  • Goff, A. M., & Nault, L. R. (1984). Response of the pea aphid parasite Aphidius ervi Haliday (Hymenoptera: Aphidiidae) to transmitted light. Environmental Entomology, 13, 595–598.

    Article  Google Scholar 

  • Gokool, S., Curtis, C. F., & Smith, D. F. (1993). Analysis of mosquito bloodmeals by DNA profiling. Medical and Veterinary Entomology, 7, 208–216.

    Article  CAS  PubMed  Google Scholar 

  • Goldson, S. L., & McNeill, M. R. (1992). Variation in the critical photoperiod for diapause induction in Microctonus hyperodae, a parasitoid of Argentine stem weevil. In Proceedings of the 45th New Zealand Plant Protection Conference (pp. 205–209).

    Google Scholar 

  • Gomez-Polo, P., Alomar, O., Castane, C., Lundgren, J. G., Pinol, J., & Agustí, N. (2015). Molecular assessment of predation by hoverflies (Diptera: Syrphidae) in Mediterranean lettuce crops. Pest Management Science, 71, 1219–1227.

    Google Scholar 

  • Gomez-Polo, P., Alomar, O., Castane, C., Aznar-Fernandez, T., Lundgren, J. G., Pinol, J., & Agustí, N. (2016). Understanding trophic interactions of Orius spp. (Hemiptera: Anthocoridae) in lettuce crops by molecular methods. Pest Management Science, 72, 272–279.

    Google Scholar 

  • Gomez-Polo, P., Ballinger, M. J., Lalzar, M., Malik, A., Ben-Dov, Y., Mozes-Daube, N., Perlman, S. J., Iasur-Kruh, L., & Chiel, E. (2017). An exceptional family: Ophiocordyceps-allied fungus dominates the microbiome of soft scale insects (Hemiptera: Sternorrhyncha: Coccidae). Molecular Ecology, 26, 5855–5868.

    Google Scholar 

  • González-Chang, M., Wratten, S. D., Lefort, M. C., & Boyer, S. (2016). Food webs and biological control: A review of molecular tools used to reveal trophic interactions in agricultural systems. Food Webs, 9, 4–11.

    Article  Google Scholar 

  • Goodacre, S. L., Martin, O. Y., Thomas, C. G., & Hewitt, G. M. (2006). Wolbachia and other endosymbiont infections in spiders. Molecular Ecology, 15, 517–527.

    Google Scholar 

  • Goodhardt, G. J., Ehrenberg, A. S. C., & Chatfield, C. (1984). The Dirichlet: A comprehensive model of buying behaviour. Journal of the Royal Statistical Society A, 147, 621–655.

    Article  Google Scholar 

  • Gordon, A. H. (1975). Electrophoresis of proteins in polyacrylamide and starch gels. In T. S. Work, & E. Work (Eds.), Laboratory techniques in biochemistry and molecular biology. North-Holland.

    Google Scholar 

  • Gordon, P. L., & McKinlay, R. G. (1986). Dispersal of ground beetles in a potato crop; a mark-release study. Entomologia Experimentalis et Applicata, 40, 104–105.

    Article  Google Scholar 

  • Gotoh, T., Noda, H., & Ito, S. (2007). Cardinium symbionts cause cytoplasmic incompatibility in spider mites. Heredity, 98, 13–20.

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb, Y., & Zchori-Fein, E. (2001). Irreversible thelytokous reproduction in Muscidifurax uniraptor. Entomologia Experimentalis et Applicata, 100, 271–278.

    Google Scholar 

  • Goubault, M., & Hardy, I. C. W. (2007). Deuterium marking of chemical emissions: Detectability and fitness consequences of a novel technique for insect behavioural studies. Entomologia Experimentalis et Applicata, 125, 285–296.

    Article  CAS  Google Scholar 

  • Gozlan, S., Millot, P., Rousset, A., & Fournier, D. (1997). Test of the RAPD-PCR method to evaluate the efficacy of augmentative biological control with Orius (Het., Anthocoridae). Entomophaga, 42, 593–604.

    CAS  Google Scholar 

  • Graham, R. I., Grzywacz, D., Mushobozi, W. L., & Wilson, K. (2012). Wolbachia in a major African crop pest increases susceptibility to viral disease rather than protects. Ecology Letters, 15, 993–1000.

    Article  PubMed  Google Scholar 

  • Graham, H. M., Jackson, C. G., & Lakin, K. R. (1984). Comparison of two methods of using the D-vac to sample mymarids and their hosts in alfalfa. Southwestern Entomologist, 9, 249–252.

    Google Scholar 

  • Graham, H. M., Wolfenbarger, D. A., & Nosky, J. B. (1978). Labeling plants and their insect fauna with rubidium. Environmental Entomology, 7, 379–383.

    Article  Google Scholar 

  • Greatorex, E. C. (1996). A molecular technique for examining the gut content of predatory mites. In Proceedings of the Brighton Crop Protection Conference–pests and diseases 1996, BCPC (pp. 437–438). Farnham.

    Google Scholar 

  • Green, J. (1999). Sampling method and time determines composition of spider collections. Journal of Arachnology, 27, 176–182.

    Google Scholar 

  • Greene, A. (1975). Biology of five species of Cychrini (Coleoptera: Carabidae) in the steppe region of south-eastern Washington. Melanderia, 19, 1–43.

    Google Scholar 

  • Greenstone, M. H. (1979). A line transect density index for wolf spiders (Pardosa spp.) and a note on the applicability of catch per unit effort methods to entomological studies. Ecological Entomology, 4, 23–29.

    Article  Google Scholar 

  • Greenstone, M. H. (1990). Meteorological determinants of spider ballooning: The roles of thermals vs. the vertical windspeed gradient in becoming airborne. Oecologia, 84, 164–168.

    Article  CAS  PubMed  Google Scholar 

  • Greenstone, M. H. (1996). Serological analysis of arthropod predation: Past, present and future. In W. O. C. Symondson, & J. E. Liddell (Eds.), The ecology of agricultural pests: Biochemical approaches, Systematics Association Special Volume 53 (pp. 265–300). Chapman and Hall.

    Google Scholar 

  • Greenstone, M. H. (1999). Spider predation: How and why we study it. Journal of Arachnology, 27, 333–342.

    Google Scholar 

  • Greenstone, M. H. (2006). Molecular methods for assessing insect parasitism. Bulletin of Entomological Research, 96, 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Greenstone, M. H., Eaton, R. R., & Morgan, C. E. (1991). Sampling aerially dispersing arthropods: A high-volume, inexpensive, automobile- and air-craft-borne system. Journal of Economic Entomology, 84, 1717–1724.

    Article  Google Scholar 

  • Greenstone, M. H., & Edwards, M. J. (1998). DNA hybridization probe for endoparasitism by Microplitis croceipes (Hymenoptera: Braconidae). Annals of the Entomological Society of America, 91, 415–421.

    Article  CAS  Google Scholar 

  • Greenstone, M. H., & Morgan, C. E. (1989). Predation on Heliothis zea (Lepidoptera, Noctuidae)–an instar-specific ELISA assay for stomach analysis. Annals of the Entomological Society of America, 82, 45–49.

    Article  Google Scholar 

  • Greenstone, M. H., Morgan, C. E., & Hultsch, A. L. (1985). Spider ballooning: Development and evaluation of field trapping methods (Araneae). Journal of Arachnology, 13, 337–345.

    Google Scholar 

  • Greenstone, M. H., Payton, M. E., Weber, D. C., & Simmons, A. M. (2014). The detectability half-life in arthropod predator–prey research: What it is, why we need it, how to measure it, and how to use it. Molecular Ecology, 23, 3799–3813.

    Article  PubMed  Google Scholar 

  • Grégoire-Wibo, C. (1983a). Incidences écologiques des traitments phytosanitaires en culture de betterave sucrière, essais expérimentaux en champ. 1. Les Collemboles épigés. Pedobiologia, 25, 37–48.

    Google Scholar 

  • Grégoire-Wibo, C. (1983b) Incidences écologiques des traitments phytosanitaires en culture de betterave sucrière, essais expérimentaux en champ. II. Acariens, Polydesmes, Staphylins, Cryptophagides et Carabides. Pedobiologia, 25, 93–108.

    Google Scholar 

  • Gressitt, J. L., & Gressitt, M. K. (1962). An improved Malaise trap. Pacific Insects, 4, 87–90.

    Google Scholar 

  • Grieshop, M. J., Werling, B., Buehrer, K., Perrone, J., Isaacs, R., & Landis, D. (2012). Big Brother is watching: Studying insect predation in the age of digital surveillance. American Entomologist, 58, 172–182.

    Article  Google Scholar 

  • Griffiths, E., Wratten, S. D., & Vickerman, G. P. (1985). Foraging behaviour by the carabid Agonum dorsale in the field. Ecological Entomology, 10, 181–189.

    Article  Google Scholar 

  • Griffiths, G., Winder, L., Bean, D., Preston, R., Moate, R., Neal, R., Williams, E., Holland, J., & Thomas, G. (2001). Laser marking the carabid Pterostichus melanarius for mark-release-recapture. Ecological Entomology, 26, 662–663.

    Article  Google Scholar 

  • Grissell, E. E., & Schauff, M. E. (1990). A Handbook of the families of Nearctic Chalcidoidea (Hymenoptera). The Entomological Society of Washington.

    Google Scholar 

  • Gromadzka, J., & Trojan, P. (1967). Comparison of the usefulness of an entomological net, photoeclector and biocenometer for investigation of entomocenosis. Ekologia Polska, 15, 505–529.

    Google Scholar 

  • Gu, H., Wäckers, F., Steindl, P., Günther, D., & Dorn, S. (2001). Different approaches to labelling parasitoids using strontium. Entomologia Experimentalis et Applicata, 99, 173–181.

    Article  CAS  Google Scholar 

  • Gueguen, G., Vavre, F., Gnankine, O., Peterschmitt, M., Charif, D., Chiel, E., et al. (2010). Endosymbiont metacommunities, mtDNA diversity and the evolution of the Bemisia tabaci (Hemiptera: Aleyrodidae) species complex. Molecular Ecology, 19, 4365–4376.

    Google Scholar 

  • Guichoux, E., Lagache, L., Wagner, S., Chaumeil, P., Léger, P., Lepais, O., Lepoittevin, C., Malausa, T., Revardel, E., Salin, F., & Petit, R. J. (2011). Current trends in microsatellite genotyping. Molecular Ecology Resources, 11, 591–611.

    Article  CAS  PubMed  Google Scholar 

  • Guido, A. S., & Fowler, H. G. (1988). Megacephala fulgida (Coleoptera: Cicindelidae): A phonotactically orienting predator of Scapteriscus mole crickets (Orthoptera: Gryllotalpidae). Cicindela, 20, 51–52.

    Google Scholar 

  • Gurdebeke, S., & Maelfait, J. P. (2002). Pitfall trapping in population genetics studies: Finding the right “solution.” Journal of Arachnology, 30, 255–261.

    Article  Google Scholar 

  • Gurr, G. M., Thwaite, W. G., & Nicol, H. I. (1999). Field evaluation of the effects of the insect growth regulator tebufenoxide on entomophagous arthropods and pests of apples. Australian Journal of Entomology, 38, 135–140.

    Article  Google Scholar 

  • Haas, V. (1980). Methoden zur Erfassung der Arthropodenfauna in der Vegetationssicht von Grasland-Öko-systemen. Zoologischer Anzeiger Jena, 204, 319–330.

    Google Scholar 

  • Hackman, W. (1957). Studies on the ecology of the wolf spider Trochosa terricola Deg. Societas Scientiarum Fennica Commentationes Biologicae, 16, 1–34.

    Google Scholar 

  • Haeck, J. (1971). The immigration and settlement of carabids in the new Ijsselmeer-polders. Miscellaneous Papers Landbouwwetenschappen Hogeschule Wageningen, 8, 33–52.

    Google Scholar 

  • Haegeman, A., Vanholme, B., Jacob, J., Vandekerckhove, T. T. M., Claeys, M., Borgonie, G., & Gheysen, G. (2009). An endosymbiotic bacterium in a plant-parasitic nematode: Member of a new Wolbachia supergroup. International Journal for Parasitology, 39, 1045–1054.

    Article  PubMed  Google Scholar 

  • Hagimori, T., Abe, Y., Date, S., & Miura, K. (2006). The first finding of a Rickettsia bacterium associated with parthenogenesis induction among insects. Current Microbiology, 52, 97–101.

    Article  CAS  PubMed  Google Scholar 

  • Hagler, J. R., Cohen, A. C., Bradley-Dunlop, D., Enriquez, F. J. (1992a). New approach to mark insects for feeding and dispersal studies. Environmental Entomology, 21, 20–25.

    Google Scholar 

  • Hagler, J. R., Cohen, A. C., Bradley-Dunlop, D., & Enriquez, F. J. (1992b). Field evaluation of predation on Lygus hesperus (Hemiptera: Miridae) using species- and stage-specific monoclonal antibody. Environmental Entomology, 21, 896–900.

    Article  Google Scholar 

  • Hagler, J. R., & Durand, C. M. (1994). A new method for immunologically marking prey and its use in predation studies. Entomophaga, 39, 257–265.

    Article  Google Scholar 

  • Hagler, J. R., & Jackson, C. G. (2001). Methods for marking insects: Current techniques and future prospects. Annual Review of Entomology, 46, 511–543.

    Article  CAS  PubMed  Google Scholar 

  • Hagler, J. A., Machtley, S. A., & Leggett, J. E. (2002). Parasitoid mark-release-recapture techniques–I. Development of a battery-operated suction trap for collecting minute insects. Biocontrol Science and Technology, 12, 653–659.

    Article  Google Scholar 

  • Hagler, J. R., & Naranjo, S. E. (1994). Qualitative survey of two coleopteran predators of Bemisia tabaci (Homoptera: Aleyrodidae) and Pectinophora gossypiella (Lepidoptera: Gelechiidae) using a multiple prey gut content ELISA. Environmental Entomology, 23, 193–197.

    Article  Google Scholar 

  • Hagstrum, D. W., & Smittle, B. J. (1977). Host-finding ability of Bracon hebetor and its influence upon adult parasite survival and fecundity. Environmental Entomology, 6, 437–439.

    Article  Google Scholar 

  • Hagstrum, D. W., & Smittle, B. J. (1978). Host utilization by Bracon hebetor. Environmental Entomology, 7, 596–600.

    Article  Google Scholar 

  • Hågvar, E. B., Hofsvang, T., Trandem, N., & Saeterbø, K. G. (1998). Six-year Malaise trapping of the leaf miner Chromatomyia fuscula (Diptera: Agromyzidae) and its chalcidoid parasitoid complex in a barley field and its boundary. European Journal of Entomology, 95, 529–543.

    Google Scholar 

  • Haine, E. R. (2008). Symbiont-mediated protection. Proceedings of the Royal Society of London B, 275, 353–361.

    Google Scholar 

  • Halaj, J., & Cady, A. B. (2000). Diet composition and significance of earthworms as food of harvestmen (Arachnida: Opiliones). American Midland Naturalist, 143, 487–491.

    Article  Google Scholar 

  • Halaj, J., Ross, D. W., & Moldenke, A. R. (1998). Habitat structure and prey availability as predictors of the abundance and community organisation of spiders in western Oregon forest canopies. Journal of Arachnology, 26, 203–220.

    Google Scholar 

  • Halaj, J., & Wise, D. H. (2001). Terrestrial trophic cascades: How much do they trickle? American Naturalist, 157, 262–281.

    Article  CAS  PubMed  Google Scholar 

  • Hall, R. W. (1993). Alteration of sex ratios of parasitoids for use in biological control. In D. L. Wrensch, & M. A. Ebbert (Eds.), Evolution and diversity of sex ratio in insects and mites (pp. 542–547). Chapman and Hall.

    Google Scholar 

  • Hall, S. J., & Raffaelli, D. (1993). Food webs: Theory and reality. Advances in Ecological Research, 24, 187–239.

    Google Scholar 

  • Halsall, N. B., Wratten, S. D. (1988a). The efficiency of pitfall trapping for polyphagous Carabidae. Ecological Entomology, 13, 293–299.

    Google Scholar 

  • Halsall, N. B., Wratten, S. D. (1988b). Video recordings of aphid predation in a wheat crop. Aspects of Applied Biology, 17, 277–280.

    Google Scholar 

  • Hambäck, P. A., Weingartner, E., Dalén, L., Wirta, H., & Roslin, T. (2016). Spatial subsidies in spider diets vary with shoreline structure: Complementary evidence from molecular diet analysis and stable isotopes. Ecology and Evolution, 6, 8431–8439.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hames, B. D., & Rickwood, D. (1981). Gel electrophoresis of proteins: A practical approach. IRL Press Ltd.

    Google Scholar 

  • Hamilton, P. T., Peng, F. N., Boulanger, M. J., & Perlman, S. J. (2016). A ribosome-inactivating protein in a Drosophila defensive symbiont. Proceedings of the National Academy of Sciences USA, 113, 350–355.

    Article  CAS  Google Scholar 

  • Hamon, N., Bardner, R., Allen-Williams, L., & Lee, J. B. (1990). Carabid populations in field beans and their effect on the population dynamics of Sitona lineatus (L.). Annals of Applied Biology, 117, 51–62.

    Article  Google Scholar 

  • Hance, T. (1995). Relationships between aphid phenology and predator and parasitoid abundances in maize fields. Acta Jutlandica, 70, 113–123.

    Google Scholar 

  • Hansen, A. K., Jeong, G., Paine, T. D., & Stouthamer, R. (2007). Frequency of secondary symbiont infection in an invasive psyllid relates to parasitism pressure on a geographic scale in California. Applied and Environmental Microbiology, 73, 7531–7535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanula, J. L., & Franzreb, K. (1998). Source, distribution and abundance of macroarthropods on the bark of longleaf pine: Potential prey of the red-cockaded woodpecker. Forest Ecology and Management, 102, 89–102.

    Article  Google Scholar 

  • Hardie, J., Hick, A. J., Höller, C., Mann, J., Merritt, L., Nottingham, S. F., Powell, W., Wadhams, L. J., Witthinrich, J., & Wright, A. F. (1994). The responses of Praon spp. parasitoids to aphid sex pheromone components in the field. Entomologia Experimentalis et Applicata, 71, 95–99.

    Article  CAS  Google Scholar 

  • Hardie, J., Nottingham, S. F., Powell, W., & Wadhams, L. J. (1991). Synthetic aphid sex pheromone lures female parasitoids. Entomologia Experimentalis et Applicata, 61, 97–99.

    Article  CAS  Google Scholar 

  • Harris, K. M. (1973). Aphidophagous Cecidomyiidae (Diptera): Taxonomy, biology and assessments of field populations. Bulletin of Entomological Research, 63, 305–325.

    Article  Google Scholar 

  • Harris, R. J. (1989). An entrance trap to sample foods of social wasps (Hymenoptera: Vespidae). New Zealand Journal of Zoology, 16, 369–371.

    Article  Google Scholar 

  • Harris, R. J., & Oliver, E. H. (1993). Prey diets and population densities of the wasps Vespula vulgaris and V. germanica in scrubland-pasture. New Zealand Journal of Ecology, 17, 5–12.

    Google Scholar 

  • Harumoto, T., & Lemaitre, B. (2018). Male-killing toxin in a bacterial symbiont of Drosophila. Nature, 557, 252–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harwood, J. D., Phillips, S. W., Sunderland, K. D., & Symondson, W. O. C. (2001a). Secondary predation: Quantification of food chain errors in an aphid-spider-carabid system using monoclonal antibodies. Molecular Ecology, 10, 2049–2057.

    Article  CAS  PubMed  Google Scholar 

  • Harwood, J. D., Sunderland, K. D., & Symondson, W. O. C. (2001b). Living where the food is: Web location by linyphiid spiders in relation to prey availability in winter wheat. Journal of Applied Ecology, 38, 88–99.

    Article  Google Scholar 

  • Harwood, J. D., Sunderland, K. D., & Symondson, W. O. C. (2003). Web location by linyphiid spiders: Prey-specific aggregation and foraging strategies. Journal of Animal Ecology, 72, 745–756.

    Article  Google Scholar 

  • Harwood, J. D., Sunderland, K. D., & Symondson, W. O. C. (2004). Web location and foraging strategies amongst spiders: Competition and coexistence. Journal of Animal Ecology, 2, 745–756.

    Google Scholar 

  • Haselkorn, T. S., Markow, T. A., & Moran, N. A. (2009). Multiple introductions of the Spiroplasma bacterial endosymbiont into Drosophila. Molecular Ecology, 18, 1294–1305.

    Article  CAS  PubMed  Google Scholar 

  • Hassall, M., Dangerfield, J. M., Manning, T. P., & Robinson, F. G. (1988). A modified high-gradient extractor for multiple samples of soil macro-arthropods. Pedobiologia, 32, 21–30.

    Article  Google Scholar 

  • Hawkes, R. B. (1972). A fluorescent dye technique for marking insect eggs in predation studies. Journal of Economic Entomology, 65, 1477–1478.

    Article  Google Scholar 

  • Hawkins, B. A. (1994). Pattern and process in host-parasitoid interactions. Cambridge University Press.

    Book  Google Scholar 

  • Hawkins, B. A., & Marino, P. C. (1997). The colonization of native phytophagous insects in North America by exotic parasitoids. Oecologia, 112, 566–571.

    Article  PubMed  Google Scholar 

  • Hayashi, M., Nomura, M., Kageyama, D. (2018). Rapid comeback of males: Evolution of male-killer suppression in a green lacewing population. Proceedings of the Royal Society of London B, 285, 0369.

    Google Scholar 

  • Haye, T., Fischer, S., Zhang, J., & Gariepy, T. D. (2015). Can native egg parasitoids adopt the invasive brown marmorated stink bug, Halyomorpha halys (Heteroptera: Pentatomidae), in Europe? Journal of Pest Science, 88, 693–705.

    Article  Google Scholar 

  • Heap, M. A. (1988). The pit-light, a new trap for soil-dwelling insects. Journal of the Australian Entomological Society, 27, 239–240.

    Article  Google Scholar 

  • Hebert, P. D. N., Cywinska, A., Ball, S. L., & deWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London B, 270, 313–321.

    Article  CAS  Google Scholar 

  • Hedges, L. M., Brownlie, J. C., O’Neill, S. L., & Johnson, K. N. (2008). Wolbachia and virus protection in insects. Science, 322, 702.

    Article  CAS  PubMed  Google Scholar 

  • Heikinheimo, O., & Raatikainen, M. (1962). Comparison of suction and netting methods in population investigations concerning the fauna of grass leys and cereal fields, particularly in those concerning the leafhopper, Calligypona pellucida (F.). Publications of the Finnish State Agricultural Research Board, 191, 5–29.

    Google Scholar 

  • Heimpel, G. E., & Casas, J. (2008). Parasitoid foraging and oviposition behavior in the field. In E. Wajnberg, C. Bernstein, & J. J. M. van Alphen (Eds.), Behavioral ecology of insect parasitoids (pp. 51–70). Blackwell.

    Google Scholar 

  • Heimpel, G. E., Neuhauser, C., & Hoogendoorn, M. (2003). Effects of parasitoid fecundity and host resistance on indirect interactions among hosts sharing a parasitoid. Ecology Letters, 6, 556–566.

    Article  Google Scholar 

  • Heimpel, G. E., Rosenheim, J. A., & Mangel, M. (1996). Egg limitation, host quality, and dynamic behavior by a parasitoid in the field. Ecology, 77, 2410–2420.

    Article  Google Scholar 

  • Heimpel, G. E., Rosenheim, J. A., & Mangel, M. (1997). Predation on adult Aphytis parasitoids in the field. Oecologia, 110, 346–352.

    Article  CAS  PubMed  Google Scholar 

  • Helenius, J. (1990). Incidence of specialist natural enemies of Rhopalosiphum padi (L.) (Hom., Aphididae) on oats in monocrops and mixed intercrops with faba beans. Journal of Applied Entomology, 109, 136–143.

    Article  Google Scholar 

  • Helenius, J. (1995). Rate and local scale spatial pattern of adult emergence of the generalist predator Bembidion guttula in an agricultural field. Acta Jutlandica, 70, 101–111.

    Google Scholar 

  • Helenius, J., Holopainen, J., Muhojoki, M., Pokki, P., Tolonen, T., & Venäläinen, A. (1995). Effect of undersowing and green manuring on abundance of ground beetles (Coleoptera, Carabidae) in cereals. Acta Zoologica Fennica, 196, 156–159.

    Google Scholar 

  • Helenius, J., & Tolonen, T. (1994). Enhancement of generalist aphid predators in cereals: Effect of green manuring on recruitment of ground beetles (Col., Carabidae). Bulletin SROP/WPRS, 17, 201–210.

    Google Scholar 

  • Hemingway, J., Small, G. J., Lindsay, S. W., & Collins, F. H. (1996). Combined use of biochemical, immunological and molecular assays for infection, species identification and resistance detection in field populations of Anopheles (Diptera: Culicidae). In W. O. C. Symondson, & J. E. Liddell (Eds.), The ecology of agricultural pests: Biochemical approaches (pp. 31–49). Chapman and Hall.

    Google Scholar 

  • Henaut, Y., Pablo, J., Ibarra-Nuñez, G., & Williams, T. (2001). Retention, capture and consumption of experimental prey by orb-web weaving spiders in coffee plantations of Southern Mexico. Entomologia Experimentalis et Applicata, 98, 1–8.

    Google Scholar 

  • Henderson, I. F., & Whitaker, T. M. (1976). The efficiency of an insect suction sampler in grassland. Ecological Entomology, 2, 57–60.

    Article  Google Scholar 

  • Hendry, T. A., Hunter, M. S., & Baltrus, D. A. (2014). The facultative symbiont Rickettsia protects an invasive whitefly against entomopathogenic Pseudomonas syringae strains. Applied and Environmental Microbiology, 80, 7161–7168.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hengeveld, R. (1980). Polyphagy, oligophagy and food specialization in ground beetles (Coleoptera, Carabidae). Netherlands Journal of Zoology, 30, 564–584.

    Article  Google Scholar 

  • Heng-Moss, T., Baxendale, F., & Riordan, T. (1998). Beneficial arthropods associated with buffalograss. Journal of Economic Entomology, 91, 1167–1172.

    Article  Google Scholar 

  • Henneicke, K., Dawah, H. A., & Jervis, M. A. (1992). The taxonomy and biology of final instar larvae of some Eurytomidae (Hymenoptera: Chalcidoidea) associated with grasses in Britain. Journal of Natural History, 26, 1047–1087.

    Article  Google Scholar 

  • Henneman, M. L., & Memmott, J. (2002). Infiltration of a Hawaiian community by introduced biological control agents. Science, 293, 1314–1316.

    Article  Google Scholar 

  • Henri, D. C., & van Veen, F. J. F. (2016). Link flexibility: Evidence for environment- dependent adaptive foraging in a food web time-series. Ecology, 97, 1381–1387.

    Article  CAS  PubMed  Google Scholar 

  • Heong, K. L., Aquino, C. B., & Barrion, A. T. (1991). Arthropod community structures of rice ecosystems in the Philippines. Bulletin of Entomological Research, 81, 407–416.

    Article  Google Scholar 

  • Herlihy, M. V., Talamas, E. J., & Weber, D. C. (2016). Attack and success of native and exotic parasitoids on eggs of Halyomorpha halys in three Maryland habitats. PLoS ONE, 11, e0150275.

    Article  PubMed  PubMed Central  Google Scholar 

  • Herren, J. K., Paredes, J. C., Schupfer, F., & Lemaitre, B. (2013). Vertical transmission of a Drosophila endosymbiont via cooption of the yolk transport and internalization machinery. Mbio, 4, e00532-12.

    Google Scholar 

  • Hess, A. D. (1941). New limnological sampling equipment. Limnological Society of America, Special Publication, 6, 1–15.

    Google Scholar 

  • Heydemann, B. (1953). Agrarökologische Problematik. University of Kiel, Ph.D. Thesis.

    Google Scholar 

  • Heydemann, B. (1962). Untersuchungen über die Aktivitäts- und Besiedlungsdichte bei epigäischen Spinnen. Zoologischer Anzeiger Supplement, 25, 538–556.

    Google Scholar 

  • van Hezewijk, B. H., Bourchier, R. S., & Smith, S. M. (2000). Searching speed of Trichogramma minutum and its potential as a measure of parasitoid quality. Biological Control, 17, 139–146.

    Article  Google Scholar 

  • Hickman, J. M., Wratten, S. D., Jepson, P. C., & Frampton, C. M. (2001). Effect of hunger on yellow water trap catches of hoverfly (Diptera: Syrphidae) adults. Agricultural and Forest Entomology, 3, 35–40.

    Article  Google Scholar 

  • Hildrew, A. G., & Townsend, C. R. (1976). The distribution of two predators and their prey in an iron rich stream. Journal of Animal Ecology, 45, 41–57.

    Article  Google Scholar 

  • Hildrew, A. G., & Townsend, C. R. (1982). Predators and prey in a patchy environment: A freshwater study. Journal of Animal Ecology, 51, 797–815.

    Article  Google Scholar 

  • Hill, M. O. (1973). Reciprocal averaging: An eigenvector method of ordination. Journal of Ecology, 61, 237–249.

    Article  Google Scholar 

  • Hills, O. A. (1933). A new method for collecting samples of insect populations. Journal of Economic Entomology, 26, 906–910.

    Article  Google Scholar 

  • Hillis, D. M., & Dixon, S. K. (1991). Ribosomal DNA: Molecular evolution and phylogenetic inference. Quarterly Review of Biology, 66, 411–453.

    Article  CAS  PubMed  Google Scholar 

  • Hillis, D. M., Moritz, C. (Eds). (1990). Molecular systematics. Sinauer.

    Google Scholar 

  • Himler, A. G., Adachi-Hagimori, T., Bergen, J. E., Kozuch, A., Kelly, S. E., Tabashnik, B. E., Chiel, E., Duckworth, V. E., Dennehy, T. J., Zchori-Fein, E., & Hunter, M. S. (2011). Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias. Science, 332, 254–256.

    Google Scholar 

  • Hirao, T., & Murakami, M. (2008). Quantitative food webs of lepidopteran leafminers and their parasitoids in a Japanese deciduous forest. Ecological Research, 23, 159–168.

    Article  Google Scholar 

  • Hiroki, M., Kato, Y., Kamito, T., & Miura, K. (2002). Feminization of genetic males by a symbiotic bacterium in a butterfly, Eurema hecabe (Lepidoptera: Pieridae). Naturwissenschaften, 89, 167–170.

    Article  CAS  PubMed  Google Scholar 

  • Hirunkanokpun, S., Thepparit, C., Foil, L. D., & Macaluso, K. R. (2011). Horizontal transmission of Rickettsia felis between cat fleas, Ctenocephalides felis. Molecular Ecology, 20, 4577–4586.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hobson, K. A. (1999). Tracing origins and migration of wildlife using stable isotopes: A review. Oecologia, 120, 314–326.

    Article  PubMed  Google Scholar 

  • Hobson, K. A., Wassenaar, L. I., & Taylor, O. R. (1999). Stable isotopes (delta D and delta C-13) are geographic indicators of natal origins of monarch butterflies in eastern North America. Oecologia, 120, 397–404.

    Article  PubMed  Google Scholar 

  • Hodgson, C. J., & Mustafa, T. M. (1984). Aspects of chemical and biological control of Psylla pyricola Forster in England. Bulletin IOBC/WPRS Working Group Integrated Control of Pear Psyllids, 7, 330–353.

    Google Scholar 

  • Hoelmer, K. A., Roltsch, W. J., Chu, C. C., & Henneberry, T. J. (1998). Selectivity of whitefly traps in cotton for Eretmocerus eremicus (Hymenoptera: Aphelinidae), a native parasitoid of Bemisia argentifolii (Homoptera: Aleyrodidae). Environmental Entomology, 27, 1039–1044.

    Article  Google Scholar 

  • Hoerauf, A., Nissen-Pahle, K., Schmetz, C., Henkle-Duhrsen, K., Blaxter, M. L., Buttner, D. W., Gallin, M. Y., Al-Qaoud, K. M., Lucius, R., & Fleischer, B. (1999). Tetracycline therapy targets intracellular bacteria in the filarial nematode Litomosoides sigmodontis and results in filarial infertility. Journal of Clinical Investigation, 103, 11–17.

    Google Scholar 

  • Hoffmann, A. A., Montgomery, B. L., Popovici, J., Iturbe-Ormaetxe, I., Johnson, P. H., Muzzi, F., Greenfield, M., Durkan, M., Leong, Y. S., Dong, Y., Cook, H., Axford, J., Callahan, A. G., Kenny, N., Omodei, C., McGraw, E. A., Ryan, P. A., Ritchie, S. A., Turelli, M., & O’Neill, S. L. (2011). Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature, 476, 454–457.

    Article  CAS  PubMed  Google Scholar 

  • Hoffmeister, T. S., & Vidal, S. (1994). The diversity of fruit fly (Diptera: Tephritidae) parasitoids. In B. A. Hawkins, & W. Sheehan (Eds.), Parasitoid community ecology (pp. 47–76). Oxford University Press.

    Chapter  Google Scholar 

  • Holland, J. M., & Reynolds, C. J. M. (2003). The impact of soil cultivation on arthropod (Coleoptera and Araneae) emergence on arable land. Pedobiologia, 47, 181–191.

    Article  Google Scholar 

  • Holland, J. M., & Smith, S. (1997). Capture efficiency of fenced pitfall traps for predatory arthropods within a cereal crop. In P. T. Haskell, & P. K. McEwen (Eds.), New studies in ecotoxicology (pp. 34–36). The Welsh Pest Management Forum.

    Google Scholar 

  • Holland, J. M., & Smith, S. (1999). Sampling epigeal arthropods: An evaluation of fenced pitfall traps using mark-release-recapture and comparisons to unfenced pitfall traps in arable crops. Entomologia Experimentalis et Applicata, 91, 347–357.

    Article  Google Scholar 

  • Holland, J. M., Thomas, S. R., & Hewett, A. (1996). Some effects of polyphagous predators on an outbreak of cereal aphid (Sitobion avenae F.) and orange wheat blossom midge (Sitodiplosis mosellana Gehin). Agriculture, Ecosystems and Environment, 59, 181–190.

    Google Scholar 

  • Holmes, P. R. (1984). A field study of the predators of the grain aphid, Sitobion avenae (F.) (Hemiptera: Aphididae), in winter wheat. Bulletin of Entomological Research, 74, 623–631.

    Article  Google Scholar 

  • Holopäinen, J. K., & Helenius, J. (1992). Gut contents of ground beetles (Col., Carabidae), and activity of these and other epigeal predators during an outbreak of Rhopalosiphum padi (Hom., Aphididae). Acta Agriculturae Scandinavica B, 42, 57–61.

    Google Scholar 

  • Holopäinen, J. K., & Varis, A. L. (1986). Effects of a mechanical barrier and formalin preservative on pitfall catches of carabid beetles (Coleoptera, Carabidae) in arable fields. Journal of Applied Entomology, 102, 440–445.

    Article  Google Scholar 

  • Holt, R. D., & Hochberg, M. E. (2001). Indirect interactions, community modules and biological control: A theoretical perspective. In E. Wajnberg, J. K. Scott, & P. C. Quimby (Eds.), Evaluating indirect ecological effects of biological control (pp. 13–80). CABI Publishing.

    Google Scholar 

  • Holt, R. D., & Lawton, J. H. (1994). The ecological consequences of shared natural enemies. Annual Review of Ecology and Systematics, 25, 495–520.

    Article  Google Scholar 

  • Holtkamp, R. H., & Thompson, J. I. (1985). A lightweight, self-contained insect suction sampler. Journal of the Australian Entomological Society, 24, 301–302.

    Article  Google Scholar 

  • Holzapfel, E. P., & Perkins, B. D. (1969). Trapping of air-borne insects on ships in the Pacific, Part 7. Pacific Insects, 11, 455–476.

    Google Scholar 

  • Honěk, A. (1986). Production of faeces in natural populations of aphidophagous coccinellids (Col.) and estimation of predation rates. Zeitschrift für Angewandte Entomologie, 102, 467–476.

    Google Scholar 

  • Honěk, A. (1988). The effect of crop density and microclimate on pitfall trap catches of Carabidae, Staphylinidae (Coleoptera) and Lycosidae (Araneae) in cereal fields. Pedobiologia, 32, 233–242.

    Article  Google Scholar 

  • Honěk, A. (1997). The effect of temperature on the activity of Carabidae (Coleoptera) in a fallow field. European Journal of Entomology, 94, 97–104.

    Google Scholar 

  • Honěk, A., & Kocourek, F. (1986). The flight of aphid predators to a light trap: Possible interpretations. In I. Hodek (Ed.), Ecology of aphidophaga (pp. 333–337). Academia.

    Google Scholar 

  • Hood-Nowotny, R., & Knols, B. G. (2007). Stable isotope methods in biological and ecological studies of arthropods. Entomologia Experimentalis et Applicata, 124, 3–16.

    Google Scholar 

  • Hoogendoorn, M., & Heimpel, G. E. (2001). PCR-based gut content analysis of insect predators: Using ribosomal ITS-1 fragments from prey to estimate predation frequency. Molecular Ecology, 10, 2059–2067.

    Article  CAS  PubMed  Google Scholar 

  • Hopper, K. R., Powell, J. E., & King, E. G. (1991). Spatial density dependence in parasitism of Heliothis virescens (Lepidoptera: Noctuidae) by Microplitis croceipes (Hymenoptera: Braconidae) in the field. Environmental Entomology, 20, 292–302.

    Article  Google Scholar 

  • Hopper, K. R., Roush, R. T., & Powell, W. (1993). Management of genetics of biological-control introductions. Annual Review of Entomology, 38, 27–51.

    Article  Google Scholar 

  • Hopper, K. R., & Woolson, E. A. (1991). Labeling a parasitic wasp, Microplitis croceipes (Hymenoptera: Braconidae), with trace elements for mark-recapture studies. Annals of the Entomological Society of America, 84, 255–262.

    Article  Google Scholar 

  • Horn, D. J. (1981). Effect of weedy backgrounds on colonization of collards by green peach aphid, Myzus persicae, and its major predators. Environmental Entomology, 10, 285–289.

    Article  Google Scholar 

  • Horn, M., Harzenetter, M. D., Linner, T., Schmid, E. N., Muller, K. D., Michel, R., & Wagner, M. (2001). Members of the Cytophaga-Flavobacterium-Bacteroides phylum as intracellular bacteria of acanthamoebae: Proposal of Candidatus Amoebophilus asiaticus. Environmental Microbiology, 3, 440–449.

    Article  CAS  PubMed  Google Scholar 

  • Hornett, E. A., Charlat, S., Duplouy, A. M. R., Davies, N., Roderick, G. K., Wedell, N., & Hurst, G. D. D. (2006). Evolution of male-killer suppression in a natural population. PLoS Biology, 4, 1643–1648.

    Article  CAS  Google Scholar 

  • Hornett, E. A., Duplouy, A. M. R., Davies, N., Roderick, G. K., Wedell, N., Hurst, G. D. D., & Charlat, S. (2008). You can’t keep a good parasite down: Evolution of a male-killer suppressor uncovers cytoplasmic incompatibility. Evolution, 62, 1258–1263.

    Article  PubMed  Google Scholar 

  • Hosokawa, T., Koga, R., Kikuchi, Y., Meng, X. Y., & Fukatsu, T. (2010). Wolbachia as a bacteriocyte-associated nutritional mutualist. Proceedings of the National Academy of Sciences USA, 107, 769–774.

    Article  CAS  Google Scholar 

  • Hossain, Z., Gurr, G. M., & Wratten, S. D. (1999). Capture efficiency of insect natural enemies from tall and short vegetation using vacuum sampling. Annals of Applied Biology, 135, 463–467.

    Article  Google Scholar 

  • Hossain, Z., Gurr, G. M., Wratten, S. D., & Raman, A. (2002). Habitat manipulation in lucerne Medicago sativa: Arthropod population dynamics in harvested and ‘refuge’ crop strips. Journal of Applied Ecology, 39, 445–454.

    Article  Google Scholar 

  • Hotopp, J. C. D., Clark, M. E., Oliveira, D. C., Foster, J. M., Fischer, P., Torres, M. C. M. et al. (2007). Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science, 317, 1753–1756.

    Google Scholar 

  • Hövemeyer, K. (1995). Trophic links, nutrient fluxes and natural history of the Allium ursinum food web, with particular reference to life history traits of two hoverfly herbivores (Diptera: Syrphidae). Oecologia, 102, 86–94.

    Article  PubMed  Google Scholar 

  • Howe, A., Lövei, G., & Nachmann, G. (2009). Dummy caterpillars as a simple method to assess predation rates on invertebrates in a tropical agroecosystem. Entomologia Experimentalis et Applicata, 131, 325–329.

    Article  Google Scholar 

  • Howling, G. C. (1991). Slug foraging behaviour: Attraction to food items from a distance. Annals of Applied Biology, 119, 147–153.

    Article  Google Scholar 

  • Howling, G. G., Port, G. R. (1989). Time-lapse video assessment of molluscicide baits. In Slugs and snails in world agriculture. (Vol. 41, pp. 161–166). BCPC Monograph.

    Google Scholar 

  • Hoy, M. A., Jeyaprakash, A., Morakote, R., Lo, P. K. C., & Nguyen, R. (2000). Genomic analyses of two populations of Ageniaspis citricola (Hymenoptera: Encyrtidae) suggest that a cryptic species may exist. Biological Control, 17, 1–10.

    Article  CAS  Google Scholar 

  • Hradetzky, R., & Kromp, B. (1997). Spatial distribution of flying insects in an organic rye field and an adjacent hedge and forest edge. Biological Agriculture and Horticulture, 15, 353–357.

    Article  Google Scholar 

  • Hrček, J., & Godfray, H. C. J. (2014). what do molecular methods bring to host-parasitoid food webs? Trends in Parasitology, 31, 30–35.

    Article  PubMed  Google Scholar 

  • Hu, G. Y., & Frank, J. H. (1996). Effect of the red imported fire ant (Hymenoptera: Formicidae) on dung-inhabiting arthropods in Florida. Environmental Entomology, 25, 1290–1296.

    Article  Google Scholar 

  • Huang, W., Massouras, A., Inoue, Y., Peiffer, J., Ràmia, M., Tarone, A. M., et al. (2014). Natural variation in genome architecture among 205 Drosophila melanogaster Genetic Reference Panel lines. Genome Research, 24, 1193–1208.

    Google Scholar 

  • Huger, A. M., Skinner, S. W., & Werren, J. H. (1985). Bacteria infections associated with the son-killer trait in the parasitoid wasp Nasonia (= Mormoniella) vitripennis (Hymenoptera, Pteromalidae). Journal of Invertebrate Pathology, 46, 272–280.

    Article  CAS  PubMed  Google Scholar 

  • Huigens, M. E., de Almeida, R. P., Boons, P. A. H., Luck, R. F., & Stouthamer, R. (2004). Natural interspecific and intraspecific horizontal transfer of parthenogenesis-inducing Wolbachia in Trichogramma wasps. Proceedings of the Royal Society of London B, 271, 509–515.

    Article  CAS  Google Scholar 

  • Huigens, M. E., Luck, R. F., Klaassen, R. H. G., Maas, M., Timmermans, M., & Stouthamer, R. (2000). Infectious parthenogenesis. Nature, 405, 178–179.

    Article  CAS  PubMed  Google Scholar 

  • van Huizen, T. H. P. (1990). ‘Gone with the Wind’: Flight activity of carabid beetles in relation to wind direction and to the reproductive state of females in flight. In E. Stork (Ed.), The role of ground beetles in ecological and environmental studies (pp. 289–293). Intercept.

    Google Scholar 

  • Hunter, M. S., Asiimwe, P., Himler, A. G., & Kelly, S. E. (2017). Host nuclear genotype influences phenotype of a conditional mutualist symbiont. Journal of Evolutionary Biology, 30, 141–149.

    Article  CAS  PubMed  Google Scholar 

  • Hunter, M. S., Perlman, S. J., & Kelly, S. E. (2003). A bacterial symbiont in the Bacteroidetes induces cytoplasmic incompatibility in the parasitoid wasp Encarsia pergandiella. Proceedings of the Royal Society of London B, 270, 2185–2190.

    Article  Google Scholar 

  • Hurd, L. E., Dehart, P. A., Taylor, J. M., Campbell, M. C., & Shearer, M. M. (2015). The ontogenetically variable trophic niche of a praying mantid revealed by stable isotope analysis. Environmental Entomology, 44, 239–245.

    Article  CAS  PubMed  Google Scholar 

  • Hurst, G. D., & Jiggins, F. M. (2005). Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts. Proceedings of the Royal Society of London B, 272, 1525–1534.

    Google Scholar 

  • Hurst, G. D. D., & Jiggins, F. M. (2000). Male-killing bacteria in insects: Mechanisms, incidence, and implications. Emerging Infectious Diseases, 6, 329–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurst, G. D. D., von der Schulenburg, J. H. G., Majerus, T. M. O., Bertrand, D., Zakharov, I. A., Baungaard, J., Völkl, W., Stouthamer, R., & Majerus, M. E. (1999). Invasion of one insect species, Adalia bipunctata, by two different male-killing bacteria. Insect Molecular Biology, 8, 133–139.

    Article  CAS  PubMed  Google Scholar 

  • Hurst, L. D. (1993). The incidences, mechanisms and evolution of cytoplasmic sex-ratio distorters in animals. Biological Reviews, 68, 121–194.

    Article  Google Scholar 

  • Husnik, F., & McCutcheon, J. P. (2016). Repeated replacement of an intrabacterial symbiont in the tripartite nested mealybug symbiosis. Proceedings of the National Academy of Sciences USA, 113, E5416–E5424.

    Article  CAS  Google Scholar 

  • Hypsa, V., & Aksoy, S. (1997). Phylogenetic characterization of two transovarially transmitted endosymbionts of the bedbug Cimex lectularius (Heteroptera: Cimicidae). Insect Molecular Biology, 6, 301–304.

    Article  CAS  PubMed  Google Scholar 

  • Iasur-Kruh, L., Weintraub, P. G., Mozes-Daube, N., Robinson, W. E., Perlman, S. J., & Zchori-Fein, E. (2013). Novel Rickettsiella bacterium in the leafhopper Orosius albicinctus (Hemiptera: Cicadellidae). Applied and Environmental Microbiology, 79, 4246–4252.

    Google Scholar 

  • Ibarra-Núñez, G., Garcia, J. A., López, J. A., & Lachaud, J.-P. (2001). Prey analysis in the diet of some ponerine ants (Hymenoptera: Formicidae) and web-building spiders (Araneae) in coffee plantations in Chiapas, Mexico. Sociobiology, 37, 723–755.

    Google Scholar 

  • Idris, A. B., & Grafius, E. (1998). Diurnal flight activity of Diadegma insulare (Hymenoptera: Ichneumonidae), a parasitoid of the diamondback moth (Lepidoptera: Plutellidae), in the field. Environmental Entomology, 27, 406–414.

    Article  Google Scholar 

  • Ilovai, Z., & van Lenteren, J. C. (1997). Development of a method for testing adult-fly capacity of Aphidius colemani Vierck (Hymenoptera: Braconidae). Bulletin OILB/SROP, 20, 207–214.

    Google Scholar 

  • Iperti, G., & Buscarlet, L. A. (1986). Seasonal migration of the ladybird Semiadalia undecimnotata. In I. Hodek (Ed.), Ecology of aphidophaga (pp. 199–204). Academia, Prague and Dr. W. Junk.

    Google Scholar 

  • Ives, P. M. (1981). Estimation of coccinellid numbers and movement in the field. The Canadian Entomologist, 113, 981–997.

    Article  Google Scholar 

  • Jackson, C. G. (1991). Elemental markers for entomophagous insects. Southwestern Entomologist, Supplement, 14, 65–70.

    Google Scholar 

  • Jackson, C. G., Cohen, A. C., & Verdugo, C. L. (1988). Labeling Anaphes ovijentatus (Hymenoptera: Mymaridae), an egg parasite of Lygus spp. (Hemiptera: Miridae), with rubidium. Annals of the Entomological Society of America, 81, 919–922.

    Article  Google Scholar 

  • Jackson, C. G., & Debolt, J. W. (1990). Labeling of Leiophron uniformis, a parasitoid of Lygus spp., with rubidium. Southwest Entomologist, 15, 239–244.

    Google Scholar 

  • Jaenike, J., Dyer, K. A., Cornish, C., & Minhas, M. S. (2006). Asymmetrical reinforcement and Wolbachia infection in Drosophila. PLoS Biology, 4, e325.

    Google Scholar 

  • Jaenike, J., Polak, M., Fiskin, A., Helou, M., & Minhas, M. (2007). Interspecific transmission of endosymbiotic Spiroplasma by mites. Biology Letters, 3, 23–25.

    Article  CAS  PubMed  Google Scholar 

  • Jaenike, J., Unckless, R., Cockburn, S. N., Boelio, L. M., & Perlman, S. J. (2010). Adaptation via symbiosis: Recent spread of a Drosophila defensive symbiont. Science, 329, 212–215.

    Article  CAS  PubMed  Google Scholar 

  • James, H. G., & Nicholls, C. F. (1961). A sampling cage for aquatic insects. Canadian Entomologist, 93, 1053–1055.

    Article  Google Scholar 

  • James, H. G., & Redner, R. L. (1965). An aquatic trap for sampling mosquito predators. Mosquito News, 25, 35–37.

    Google Scholar 

  • James, D. G., Warren, G. N., & Whitney, J. (1992). Phytoseiid mite populations on dormant grapevines: Extraction using a microwave oven. Experimental and Applied Acarology, 14, 175–178.

    Article  Google Scholar 

  • Janowski-Bell, M. E., & Horner, N. V. (1999). Movement of the male brown tarantula, Aphonopelma hentzi (Araneae, Theraphosidae), using radio telemetry. Journal of Arachnology, 27, 503–512.

    Google Scholar 

  • Janssen, A., Pallini, A., Venzon, M., & Sabelis, M. W. (1998). Behaviour and indirect interactions in food webs of plant-inhabiting arthropods. Experimental and Applied Acarology, 22, 497–521.

    Article  Google Scholar 

  • Jaramillo, J., Chapman, E. G., Vega, F. E., & Harwood, J. D. (2010). Molecular diagnosis of a previously unreported predator–prey association in coffee: Karnyothrips flavipes Jones (Thysanoptera: Phlaeothripidae) predation on the coffee berry borer. Naturwissenschaften, 97, 291–298.

    Article  CAS  PubMed  Google Scholar 

  • Jarošsik, V. (1992). Pitfall trapping and species-abundance relationships: A value for carabid beetles (Coleoptera, Carabidae). Acta Entomologica Bohemoslovica, 89, 1–12.

    Google Scholar 

  • Jedlicka, J. A., Vo, A. T. E., & Almeida, R. P. P. (2017). Molecular scatology and high-throughput sequencing reveal predominately herbivorous insects in the diets of adult and nestling Western Bluebirds (Sialia mexicana) in California vineyards. The Auk, 134, 116–127.

    Article  Google Scholar 

  • Jedlicková, J. (1997). Modification of a leaf-washing apparatus for the recovery of mites. Experimental and Applied Acarology, 21, 273–277.

    Article  Google Scholar 

  • Jeffries, D. L., Chapman, J., Roy, H. E., Humphries, S., Harrington, R., Brown, P. M. J., & Handley, L. J. L. (2015). Characteristics and drivers of high-altitude ladybird flight: Insights from vertical-looking entomological radar. PLoS ONE, 8, e82278.

    Google Scholar 

  • Jennings, D. T., Houseweart, M. W., & Cokendolpher, J. C. (1984). Phalangids (Arachnida: Opiliones) associated with strip clearcut and dense spruce-fir forests of Maine. Environmental Entomology, 13, 1306–1311.

    Article  Google Scholar 

  • Jensen, P. B. (1997). The influence of unspraying on diversity of soil-related hymenopteran parasitoids in cereal fields. Journal of Applied Entomology, 121, 417–424.

    Article  Google Scholar 

  • Jensen, T. S., Dyring, L., Kristensen, B., Nilesen, B. O., & Rasmussen, E. R. (1989). Spring dispersal and summer habitat distribution of Agonum dorsale (Coleoptera: Carabidae). Pedobiologia, 33, 155–165.

    Google Scholar 

  • Jeong, G., & Stouthamer, R. (2005). Genetics of female functional virginity in the parthenogenesis-Wolbachia infected parasitoid wasp Telenomus nawai (Hymenoptera : Scelionidae). Heredity, 94, 402–407.

    Article  CAS  PubMed  Google Scholar 

  • Jepson, P., Cuthbertson, P., Downham, M., Northey, D., O’Malley, S., Peters, A., Pullen, A., Thacker, R., Thackray, D., Thomas, C., & Smith, C. (1987). A quantitative ecotoxicological investigation of the impact of synthetic pyrethroids on beneficial insects in winter cereals. Bulletin SROP/WPRS, 1987/X/1, 194–205.

    Google Scholar 

  • Jervis, M. A. (1978). Homopteran bugs. In A. Stubbs, & P. J. Chandler (Eds.), A dipterists handbook (pp. 173–176). Amateur Entomologist’s Society.

    Google Scholar 

  • Jervis, M. A. (1979). Courtship, mating and ‘swarming’ in Aphelopus melaleucus (Hym., Dryinidae). Entomologists Gazette, 30, 191–193.

    Google Scholar 

  • Jervis, M. A. (1980a). Life history studies of Aphelopus species (Hymenoptera: Dryinidae) and Chalarus species (Diptera: Pipunculidae), primary parasites of typhlocybine leafhoppers (Homoptera: Cicadellidae). Journal of Natural History, 14, 769–780.

    Google Scholar 

  • Jervis, M. A. (1980b). Ecological studies on the parasite complex associated with typhlocybine leafhoppers (Homoptera: Cicadellidae). Ecological Entomology, 5, 123–136.

    Google Scholar 

  • Jervis, M. A. (1992). A taxonomic revision of the pipunculid fly genus Chalarus Walker, with particular reference to the European fauna. Zoological Journal of the Linnean Society, 105, 243–352.

    Article  Google Scholar 

  • Jervis, M. A., Kidd, N. A. C., Fitton, M. G., Huddleston, T., & Dawah, H. A. (1993). Flower-visiting by hymenopteran parasitoids. Journal of Natural History, 27, 67–105.

    Article  Google Scholar 

  • Jervis, M. A., Kidd, N. A. C., McEwen, P., Campos, M., & Lozano, C. (1992). Biological control strategies in olive pest management. In P. T. Haskell (Ed.), Research collaboration in European IPM systems (pp. 31–39). British Crop Protection Council.

    Google Scholar 

  • Jiggins, F. M., Hurst, G. D. D., Jiggins, C. D., Von der Schulenburg, J. H. G., & Majerus, M. E. N. (2000). The butterfly Danaus chrysippus is infected by a male-killing Spiroplasma bacterium. Parasitology, 120, 439–446.

    Article  PubMed  Google Scholar 

  • Jiggins, F. M., Randerson, J. P., Hurst, G. D. D., & Majerus, M. E. N. (2002). How can sex ratio distorters reach extreme prevalences? Male-killing Wolbachia are not suppressed and have near-perfect vertical transmission efficiency in Acraea encedon. Evolution, 56, 2290–2295.

    PubMed  Google Scholar 

  • Jmhasly, P., & Nentwig, W. (1995). Habitat management in winter wheat and evaluation of subsequent spider predation on insect pests. Acta Oecologica, 16, 389–403.

    Google Scholar 

  • Johanowicz, D. L., & Hoy, M. A. (1999). Wolbachia infection dynamics in experimental laboratory populations of Metaseiulus occidentalis. Entomologia Experimentalis et Applicata, 93, 259–268.

    Article  Google Scholar 

  • Johnson, C. G., Southwood, T. R. E., & Entwistle, H. M. (1957). A new method of extracting arthropods and molluscs from grassland and herbage with a suction apparatus. Bulletin of Entomological Research, 48, 211–218.

    Article  Google Scholar 

  • Johnson, C. G., & Taylor, L. R. (1955). The development of large suction traps for airborne insects. Annals of Applied Biology, 43, 51–61.

    Article  Google Scholar 

  • Johnson, J. W., Eikenbary, R. D., & Holbert, D. (1979). Parasites of the greenbug and other graminaceous aphids: identity based on larval meconia and features of the empty aphid mummy. Annals of the Entomological Society of America, 72, 759–766.

    Google Scholar 

  • Johnson, P. C., & Reeves, R. M. (1995). Incorporation of the biological marker rubidium in gypsy moth (Lepidoptera: Lymantriidae) and its transfer to the predator Carabus nemoralis (Coleoptera: Carabidae). Environmental Entomology, 24, 46–51.

    Article  Google Scholar 

  • Jolly, C. M. (1965). Explicit estimates from capturerecapture data with both death and immigration-stochastic model. Biometrika, 52, 225–247.

    Article  CAS  PubMed  Google Scholar 

  • Jones, M. G. (1979). The abundance and reproductive activity of common Carabidae in a winter wheat crop. Ecological Entomology, 4, 31–43.

    Article  Google Scholar 

  • Jones, T. H., Godfray, H. C. J., & Hassell, M. P. (1996). Relative movement patterns of a tephritid fly and its parasitoid wasps. Oecologia, 106, 317–324.

    Article  CAS  PubMed  Google Scholar 

  • Jones, A. L., Jennings, D. E., Hooks, C. R. R., & Shrewsbury, P. M. (2014). Sentinel eggs underestimate rates of parasitism of the exotic brown marmorated stink bug, Halyomorpha halys. Biological Control, 78, 61–66.

    Article  Google Scholar 

  • Jones, S. A., & Morse, J. G. (1995). Use of isoelectric focusing electrophoresis to evaluate citrus thrips (Thysanoptera: Thripidae) predation by Euseius tularensis (Acari: Phytoseiidae). Environmental Entomology, 24, 1040–1051.

    Article  Google Scholar 

  • Joyce, K. A., Jepson, P. C., Doncaster, C. P., & Holland, J. M. (1997). Arthropod distribution patterns and dispersal processes within the hedgerow. In A. Cooper, & J. Power (Eds.), Species dispersal and land use processes. Proceedings of the 6th Annual Conference of the International Association for Landscape Ecology (pp. 103–110). Coleraine.

    Google Scholar 

  • Juvonen-Lettington, A., & Pullen, A. (2001). The assessment of the saproxylic Coleoptera fauna of lowland parkland and wood pasture: an evaluation of sampling techniques. Antenna, 25, 97–99.

    Google Scholar 

  • Kach, H., Mathe-Hubert, H., Dennis, A. B., & Vorburger, C. (2018). Rapid evolution of symbiont-mediated resistance compromises biological control of aphids by parasitoids. Evolutionary Applications, 11, 220–230.

    Google Scholar 

  • Kádár, F., & Lövei, G. L. (1992). Light trapping of carabids (Coleoptera: Carabidae) in an apple orchard in Hungary. Acta Phytopathologica et Entomologica Hungarica, 27, 343–348.

    Google Scholar 

  • Kádár, F., & Szentkirályi, F. (1998). Seasonal flight pattern of Harpalus rufipes (De Geer) captured by light traps in Hungary (Coleoptera: Carabidae). Acta Phytopathologica Et Entomologica Hungarica, 33, 367–377.

    Google Scholar 

  • Kageyama, D., Nishimura, G., Hoshizaki, S., & Ishikawa, Y. (2002). Feminizing Wolbachia in an insect, Ostrinia furnacalis (Lepidoptera: Crambidae). Heredity, 88, 444–449.

    Article  CAS  PubMed  Google Scholar 

  • Kageyama, D., Yoshimura, K., Sugimoto, T. N., Katoh, T. K., & Watada, M. (2017). Maternally transmitted non-bacterial male killer in Drosophila biauraria. Biology Letters, 13, 20170476.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kajak, A., & Lukasiewicz, J. (1994). Do semi-natural patches enrich crop fields with predatory epigean arthropods? Agriculture Ecosystems and Environment, 49, 149–161.

    Article  Google Scholar 

  • Kaltenpoth, M., Gottler, W., Herzner, G., & Strohm, E. (2005). Symbiotic bacteria protect wasp larvae from fungal infestation. Current Biology, 15, 475–479.

    Article  CAS  PubMed  Google Scholar 

  • Kaltenpoth, M., Roeser-Mueller, K., Koehler, S., Peterson, A., Nechitaylo, T. Y., Stubblefield, J. W., Herzner, G., Seger, J., & Strohm E. (2014). Partner choice and fidelity stabilize coevolution in a Cretaceous-age defensive symbiosis. Proceedings of the National Academy of Sciences USA, 111, 6359–6364.

    Google Scholar 

  • van Kan, F. J. P. M., Silva, I. M. M. S., Schilthuizen, M., Pinto, J. D., & Stouthamer, R. (1996). Use of DNA-based methods for the identification of minute wasps of the genus Trichogramma. Proceedings of Experimental and Applied Entomology, 7, 233–237.

    Google Scholar 

  • Kankare, M., van Nouhuys, S., Gaggiotti, O., & Hanski, I. (2005). Metapopulation genetic structure of two coexisting parasitoids of the Glanville fritillary butterfly. Oecologia, 143, 77–84.

    Article  PubMed  Google Scholar 

  • Kaser, J. M., Nielsen, A. L., & Abram, P. K. (2018). Biological control effects of non-reproductive host mortality caused by insect parasitoids. Ecological Applications, 28, 1081–1092.

    Article  PubMed  Google Scholar 

  • Keen, D. P., Keen, J. E., He, Y., & Jones, C. J. (2001). Development of an enzyme-linked immunosorbent assay for detection of the gregarious hymenopteran parasitoid Muscidifurax raptorellus in house fly pupae. Biological Control, 21, 140–151.

    Article  CAS  Google Scholar 

  • De Keer, R., & Maelfait, J. P. (1987). Life-history of Oedothorax fuscus (Blackwall, 1834) (Araneae, Linyphiidae) in a heavily grazed pasture. Revue d’Écologie et de Biologie du sol, 24, 171–185.

    Google Scholar 

  • De Keer, R., & Maelfait, J. P. (1988). Observations on the life cycle of Erigone atra (Araneae, Erigoninae) in a heavily grazed pasture. Pedobiologia, 32, 201–212.

    Article  Google Scholar 

  • Kegel, B. (1990). Diurnal activity of carabid beetles living on arable land. In N. E. Stork (Eds.), The role of ground beetles in ecological and environmental studies (pp. 65–76). Intercept.

    Google Scholar 

  • Kellner, R. L. L. (1999). What is the basis of pederin polymorphism in Paederus riparius rove beetles? The endosymbiotic hypothesis. Entomologia Experimentalis et Applicata, 93, 41–49.

    Article  CAS  Google Scholar 

  • Kellner, R. L. L. (2001). Suppression of pederin biosynthesis through antibiotic elimination of endosymbionts in Paederus sabaeus. Journal of Insect Physiology, 47, 475–483.

    Article  CAS  PubMed  Google Scholar 

  • Kellner, R. L. L. (2002a). Molecular identification of an endosymbiotic bacterium associated with pederin biosynthesis in Paederus sabaeus (Coleoptera: Staphylinidae). Insect Biochemistry and Molecular Biology, 32, 389–395.

    Article  CAS  PubMed  Google Scholar 

  • Kellner, R. L. L. (2002b). Interspecific transmission of Paederus endosymbionts: Relationship to the genetic divergence among the bacteria associated with pederin biosynthesis. Chemoecology, 12, 133–138.

    Article  CAS  Google Scholar 

  • Kellner, R. L. L., & Dettner, K. (1995). Allocation of pederin during lifetime of Paederus rove beetles (Coleoptera: Staphylinidae): Evidence for polymorphism of hemolymph toxin. Journal of Chemical Ecology, 21, 1719–1733.

    Article  CAS  PubMed  Google Scholar 

  • Kellner, R. L. L., & Dettner, K. (1996). Differential efficacy of toxic pederin in deterring potential arthropod predators of Paederus (Coleoptera: Staphylinidae) offspring. Oecologia, 107, 293–300.

    Article  PubMed  Google Scholar 

  • Kempson, D., Lloyd, M., & Ghelardi, R. (1963). A new extractor for woodland litter. Pedobiologia, 8, 1–21.

    Article  Google Scholar 

  • Kennedy, B. H. (1979). The effect of multilure on parasites of the European elm bark beetle, Scolytus multistriatus. ESA Bulletin, 25, 116–118.

    Google Scholar 

  • Kennedy, P. J., & Randall, N. P. (1997). A semi-field method to assess the effect of dimethoate on the density and mobility of ground beetles (Carabidae), in Arthropod Natural Enemies in Arable Land III. The Individual, the Population and the Community (ed W. Powell). Acta Jutlandica, 72, 21–37.

    Google Scholar 

  • Kennedy, P. J., Randall, N. P., Hackett, B. (1996). Effects of dimethoate on ground beetles in semi-field enclosures: a mark-recapture study. Brighton Crop Protection Conference–Pests and Diseases, 3, 1199–1204.

    Google Scholar 

  • Kennedy, T. F., Evans, G. O., & Feeney, A. M. (1986). Studies on the biology of Tachyporus hypnorum F. (Col. Staphylinidae), associated with cereal fields in Ireland. Irish Journal of Agricultural Research, 25, 81–95.

    Google Scholar 

  • Kenyon, S. G., & Hunter, M. S. (2007). Manipulation of oviposition choice of the parasitoid wasp, Encarsia pergandiella, by the endosymbiotic bacterium Cardinium. Journal of Evolutionary Biology, 20, 707–716.

    Article  CAS  PubMed  Google Scholar 

  • Kharboutli, M. S., & Mack, T. P. (1993). Comparison of three methods for sampling arthropod pests and their natural enemies in peanut fields. Journal of Economic Entomology, 86, 1802–1810.

    Article  Google Scholar 

  • Kikuchi, Y., Sameshima, S., Kitade, O., Kojima, J., & Fukatsu, T. (2002). Novel clade of Rickettsia spp. from leeches. Applied and Environmental Microbiology, 68, 999–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, H. G., Park, J.-S., & Lee, D.-H. (2018). Potential of unmanned aerial sampling for monitoring insect populations in rice fields. Florida Entomologist, 101, 330–334.

    Article  Google Scholar 

  • Kirby, R. D., & Ehler, L. E. (1977). Survival of Hippodamia convergens in grain sorghum. Environmental Entomology, 6, 777–780.

    Article  Google Scholar 

  • Kiritani, K., Kawahara, S., Sasaba, T., & Nakasuji, F. (1972). Quantitative evaluation of predation by spiders on the green rice leafhopper, Nephotettix cincticeps Uhler, by a sight-count method. Researches on Population Ecology, 13, 187–200.

    Article  Google Scholar 

  • Kirk, W. D. J. (1984). Ecologically selective coloured traps. Ecological Entomology, 9, 35–41.

    Article  Google Scholar 

  • Kishimoto, H., & Takagi, K. (2001). Evaluation of predation on Panonychus citri (McGregor) (Acari: Tetranychidae) from feeding traces on eggs. Applied Entomology and Zoology, 36, 91–95.

    Article  Google Scholar 

  • Kiss, B., & Samu, F. (2000). Evaluation of population densities of the common wolf spider Pardosa agrestis (Araneae: Lycosidae) in Hungarian alfalfa fields using mark-recapture. European Journal of Entomology, 97, 191–195.

    Article  Google Scholar 

  • Kitching, R. L., Bergelson, J. M., Lowman, M. D., McIntyre, S., & Carruthers, G. (1993). The biodiversity of arthropods from Australian rainforest canopies: General introduction, methods, sites and ordinal results. Australian Journal of Ecology, 18, 181–191.

    Article  Google Scholar 

  • Kitson, J. J. N., Hahn, C., Sands, R. J., Straw, N. A., Evans, D. M., & Lunt, D. H. (2019). Detecting host–parasitoid interactions in an invasive Lepidopteran using nested tagging DNA metabarcoding. Molecular Ecology, 28, 471–483.

    Article  CAS  PubMed  Google Scholar 

  • Klazenga, N., & De Vries, H. H. (1994). Walking distances of five differently sized ground beetle species. Proceedings of the Section Experimental and Applied Entomology of the Netherlands Entomological Society, 5, 99–100.

    Google Scholar 

  • Kleinhenz, A., & Büchs, W. (1993). Einfluss verschiedener landwirtschaftlicher Produktionsintensitäten auf die Spinnenfauna in der Kultur in Zuckerrübe. Verhandlungen der Gesellschaft für Ökologie, 22, 81–88.

    Google Scholar 

  • Kogan, M., & Herzog, D. C. (Eds.). (1980). Sampling methods in soybean entomology. Springer.

    Google Scholar 

  • Kogan, M., & Pitre, H. N. (1980). General sampling methods for above-ground populations of soybean arthropods. In M. Kogan, & D. C. Herzog (Eds.), Sampling methods in soybean entomology (pp. 30–60). Springer.

    Chapter  Google Scholar 

  • Kokuba, H., Duelli, P. (1980). Aerial population movement and vertical distribution of aphidophagous insects in cornfields (Chrysopidae, Coccinellidae and Syrphidae). In I. Hodek (Ed.), Ecology of aphidophaga (pp. 279–284). Academia, Prague and W. Junk.

    Google Scholar 

  • Konopka, J. K., Gariepy, T. D., Haye, T., Zhang, J., Rubin, B. D., & McNeil, J. N. (2018). Exploitation of pentatomids by native egg parasitoids in the native and introduced ranges of Halyomorpha halys: A molecular approach using sentinel egg masses. Journal of Pest Science, 92, 609–619.

    Article  Google Scholar 

  • Kondo, N., Nikoh, N., Ijichi, N., Shimada, M., & Fukatsu, T. (2002). Genome fragment of Wolbachia endosymbiont transferred to X chromosome of host insect. Proceedings of the National Academy of Sciences, 99, 14280–14285.

    Google Scholar 

  • Koomen, P. (1998). Winter activity of Anyphaena accentuata (Walckenaer, 1802) (Araneae: Anyphaenidae). In Proceedings of the 17th European Colloquium of Arachnology (pp. 222–225). British Arachnological Society, Buckinghamshire.

    Google Scholar 

  • Koop, J. L., Zeh, D. W., Bonilla, M. M., & Zeh, J. A. (2009). Reproductive compensation favours male-killing Wolbachia in a live-bearing host. Proceedings of the Royal Society of London B, 276, 4021–4028.

    CAS  Google Scholar 

  • Kowalski, R. (1976). Obtaining valid population indices from pitfall trapping data. Bulletin de l'Académie Polonaise des Sciences, 23, 799–803.

    Google Scholar 

  • De Kraker, J., van Huis, A., van Lenteren, J. C., Heong, K. L., & Rabbinge, R. (1999). Egg mortality of rice leaffolders Cnaphalocrocis medinalis and Marasmia patnalis in irrigated rice fields. BioControl, 44, 449–471.

    Article  Google Scholar 

  • Krebs, C. J. (1999). Ecological methodology (2nd ed.). Benjamin Cummins.

    Google Scholar 

  • Krehenwinkel, H., Kennedy, S., Pekar, S., & Gillespie, R. G. (2017). A cost-efficient and simple protocol to enrich prey DNA from extractions of predatory arthropods for large-scale gut content analysis by Illumina sequencing. Methods in Ecology and Evolution, 8, 126–134.

    Article  Google Scholar 

  • Krombein, K. V. (1967). Trap-nesting wasps and bees: Life-histories. Smithsonian Press.

    Book  Google Scholar 

  • Kromp, B., & Nitzlader, M. (1995). Dispersal of ground beetles in a rye field in Vienna, Eastern Austria. Acta Jutlandica, 70, 269–277.

    Google Scholar 

  • Kromp, B., Pflügl, C., Hradetzky, R., & Idinger, J. (1995). Estimating beneficial arthropod densities using emergence traps, pitfall traps and the flooding method in organic fields (Vienna, Austria). Acta Jutlandica, 70, 87–100.

    Google Scholar 

  • Krüger, F., Clare, E. L., Symondson, W. O. C., Keišs, O., & Pētersons, G. (2014). Diet of the insectivorous bat Pipistrellus nathusii during autumn migration and summer residence. Molecular Ecology, 23, 3672–3683.

    Article  PubMed  Google Scholar 

  • Kuechler, S. M., Dettner, K., & Kehl, S. (2011). Characterization of an obligate intracellular bacterium in the midgut epithelium of the bulrush bug Chilacis typhae (Heteroptera, Lygaeidae, Artheneinae). Applied and Environmental Microbiology, 77, 2869–2876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuschel, G. (1991). A pitfall trap for hypogean fauna. Curculio, 31, 5.

    Google Scholar 

  • Kuschka, V., Lehmann, G., & Meyer, U. (1987). Zur Arbeit mit Bodenfallen. Beitrage zur Entomologie, 37, 3–27.

    Google Scholar 

  • Kutsch, W. (1999). Telemetry in insects: The “intact animal approach.” Theory in Biosciences, 118, 29–53.

    Google Scholar 

  • van Laerhoven, S. L., & Stephen, F. M. (2002). Height distribution of adult parasitoids of the southern pine beetle complex. Environmental Entomology, 31, 982–987.

    Article  Google Scholar 

  • Lajtha, K., & Michener, R. H. (1994). Stable isotopes in ecology and environmental science. Blackwell Scientific Publications.

    Google Scholar 

  • Landis, D. A., & van der Werf, W. (1997). Early-season predation impacts the establishment of aphids and spread of beet yellows virus in sugar beet. Entomophaga, 42, 499–516.

    Google Scholar 

  • Landolt, P. J. (1998). Chemical attractants for trapping yellowjackets Vespula germanica and Vespula pensylvanica (Hymenoptera: Vespidae). Environmental Entomology, 27, 1229–1234.

    Article  CAS  Google Scholar 

  • Lang, A. (2000). The pitfalls of pitfalls: A comparison of pitfall trap catches and absolute density estimates of epigeal invertebrate predators in arable land. Journal of Pest Science, 73, 99–106.

    Article  Google Scholar 

  • Lang, A. (2003). Intraguild interference and biocontrol effects of generalist predators in a winter wheat field. Oecologia, 134, 144–153.

    Article  PubMed  Google Scholar 

  • Lapchin, L., Boll, R., Rochat, J., Geria, A. M., & Franco, E. (1997). Projection pursuit nonparametric regression used for predicting insect densities from visual abundance classes. Environmental Entomology, 26, 736–744.

    Article  Google Scholar 

  • Lapchin, L., Ferran, A., Iperti, G., Rabasse, J. M., & Lyon, J. P. (1987). Coccinellids (Coleoptera: Coccinellidae) and syrphids (Diptera: Syrphidae) as predators of aphids in cereal crops: A comparison of sampling methods. Canadian Entomologist, 119, 815–822.

    Article  Google Scholar 

  • Larsen, N. J., Minor, M. A., Cruickshank, R. H., & Robertson, A. W. (2014). Optimising methods for collecting Hymenoptera, including parasitoids and Halictidae bees, in New Zealand apple orchards. Journal of Asia-Pacific Entomology, 17, 375–381.

    Article  Google Scholar 

  • Laska, M. S., & Wootton, J. T. (1998). Theoretical concepts and empirical approaches to measuring interaction strength. Ecology, 79, 461–476.

    Article  Google Scholar 

  • Laurent, M., & Lamarque, P. (1974). Utilisation de la methode des captures successives (De Lury) pour L’evaluation des peuplements piscicoles. Annals of Hydrobiology, 5, 121–132.

    Google Scholar 

  • Laven, H. (1956). Cytoplasmic inheritance in Culex. Nature, 177, 141–142.

    Article  Google Scholar 

  • Laven, H. (1967). Eradication of Culex pipiens fatigans through cytoplasmic incompatibility. Nature, 216, 383–384.

    Article  CAS  PubMed  Google Scholar 

  • Lavigne, R. J. (1992). Ethology of Neoaratus abludo Daniels (Diptera: Asilidae) in South Australia, with notes on N. pelago (Walker) and N. rufiventris (Macquart). Proceedings of the Entomological Society of Washington, 94, 253–262.

    Google Scholar 

  • Lawson, E. T., Mousseau, T. A., Klaper, R., Hunter, M. D., & Werren, J. H. (2001). Rickettsia associated with male-killing in a buprestid beetle. Heredity, 86, 497–505.

    Article  CAS  PubMed  Google Scholar 

  • Lawson Handley, J. L., Estoup, A., Evans, D. M., Thomas, C. E., Lombaert, E., Facon, B., Aebi, A., & Roy, H. E. (2011). Ecological genetics of invasive alien species. BioControl, 56, 409–428.

    Article  Google Scholar 

  • Lawton, J. H. (1970). Feeding and food energy assimilation in larvae of the damselfly Pyrrhosoma nymphula (Sulz.) (Odonata: Zygoptera). Journal of Animal Ecology, 39, 669–689.

    Article  Google Scholar 

  • Lawton, J. H. (1986). The effect of parasitoids on phytophagous insect communities. In J. K. Waage, & D. Greathead (Eds.), Insect parasitoids (pp. 265–287). Academic.

    Google Scholar 

  • Leclerque, A., Hartelt, K., Schuster, C., Jung, K., & Kleespies, R. G. (2011). Multilocus sequence typing (MLST) for the infra-generic taxonomic classification of entomopathogenic Rickettsiella bacteria. FEMS Microbiology Letters, 324, 125–134.

    Article  CAS  PubMed  Google Scholar 

  • Leclercq, S., Thézé, J., Chebbi, M. A., Giraud, I., Moumen, B., Ernenwein, L., Grève, P., Gilbert, C., & Cordaux, R. (2016). Birth of a W sex chromosome by horizontal transfer of Wolbachia bacterial symbiont genome. Proceedings of the National Academy of Sciences USA, 113, 15036–15041.

    Google Scholar 

  • Ledieu, M. S. (1977). Ecological aspects of parasite use under glass. In F. F. Smith, & R. E. Webb (Eds.), Pest management in protected culture crops. Proceedings of the 15th International Congress of Entomology (pp. 75–80). USDA.

    Google Scholar 

  • Lee, J. H., Johnson, S. J., & Wright, V. L. (1990). Quantitative survivorship analysis of the velvetbean caterpillar (Lepidoptera: Noctuidae) pupae in soybean fields in Louisiana. Environmental Entomology, 19, 978–986.

    Article  Google Scholar 

  • Legaspi, J. C., O’Neill, R. J., & Legaspi, B. C. (1996). Trade-offs in body weights, eggs loads and fat reserves of field-collected Podisus maculiventris (Heteroptera: Pentatomidae). Environmental Entomology, 25, 155–164.

    Article  Google Scholar 

  • Lemessa, D., Hambäck, P. A., & Hylander, K. (2015). Arthropod but not bird predation in Ethiopian homegardens is higher in tree-poor than in tree-rich landscapes. PLoS ONE, 10, e0126639.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lemieux, J. P., & Lindgren, B. S. (1999). A pitfall trap for large-scale trapping of Carabidae: Comparison against conventional design, using two different preservatives. Pedobiologia, 43, 245–253.

    Google Scholar 

  • van Lenteren, J. C., Bale, J., Bigler, F., Hokkanen, H. M. T., & Loomans, A. J. M. (2006). Assessing risks of releasing exotic biological control agents of arthropod pests. Annual Review of Entomology, 51, 609–634.

    Article  PubMed  Google Scholar 

  • LePage, D. P., Metcalf, J. A., Bordenstein, S. R., On, J., Perlmutter, J. I., Shropshire, J. D., et al. (2017). Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility. Nature, 543, 243–247.

    Google Scholar 

  • LeSar, C. D., & Unzicker, J. D. (1978). Soybean spiders: Species composition, population densities, and vertical distribution. Illinois Natural History Survey Biological Notes, 107, 1–14.

    Google Scholar 

  • Lessard, E. J., Martin, M. P., & Montagnes, D. J. S. (1996). A new method for live-staining protists with DAPI and its application as a tracer of ingestion by walleye pollock (Theragra chalcogramma (Pallas)) larvae. Journal of Experimental Marine Biology and Ecology, 204, 43–57.

    Article  Google Scholar 

  • Levesque, C., & Levesque, G. Y. (1996). Seasonal dynamics of rove beetles (Coleoptera: Staphylinidae) in a raspberry plantation and adjacent sites in eastern Canada. Journal of the Kansas Entomological Society, 69, 285–301.

    Google Scholar 

  • Levine, J. M., Bascompte, J., Adler, P. B., & Allesine, S. (2017). Beyond pairwise mechanisms of species coexistence in complex communities. Nature, 546, 56–64.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, O. T., Memmott, J., LaSalle, J., Lyal, C. H. C., Whitefoord, C., & Godfray, H. C. J. (2002). Structure of a diverse tropical forest insect-parasitoid community. Journal of Animal Ecology, 71, 855–873.

    Article  Google Scholar 

  • Li, S. J., Ahmed, M. Z., Lv, N., Shi, P. Q., Wang, X. M., Huang, J. L., & Qiu, B. L. (2017). Plant-mediated horizontal transmission of Wolbachia between whiteflies. ISME Journal, 11, 1019–1028.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y. Y., Floate, K. D., Fields, P. G., & Pang, B. P. (2014). Review of treatment methods to remove Wolbachia bacteria from arthropods. Symbiosis, 62, 1–15.

    Article  Google Scholar 

  • Liddell, J. E., & Cryer, A. (1991). A Practical guide to monoclonal antibodies. Wiley.

    Google Scholar 

  • Liddell, J. E., & Weeks, I. (1995). Antibody technology. BIOS.

    Google Scholar 

  • Lincoln, F. C. (1930). Calculating waterfowl abundance on the basis of banding returns. USDA Circular, 118, 1–4.

    Google Scholar 

  • Lindsey, A. R. I., Bhattacharya, T., Newton, I. L. G., & Hardy, R. W. (2018). Conflict in the intracellular lives of endosymbionts and viruses: A mechanistic look at Wolbachia-mediated pathogen-blocking. Viruses, 10, 141.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, H., Bauer, L. S., Gao, R., Zhao, T., Petrice, T. R., & Haack, R. A. (2004). Exploratory survey of the emerald ash Borer, Agrilus planipennis (Coleoptera: Buprestidae), and its natural enemies in China. Great Lakes Entomologist, 36, 191–204.

    Google Scholar 

  • Liu, H., & Beckenbach, A. T. (1992). Evolution of the mitochondrial cytochrome oxidase II gene among 10 insect orders. Molecular Phylogenetics and Evolution, 1, 41–52.

    Article  CAS  PubMed  Google Scholar 

  • Löbner, U., & Hartwig, O. (1994). Soldier beetles (Col., Cantharidae) and nabid bugs (Het., Nabidae)–occurrence and importance as aphidophagous predators in winter wheat fields in the surroundings of Halle/Saale (Sachsen-Anhalt). Bulletin IOBC/WPRS Working Group Integrated Control of Cereal Pests, 17, 179–187.

    Google Scholar 

  • Lobry de Bruyn, L. A. (1999). Ants as bioindicators of soil function in rural environments. Agriculture, Ecosystems and Environment, 74, 425–441.

    Google Scholar 

  • Lohaus, K., Vidal, S., & Thies, C. (2013). Farming practices change food web structures in cereal aphid–parasitoid–hyperparasitoid communities. Oecologia, 171, 249–259.

    Article  PubMed  Google Scholar 

  • Lohse, G. A. (1981). Bodenfallenfänge im Naturpark Wilseder Berg mit einer kritischen Beurteilung ihrer Aussagekraft. Jahrbücher der Naturwissenschaftlichen Vereinigung Wuppertal, 34, 43–47.

    Google Scholar 

  • Loiselle, B. A., & Farji-Brener, A. G. (2002). What’s up? An experimental comparison of predation levels between canopy and understory in a tropical wet forest. Biotropica, 34, 327–330.

    Article  Google Scholar 

  • Lombaert, E., Guillemaud, T., Lundgren, J., Koch, R., Facon, B., Grez, A., Loomans, A., Malausa, T., Nedved, O., Rhule, E., Staverlokk, A., Steenberg, T., & Estoup, A. (2014). Complementarity of statistical treatments to reconstruct worldwide routes of invasion: The case of the Asian ladybird Harmonia axyridis. Molecular Ecology, 23, 5979–5997.

    Article  PubMed  Google Scholar 

  • Lommen, S. T. E., de Jong, P. W., & Pannebakker, B. A. (2017). It is time to bridge the gap between exploring and exploiting: Prospects for utilizing intraspecific genetic variation to optimize arthropods for augmentative pest control–a review. Entomologia Experimentalis et Applicata, 162, 108–123.

    Article  Google Scholar 

  • Longdon, B., & Jiggins, F. M. (2012). Vertically transmitted viral endosymbionts of insects: Do sigma viruses walk alone? Proceedings of the Royal Society of London B, 27, 3889–3898.

    Google Scholar 

  • Longino, J. T., & Colwell, R. K. (1997). Biodiversity assessment using structured inventory: Capturing the ant fauna of a tropical rain forest. Ecological Applications, 7, 1263–1277.

    Article  Google Scholar 

  • Lord, W. D., DiZinno, J. A., Wilson, M. R., Budowle, B., Taplin, D., & Meinking, T. L. (1998). Isolation, amplification and sequencing of human mitochondrial DNA obtained from human crab louse, Pthirus pubis (L.) blood meals. Journal of Forensic Sciences, 43, 1097–1100.

    Article  CAS  PubMed  Google Scholar 

  • Loreau, M. (1984a). Population density and biomass of Carabidae (Coleoptera) in a forest community. Pedobiologia, 27, 269–278.

    Article  Google Scholar 

  • Loreau, M. (1984b). Étude experimentale de l’alimentation de Abax ater Villers, Carabus problematicus Herbst et Cychrus attenuatus Fabricius (Coleoptera: Carabidae). Annales de la Société Royale Zoologique de Belgique, 114, 227–240.

    Google Scholar 

  • Loreau, M. (1987). Vertical distribution of activity of carabid beetles in a beech forest floor. Pedobiologia, 30, 173–178.

    Article  Google Scholar 

  • Loreau, M., & Nolf, C. L. (1993). Occupation of space by the carabid beetle Abax ater. Acta Oecologica, 14, 247–258.

    Google Scholar 

  • Loughton, B. G., Derry, C., & West, A. S. (1963). Spiders and the spruce budworm. Memoirs of the Entomological Society of Canada, 31, 249–268.

    Article  Google Scholar 

  • Lovei, G. L., & Ferrante, M. (2017). A review of the sentinel prey method as a way of quantifying invertebrate predation under field conditions. Insect Science, 24, 528–542.

    Article  PubMed  Google Scholar 

  • Lövei, G. L., Monostori, E., & Andó, I. (1985). Digestion rate in relation to starvation in the larva of a carabid predator, Poecilus cupreus. Entomologia Experimentalis et Applicata, 37, 123–127.

    Article  Google Scholar 

  • Lövei, G. L., Stringer, I. A. N., Devine, C. D., & Cartellieri, M. (1997). Harmonic radar–a method using inexpensive tags to study invertebrate movement on land. New Zealand Journal of Ecology, 21, 187–193.

    Google Scholar 

  • Lövei, G. L., & Szentkirályi, F. (1984). Carabids climbing maize plants. Zeitschrift für Angewandte Entomologie, 97, 107–110.

    Article  Google Scholar 

  • Lowe, A. D. (1968). The incidence of parasitism and disease in some populations of the cabbage aphid (Brevicoryne brassicae L.) in New Zealand. New Zealand Journal of Agricultural Research, 11, 821–828.

    Article  Google Scholar 

  • Loxdale, H. D. (1994). Isozyme and protein profiles of insects of agricultural and horticultural importance. In D. L. Hawksworth (Ed.), The identification and characterisation of pest organisms (pp. 337–375). CAB International.

    Google Scholar 

  • Loxdale, H. D., Brookes, C. P., & De Barro, P. J. (1996). Application of novel molecular markers (DNA) in agricultural entomology. In W. O. C. Symondson, & J. E. Liddell (Eds.), Ecology of agricultural pests (pp. 149–198). Chapman and Hall.

    Google Scholar 

  • Loxdale, H. D., & den Hollander, J. (Eds.). (1989). Electrophoretic studies on agricultural pests, Systematics Association Special Volume No. 39. Clarendon Press.

    Google Scholar 

  • Loxdale, H. D., & Lushai, G. (1998). Molecular markers in entomology. Bulletin of Entomological Research, 88, 577–600.

    Article  CAS  Google Scholar 

  • Luff, M. L. (1968). Some effects of formalin on the numbers of Coleoptera caught in pitfall traps. Entomologists Monthly Magazine, 104, 115–116.

    Google Scholar 

  • Luff, M. L. (1975). Some features influencing the efficiency of pitfall traps. Oecologia, 19, 345–357.

    Article  CAS  PubMed  Google Scholar 

  • Luff, M. L. (1978). Diel activity patterns of some field Carabidae. Ecological Entomology, 3, 53–62.

    Article  Google Scholar 

  • Luff, M. L. (1986). Aggregation of some Carabidae in pitfall traps. In P. J. den Boer, M. L. Luff, D. Mossakowski, & F. Weber (Eds.), Carabid beetles–their adaptations and dynamics (pp. 385–397). Fischer.

    Google Scholar 

  • Luff, M. L. (1987). Biology of polyphagous ground beetles in agriculture. Agricultural Zoology Reviews, 2, 237–278.

    Google Scholar 

  • Luff, M. L. (1996). Use of carabids as environmental indicators in grasslands and cereals. Annales Zoologici Fennici, 33, 185–195.

    Google Scholar 

  • Lukasik, P., van Asch, M., Guo, H. F., Ferrari, J., & Godfray, H. C. J. (2013). Unrelated facultative endosymbionts protect aphids against a fungal pathogen. Ecology Letters, 16, 214–218.

    Article  PubMed  Google Scholar 

  • Lund, R. D., & Turpin, F. T. (1977). Serological investigation of black cutworm larval consumption by ground beetles. Annals of the Entomological Society of America, 70, 322–324.

    Article  Google Scholar 

  • Lundgren, J. G., & Fergen, J. K. (2014). Predator community structure and trophic linkage strength to a focal prey. Molecular Ecology, 23, 3790–3798.

    Article  PubMed  Google Scholar 

  • Lundgren, J. G., Lopez-Lavalle, L. A. B., Parsa, S., & Wyckhuys, K. A. G. (2014). Molecular determination of the predator community of a cassava whitefly in Colombia: pest-specific primer development and field validation. Journal of Pest Science, 87, 125–131.

    Google Scholar 

  • Lunt, D. H., Zhang, D.-X., Szymura, J. M., & Hewitt, G. M. (1996). The insect cytochrome oxidase I gene: Evolutionary patterns and conserved primers for phylogenetic studies. Insect Molecular Biology, 5, 153–165.

    Article  CAS  PubMed  Google Scholar 

  • Lys, J. A. (1995). Observation of epigeic predators and predation on artificial prey in a cereal field. Entomologia Experimentalis et Applicata, 75, 265–272.

    Article  Google Scholar 

  • Lys, J. A., & Nentwig, W. (1991). Surface activity of carabid beetles inhabiting cereal fields. Seasonal phonology and the influence of farming operations on five abundant species. Pedobiologia, 35, 129–138.

    Google Scholar 

  • Ma, W. J., & Schwander, T. (2017). Patterns and mechanisms in instances of endosymbiont-induced parthenogenesis. Journal of Evolutionary Biology, 30, 868–888.

    Article  PubMed  Google Scholar 

  • Macfadeyn, S., Gibson, R., Symondson, W. O. C., & Memmott, J. (2011). Landscape structure influences modularity patterns in farm food webs: Consequences for pest control. Ecological Applications, 21, 516–524.

    Article  Google Scholar 

  • Macleod, A. (1999). Attraction and retention of Episyrphus balteatus DeGeer (Dipera: Syrphidae) at an arable field margin with rich and poor flora resource. Agriculture Ecosystems Environment, 73, 237–244.

    Article  Google Scholar 

  • Macleod, A., Sotherton, N. W., Harwood, R. W. J., & Wratten, S. D. (1995). An improved suction sampling device to collect aphids and their predators in agroecosystems. Acta Jutlandica, 70, 125–131.

    Google Scholar 

  • Macleod, A., Wratten, S. D., & Harwood, R. W. J. (1994). The efficiency of a new lightweight suction sampler for sampling aphids and their predators in arable land. Annals of Applied Biology, 124, 11–17.

    Article  Google Scholar 

  • Mader, H. J., Schell, C., & Kornacher, P. (1990). Linear barriers to arthropod movements in the landscape. Biological Conservation, 54, 209–222.

    Article  Google Scholar 

  • Maes, D., & Pollet, M. (1997). Dolichopodid communities (Diptera: Dolichopodidae) in “De Kempen” (eastern Belgium): Biodiversity, faunsistics and ecology. Bulletin and Annales de la Société Royale Belge d’Entomologie, 133, 419–438.

    Google Scholar 

  • Majer, J. D., Recher, H., & Keals, N. (1996). Branchlet shaking: A method for sampling tree canopy arthropods under windy conditions. Australian Journal of Ecology, 21, 229–234.

    Article  Google Scholar 

  • Malaise, R. (1937). A new insect trap. Entomologisk Tidskrift, 58, 148–160.

    Google Scholar 

  • Manga, N. (1972). Population metabolism of Nebria brevicollis (F.) (Coleoptera: Carabidae). Oecologia, 10, 223–242.

    Article  CAS  PubMed  Google Scholar 

  • Manly, B. F. J. (1971). Estimates of a marking effect with capture-recapture sampling. Journal of Applied Ecology, 8, 181–189.

    Article  Google Scholar 

  • Manly, B. F. J., & Parr, M. J. (1968). A new method of estimating population size, survivorship, and birth rate from capture-recapture data. Transactions of the Society for British Entomology, 18, 81–89.

    Google Scholar 

  • Mann, E., Stouthamer, C. M., Kelly, S. E., Dzieciol, M., Hunter, M. S., & Schmitz-Esser, S. (2017). Transcriptome sequencing reveals novel candidate genes for Cardinium hertigii-caused cytoplasmic incompatibility and host-cell Interaction. Msystems, 2, e00141–17.

    Google Scholar 

  • Markgraf, A., & Basedow, T. (2000). Carabid assemblages associated with fields of sugar beet and their margins in Germany, shown by different methods of trapping and sampling. In P. Brandmayr, G. L. Lövei, T. Z. Brandmayr, A. Casale, & A. V. Taglianti (Eds.), Natural history and applied ecology of carabid beetles (pp. 295–305). Pensoft Publishers.

    Google Scholar 

  • Markgraf, A., & Basedow, T. (2002). Flight activity of predatory Staphylinidae in agriculture in central Germany. Journal of Applied Entomology, 126, 79–81.

    Article  Google Scholar 

  • Marston, N. L. (1980). Sampling parasitoids of soybean insect pests. In M. Kogan, & D. C. Herzog (Eds.), Sampling methods in soybean entomology (pp. 481–504). Springer.

    Chapter  Google Scholar 

  • Marston, N., Davis, D. G., & Gebhardt, M. (1982). Ratios for predicting field populations of soybean insects and spiders from sweep-net samples. Journal of Economic Entomology, 75, 976–981.

    Article  Google Scholar 

  • Martinez, J., Longdon, B., Bauer, S., Chan, Y. S., Miller, W. J., Bourtzis, K., Teixeira, L., & Jiggins, F. M. (2014). Symbionts commonly provide broad spectrum resistance to viruses in insects: A comparative analysis of Wolbachia strains. PLoS Pathogens, 10, e1004369.

    Google Scholar 

  • Martinez, N. D., Hawkins, B. A., Dawah, H. A., & Feifarek, B. P. (1999). Effects of sampling effort on characterization of food-web structure. Ecology, 80, 1044–1055.

    Article  Google Scholar 

  • Mascanzoni, D., & Wallin, H. (1986). The harmonic radar: A new method of tracing insects in the field. Ecological Entomology, 11, 387–390.

    Article  Google Scholar 

  • Masner, L. (1976). Yellow pan traps (Moreicke traps, Assiettes jaunes). Proctos, 2, 2.

    Google Scholar 

  • Masner, L., & Goulet, H. (1981). A new model of flight-interception trap for some hymenopterous insects. Entomology News, 92, 199–202.

    Google Scholar 

  • Mason, C. E., & Blocker, H. D. (1973). A stabilised drop trap for unit-area sampling of insects in short vegetation. Environmental Entomology, 2, 214–216.

    Article  Google Scholar 

  • Mason, P. G., Gillespie, D. R., & Vincent, C. (Eds.). (2017). Proceedings of the 5th International Symposium on Biological Control of Arthropods. https://doi.org/10.1079/9781786394118.0000

  • Masson, F., Copete, S. C., Schupfer, F., Garcia-Arraez, G., & Lemaitre, B. (2018). In vitro culture of the insect endosymbiont Spiroplasma poulsonii highlights bacterial genes involved in host-symbiont interaction. Mbio, 9, 00024–18.

    Google Scholar 

  • Mateos, M., Winter, L., Winter, C., Higareda-Alvear, V. M., Martinez-Romero, E., & Xie, J. L. (2016). Independent origins of resistance or susceptibility of parasitic wasps to a defensive symbiont. Ecology and Evolution, 6, 2679–2687.

    Google Scholar 

  • Matsura, T. (1986). The feeding ecology of the pit-making ant-lion larva, Myrmeleon bore: Feeding rate and species composition of prey in a habitat. Ecological Research, 1, 15–24.

    Article  Google Scholar 

  • Matsuura, Y., Kikuchi, Y., Meng, X. Y., Koga, R., & Fukatsu, T. (2012). Novel clade of alphaproteobacterial endosymbionts associated with stinkbugs and other arthropods. Applied and Environmental Microbiology, 78, 4149–4156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuura, Y., Moriyama, M., Lukasik, P., Vanderpool, D., Tanahashi, M., Meng, X. Y., McCutcheon, J. P., & Fukatsu, T. (2018). Recurrent symbiont recruitment from fungal parasites in cicadas. Proceedings of the National Academy of Sciences USA, 115, E5970–E5979.

    Article  CAS  Google Scholar 

  • Matthews, R. W., & Matthews, J. R. (1971). The Malaise trap: Its utility and potential for sampling insect populations. The Michigan Entomologist, 4, 117–122.

    Google Scholar 

  • Matthews, R. W., & Matthews, J. R. (1983). Malaise traps: The Townes model catches more insects. Contributions of the American Entomological Institute, 20, 428–432.

    Google Scholar 

  • Maunsell, S. C., Kitching, R. J., Burwell, C. J., & Morris, R. J. (2015). Changes in host-parasitoid food web structure with elevation. Journal of Animal Ecology, 84, 353–363.

    Article  PubMed  Google Scholar 

  • Mayse, M. A., Price, P. W., & Kogan, M. (1978). Sampling methods for arthropod colonization studies in soybean. Canadian Entomologist, 110, 265–274.

    Article  Google Scholar 

  • McCann, K., Hastings, A., & Huxel, G. R. (1998). Weak trophic interactions and the balance of nature. Nature, 395, 794–798.

    Article  CAS  Google Scholar 

  • McCarty, M. T., Shepard, M., & Turnipseed, S. C. (1980). Identification of predacious arthropods in soybeans by using autoradiography. Environmental Entomology, 9, 199–203.

    Article  Google Scholar 

  • McCauley, V. J. E. (1975). Two new quantitative samplers for aquatic phytomacrofauna. Hydrobiologia, 47, 81–89.

    Article  Google Scholar 

  • McClain, D. C., Rock, G. C., & Woolley, J. B. (1990). Influence of trap color and San jose scale (Homoptera: Diaspididae) pheromone on sticky trap catches of 10 aphelinid parasitoids (Hymenoptera). Environmental Entomology, 19, 926–931.

    Article  Google Scholar 

  • McCutcheon, J. P., & Moran, N. A. (2012). Extreme genome reduction in symbiotic bacteria. Nature Reviews Microbiology, 10, 13–26.

    Article  CAS  Google Scholar 

  • McDonald, L., Manly, B., Lockwood, J., & Logan, J. (1988). Estimation and analysis of insect populations. Springer.

    Google Scholar 

  • McEwen, P. (1997). Sampling, handling and rearing insects. In D. R. Dent, & M. P. Walton (Eds.), Methods in ecological and agricultural entomology (pp. 5–26). CAB International.

    Google Scholar 

  • McEwen, P. K., Jervis, M. A., & Kidd, N. A. C. (1994). Use of a sprayed L-tryptophan solution to concentrate numbers of the green lacewing Chrysoperla carnea in olive tree canopy. Entomologia Experimentalis et Applicata, 70, 97–99.

    Article  CAS  Google Scholar 

  • McGarigal, K., Cushman, S. A., & Stafford, S. (2013). Multivariate statistics for wildlife and ecology Research. Springer.

    Google Scholar 

  • McKemey, A. R., Symondson, W. O. C., & Glen, D. M. (2001). Effect of slug size on predation by Pterostichus melanarius. Biocontrol Science and Technology, 11, 83–93.

    Article  Google Scholar 

  • McKemey, A. R., Symondson, W. O. C., & Glen, D. M. (2003). Predation and prey size choice by the carabid beetle Pterostichus melanarius: The dangers of extrapolating from laboratory to field. Bulletin of Entomological Research, 93, 227–234.

    Article  CAS  PubMed  Google Scholar 

  • McLean, A. H., Parker, B. J., Hrček, J., Henry, L. M., & Godfray, H. C. J. (2016). Insect symbionts in food webs. Philosophical Transactions of the Royal Society of London B, 371, 20150325.

    Google Scholar 

  • McLean, A. H. C., & Godfray, H. C. J. (2017). The outcome of competition between two parasitoid species is influenced by a facultative symbiont of their aphid host. Functional Ecology, 31, 927–933.

    Article  Google Scholar 

  • McNabb, D. M., Halaj, J., & Wise, D. H. (2001). Inferring trophic positions of generalist predators and their linkage to the detrital food web in agroecosystems: A stable isotope analysis. Pedobiologia, 45, 289–297.

    Article  Google Scholar 

  • McNeill, M. R., Vittum, P. J., & Jackson, T. A. (2000). Serratia marcescens as a rapid indicator of Microctonus hyperodae oviposition activity in Listronotus maculicollis. Entomologia Experimentalis et Applicata, 95, 193–200.

    Article  Google Scholar 

  • McPhail, M. (1939). Protein lures for fruit flies. Journal of Entomology, 32, 758–761.

    CAS  Google Scholar 

  • Meagher, R. L., & Mitchell, E. R. (1999). Nontarget Hymenoptera collected in pheromone- and synthetic floral volatile-baited traps. Environmental Entomology, 28, 367–371.

    Article  Google Scholar 

  • Melbourne, B. A. (1999). Bias in the effect of habitat structure on pitfall traps: An experimental evaluation. Australian Journal of Ecology, 24, 228–239.

    Article  Google Scholar 

  • Memmott, J., & Godfray, H. C. J. (1993). Parasitoid webs. In J. LaSalle, & I. D. Gauld (Eds.), Hymenoptera and biodiversity (pp. 217–234). CAB International.

    Google Scholar 

  • Memmott, J., & Godfray, H. C. J. (1994). The use and construction of parasitoid webs. In B. A. Hawkins, & W. Sheehan (Eds.), Parasitoid community ecology (pp. 300–318). Oxford University Press.

    Chapter  Google Scholar 

  • Memmott, J., Godfray, H. C. J., & Gauld, I. D. (1994). The structure of a tropical host-parasitoid community. Journal of Animal Ecology, 63, 521–540.

    Article  Google Scholar 

  • Memmott, J., Martinez, N. D., & Cohen, J. E. (2000). Predators, parasitoids and pathogens: Species richness, trophic generality and body sizes in a natural food web. Journal of Animal Ecology, 69, 1–15.

    Article  Google Scholar 

  • Menken, S. B. J., & Raijmann, L. E. L. (1996). Biochemical systematics: Principles and perspectives for pest management. In W. O. C. Symondson, & J. E. Liddell (Eds.), The ecology of agricultural pests: Biochemical approaches. Systematics Association Special Volume 53 (pp. 7–29). Chapman and Hall.

    Google Scholar 

  • Menken, S. B. J., & Ulenberg, S. A. (1987). Biochemical characters in agricultural entomology. Agricultural Zoology Reviews, 2, 305–360.

    Google Scholar 

  • Mensah, R. K. (1997). Yellow traps can be used to monitor populations of Coccinella transversalis (F.) and Adalia bipunctata (L.) (Coleoptera: Coccinellidae) in cotton crops. Australian Journal of Entomology, 36, 377–381.

    Article  Google Scholar 

  • Messing, R. H., & Aliniazee, M. T. (1989). Introduction and establishment of Trioxys pallidus (Hym.: Aphidiidae) in Oregon, USA for control of filbert aphid Myzocallis coryli (Hom.: Aphididae). Entomophaga, 34, 153–163.

    Article  Google Scholar 

  • Messing, R. H., & Wong, T. T. Y. (1992). An effective trapping method for field studies of opiine braconid parasitoids of tephritid fruit flies. Entomophaga, 37, 391–396.

    Article  Google Scholar 

  • Messing, R. H., Klungness, L. M., Purcell, M., & Wong, T. T. Y. (1993). Quality control parameters of mass-reared opiine parasitoids used in augmentative biological control of tephritid fruit flies in Hawaii. Biological Control, 3, 140–147.

    Article  Google Scholar 

  • Meyhöfer, R. (2001). Intraguild predation by aphidophagous predators on parasitised aphids: The use of multiple video cameras. Entomologia Experimentalis et Applicata, 100, 77–87.

    Article  Google Scholar 

  • Meyhöfer, R., & Klug, T. (2002). Intraguild predation on the aphid parasitoid Lysiphlebus fabarum (Marshall) (Hymenoptera: Aphidiidae): Mortality risks and behavioral decisions made under threats of predation. Biological Control, 25, 239–248.

    Article  Google Scholar 

  • Micheli, M. R., Beva, R., Pascale, E., & D’Ambrosio, E. (1994). Reproducible DNA fingerprinting with the random amplified polymorphic DNA (RAPD) method. Nucleic Acids Research, 22, 1921–1922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Middleton, R. J. (1984). The distribution and feeding ecology of web-spinning spiders living in the canopy of Scots Pine (Pinus sylvestris L.). University College, Cardiff, Ph.D. Thesis.

    Google Scholar 

  • Mikheev, A. V., & Kreslavskii, A. G. (2000). Marking insects by burning. Entomological Review, 80, 367–369.

    Google Scholar 

  • Miller, R. S., Passoa, S., Waltz, R. D., & Mastro, V. (1993). Insect removal from sticky traps using a citrus oil solvent. Entomological News, 104, 209–213.

    Google Scholar 

  • Mills, N. J. (1997). Techniques to evaluate the efficacy of natural enemies. In D. R. Dent, & M. P. Walton (Eds.), Methods in ecological and agricultural entomology (pp. 271–291). CAB International.

    Google Scholar 

  • Miyashita, T. (1999). Life-history variation in closely related generalist predators living in the same habitat: A case study with three Cyclosa spiders. Functional Ecology, 13, 307–314.

    Article  Google Scholar 

  • Miyata, M., Konagaya, T., Yukuhiro, K., Nomura, M., & Kageyama, D. (2017). Wolbachia-induced meiotic drive and feminization is associated with an independent occurrence of selective mitochondrial sweep in a butterfly. Biology Letters, 13, 0153. https://doi.org/10.1098/rsbl.2017.0153

  • Mols, P. J. M. (1987). Hunger in relation to searching behaviour, predation and egg production of the carabid beetle Pterostichus coerulescens L.: Results of simulation. Acta Phytopathologica et Entomologica Hungarica, 22, 187–205.

    Google Scholar 

  • Mommertz, S., Schauer, C., Kösters, N., Lang, A., & Filser, J. (1996). A comparison of D-Vac suction, fenced and unfenced pitfall trap sampling of epigeal arthropods in agroecosystems. Annales Zoologici Fennici, 33, 117–124.

    Google Scholar 

  • Montllor, C. B., Maxmen, A., & Purcell, A. H. (2002). Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecological Entomology, 27, 189–195.

    Article  Google Scholar 

  • Montoya, D., Yallop, M. L., & Memmott, J. (2015). Functional group diversity increases with modularity in complex food webs. Nature Communications, 6, 7379.

    Article  CAS  PubMed  Google Scholar 

  • Moore, R. (2001). Emergence trap developed to capture adult large pine weevil Hylobius abietis (Coleoptera: Curculionidae) and its parasite Bracon hylobii (Hymenoptera: Braconidae). Bulletin of Entomological Research, 91, 109–115.

    Article  CAS  PubMed  Google Scholar 

  • De Moraes, R.R., Funderburk, J.E. and Maruniak, J.E. (1998). Polymerase Chain Reaction techniques to detect multiple nucleopolyhedrovirus in Anticarsia gemmatalis (Lepidoptera: Noctuidae) and predator populations in soybean. Environmental Entomology, 27, 968–975.

    Article  Google Scholar 

  • Moran, M. D., & Hurd, L. E. (1998). A trophic cascade in a diverse arthropod community caused by a generalist arthropod predator. Oecologia, 113, 126–132.

    Article  Google Scholar 

  • Moran, M. D., & Scheidler, A. R. (2002). Effects of nutrients and predators on an old-field food chain: Interactions of top-down and bottom-up processes. Oikos, 98, 116–124.

    Article  Google Scholar 

  • Moran, N. A., & Dunbar, H. E. (2006). Sexual acquisition of beneficial symbionts in aphids. Proceedings of the National Academy of Sciences USA, 103, 12803–12806.

    Article  CAS  Google Scholar 

  • Moran, N. A., McCutcheon, J. P., & Nakabachi, A. (2008). Genomics and evolution of heritable bacterial symbionts. Annual Review of Genetics, 42, 165–190.

    Article  CAS  PubMed  Google Scholar 

  • Moran, N. A., Tran, P., & Gerardo, N. M. (2005). Symbiosis and insect diversification: An ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes. Applied and Environmental Microbiology, 71, 8802–8810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreby, S. (1991). A simple time-saving improvement to the motorized insect suction sampler. Entomologist, 110, 2–4.

    Google Scholar 

  • Moreira, L. A., Iturbe-Ormaetxe, I., Jeffery, J. A., Lu, G. J., Pyke, A. T., Hedges, L. M., Rocha, B. C., Hall-Mendelin, S., Day, A., Riegler, M., Hugo, L. E., Johnson, K. N., Kay, B. H., McGraw, E. A., van den Hurk, A. F., Ryan, P. A., & O'Neill, S. L. (2009). A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and plasmodium. Cell, 139, 1268– 1278.

    Google Scholar 

  • Moreno, D. S., Gregory, W. A., & Tanigoshi, L. K. (1984). Flight response of Aphytis melinus (Hymenoptera: Aphelinidae) and Scirtothrips citri (Thysanoptera: Thripidae) to trap color, size and shape. Environmental Entomology, 13, 935–940.

    Article  Google Scholar 

  • Moreno-Ripoll, R., Gabarra, R., Symondson, W. O. C., King, R. A., & Agustí, N. (2012). Trophic relationships between predators, whiteflies and their parasitoids in tomato greenhouses: A molecular approach. Bulletin of Entomological Research, 102, 415–423.

    Article  CAS  PubMed  Google Scholar 

  • Morin, P. A., Luikart, G., & Wayne, R. K. (2004). SNPs in ecology, evolution and conservation. Trends in Ecology and Evolution, 19, 208–216.

    Article  Google Scholar 

  • Morin, P. J., & Lawler, S. P. (1995). Food web architecture and population dynamics: Theory and empirical evidence. Annual Review of Ecology and Systematics, 26, 505–529.

    Article  Google Scholar 

  • Moritz, C., Dowling, T. E., & Brown, W. M. (1987). Evolution of animal mitochondrial DNA: Relevance for population biology and systematics. Annual Review of Entomology and Systematics, 18, 269–292.

    Article  Google Scholar 

  • Morris, T., & Campos, M. (1996). A hybrid beating tray. Entomologist, 115, 20–22.

    Google Scholar 

  • Morris, T. I., Campos, M., Kidd, N. A. C., Jervis, M. A., Symondson, W. O. C. (1999a). Dynamics of the predatory arthropod community in Spanish olive groves. Agricultural and Forest Entomology, 1, 219–228.

    Google Scholar 

  • Morris, T. I., Campos, M., Kidd, N. A. C., & Symondson, W. O. C. (1999b). What is consuming Prays oleae (Bernard) (Lep.: Yponomeutidae) and when: a serological solution. Crop Protection, 18, 17–22.

    Google Scholar 

  • Morris, T. I., Symondson, W. O. C., Kidd, N. A. C., Jervis, M. A., & Campos, M. (1998). Are ants significant predators of the olive moth, Prays oleae? Crop Protection, 17, 365–366.

    Article  Google Scholar 

  • Morris, T. I., Symondson, W. O. C., Kidd, N. A. C., & Campos, M. (2002). The effect of different ant species on the olive moth, Prays oleae (Bern.), in a Spanish olive orchard. Journal of Applied Entomology, 126, 224–230.

    Article  Google Scholar 

  • Morrison, L. W. (2002). Long-term impacts of an arthropod-community invasion by the imported fire ant, Solenopsis invicta. Ecology, 83, 2337–2345.

    Article  Google Scholar 

  • Morrison, W. R., Mathews, C. R., & Leskey, T. C. (2016). Frequency, efficiency, and physical characteristics of predation by generalist predators of brown marmorated stink bug (Hemiptera: Pentatomidae) eggs. Biological Control, 97, 120–130.

    Article  Google Scholar 

  • Morrow, J. L., Frommer, M., Royer, J. E., Shearman, D. C., & Riegler, M. (2015). Wolbachia pseudogenes and low prevalence infections in tropical but not temperate Australian tephritid fruit flies: manifestations of lateral gene transfer and endosymbiont spillover? BMC Evolutionary Biology, 15, 1–16.

    Google Scholar 

  • Mowes, M., Freier, B., Kreuter, T., & Triltsch, H. (1997). Tiller counting or total plot harvest–how exact are predator counts in winter wheat? Anzeiger für Schadlingskunde, Pflanzenschutz, Umweltschutz, 70, 121–126.

    Google Scholar 

  • Mühlenberg, M. (1993). Freilandökologie. Quelle and Meyer Verlag.

    Google Scholar 

  • Müller, C. B., & Brodeur, J. (2002). Intraguild predation in biological control and conservation biology. Biological Control, 25, 216–223.

    Article  Google Scholar 

  • Müller, C. B., Adriaanse, I. C. T., Belshaw, R., & Godfray, H. C. J. (1999). The structure of an aphid-parasitoid community. Journal of Animal Ecology, 68, 346–370.

    Article  Google Scholar 

  • Müller, J. K. (1984). Die Bedeutung der Fallenfang-Methode für die Lösung ökologischer Fragestellungen. Zoologischer Jahrbucher, Abteilung für Systematik Okologie und Geographie der Tiere, 111, 281–305.

    Google Scholar 

  • Murchie, A. K., Burn, D. J., Kirk, W. D. J., & Williams, I. H. (2001). A novel mechanism for time-sorting insect catches, and its use to derive diel flight periodicity of brassica pod midge Dasineura brassicae (Diptera: Cecidomyiidae). Bulletin of Entomological Research, 91, 199–203.

    Article  CAS  PubMed  Google Scholar 

  • Murdoch, W. W., Chesson, J., & Chesson, P. L. (1985). Biological control in theory and practice. American Naturalist, 125, 344–366.

    Article  Google Scholar 

  • Murphy, B. C., Rosenheim, J. A., Granett, J., Pickett, C. H., & Dowell, R. V. (1998). Measuring the impact of a natural enemy refuge: The prune tree/vineyard example. In C. H. Pickett, & R. L. Bugg (Eds.), Enhancing biological control (pp. 297–309). University of California Press.

    Google Scholar 

  • Murphy, W. L. (1985). Procedure for the removal of insect specimens from sticky-trap material. Annals of the Entomological Society of America, 78, 881.

    Article  Google Scholar 

  • Nabli, H., Bailey, W. C., & Necibi, S. (1999). Beneficial insect attraction to light traps with different wavelengths. Biological Control, 16, 185–188.

    Article  Google Scholar 

  • Nair, A., Fountain, T., Ikonen, S., Ojanen, S. P., & van Nouhuys, S. (2016). Spatial and temporal genetic structure at the fourth trophic level in a fragmented landscape. Proceedings of the Royal Society of London B, 283, 20160668.

    Google Scholar 

  • Nakabachi, A., Ueoka, R., Oshima, K., Teta, R., Mangoni, A., Gurgui, M., Oldham, N. J., van Echten-Deckert, G., Okamura, K., Yamamoto, K., Inoue, H., Ohkuma, M., Hongoh, Y., Miyagishima, S. Y., Hattori, M., Piel, J., & Fukatsu, T. (2013). Defensive bacteriome symbiont with a drastically reduced genome. Current Biology, 23, 1478–1484.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, K., Miura, K., de Jong, P. W., & Ueno, H. (2006). Comparison of the incidence of sibling cannibalism between male-killing Spiroplasma infected and uninfected clutches of a predatory ladybird beetle, Harmonia axyridis (Coleoptera: Coccinellidae). European Journal of Entomology, 103, 323–326.

    Article  Google Scholar 

  • Nakamura, Y., Kawai, S., Yukuhiro, F., Ito, S., Gotoh, T., Kisimoto, R., Yanase, T., Matsumoto, Y., Kageyama, D., & Noda, H. (2009). Prevalence of Cardinium bacteria in planthoppers and spider mites and taxonomic revision of Candidatus Cardinium hertigii based on detection of a new Cardinium group from biting midges. Applied and Environmental Microbiology, 75, 6757–6763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura, Y., Yukuhiro, F., Matsumura, M., & Noda, H. (2012). Cytoplasmic incompatibility involving Cardinium and Wolbachia in the white-backed planthopper Sogatella furcifera (Hemiptera: Delphacidae). Applied Entomology and Zoology, 47, 273–283.

    Article  Google Scholar 

  • Nakanishi, K., Hoshino, M., Nakai, M., & Kunimi, Y. (2008). Novel RNA sequences associated with late male killing in Homona magnanima. Proceedings of the Royal Society of London B, 275, 1249–1254.

    CAS  Google Scholar 

  • Narisu, L., & J.A. and Schell, S.P. (1999). A novel mark-recapture technique and its application to monitoring the direction and distance of local movements of rangeland grasshoppers (Orthoptera: Acrididae) in the context of pest management. Journal of Applied Ecology, 36, 604–617.

    Article  Google Scholar 

  • Navajas, M., Lagnel, J., Fauvel, G., & De Moraes, G. (1999). Sequence variation of ribosomal internal transcribed spacers (ITS) in commercially important Phytoseiidae mites. Experimental and Applied Acarology, 23, 851–859.

    Article  CAS  PubMed  Google Scholar 

  • Negri, I., Pellecchia, M., Mazzoglio, P. J., Patetta, A., & Alma, A. (2006). Feminizing Wolbachia in Zyginidia pullula (Insecta, Hemiptera), a leafhopper with an XX/XO sex-determination system. Proceedings of the Royal Society of London B, 273, 2409–2416.

    CAS  Google Scholar 

  • Neilsen, T. (1969). Population studies on Helophilus hybridus Loew and Sericomyia silentis (Harris) (Dipt., Syrphidae) on Jaeren, S.W. Norway. Norsk Entomologisk Tidsskrift, 16, 33–38.

    Google Scholar 

  • Nelemans, M. N. E. (1986). Marking techniques for surface-dwelling Coleoptera larvae. Pedobiologia, 29, 143–146.

    Google Scholar 

  • Nelemans, M. N. E. (1988). Surface activity and growth of larvae of Nebria brevicollis (F.) (Coleoptera, Carabidae). Netherlands Journal of Zoology, 38, 74–95.

    Article  Google Scholar 

  • Nelemans, M. N. E., den Boer, P. J., & Spee, A. (1989). Recruitment and summer diapause in the dynamics of a population of Nebria brevicollis (Coleoptera: Carabidae). Oikos, 56, 157–169.

    Article  Google Scholar 

  • Neuenschwander, P. (1982). Beneficial insects caught by yellow traps used in mass-trapping of the olive fly, Dacus oleae. Entomologia Experimentalis et Applicata, 32, 286–296.

    Article  Google Scholar 

  • Neuenschwander, P., Canard, M., & Michelakis, S. (1981). The attractivity of protein hydrolysate baited McPhail traps to different chrysopid and hemerobiid species (Neuroptera) in a Cretan olive orchard. Annals of the Entomological Society of France, 17, 213–220.

    Article  Google Scholar 

  • Neuenschwander, P., & Michelakis, S. (1980). The seasonal and spatial distribution of adult and larval chrysopids on olive-trees in Crete. Acta Oecologia/oecologia Applicata, 1, 93–102.

    Google Scholar 

  • Newton, B. L., & Yeargan, K. V. (2002). Population characteristics of Phalangium opilio (Opiliones: Phalangiidae) in Kentucky agroecosystems. Environmental Entomology, 31, 92–98.

    Article  Google Scholar 

  • Nguyen, D. T., Morrow, J. L., Spooner-Hart, R. N., & Riegler, M. (2017). Independent cytoplasmic incompatibility induced by Cardinium and Wolbachia maintains endosymbiont coinfections in haplodiploid thrips populations. Evolution, 71, 995–1008.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, D. T., Spooner-Hart, R. N., & Riegler, M. (2016). Loss of Wolbachia but not Cardinium in the invasive range of the Australian thrips species, Pezothrips kellyanus. Biological Invasions, 18, 197–214.

    Article  Google Scholar 

  • Nielsen, J. M., Clare, E. L., Hayden, B., Brett, M. T., & Kratina, P. (2018). Diet tracing in ecology: Method comparison and selection. Methods in Ecology and Evolution, 9, 278–291.

    Article  Google Scholar 

  • Niemelä, J. (1990). Spatial distribution of carabid beetles in the southern Finnish taiga: The question of scale. In N.E. Stork (Ed.), The role of ground beetles in ecological and environmental studies (pp. 143–155). Intercept.

    Google Scholar 

  • Niemelä, J., Halme, E., Pajunen, T., & Haila, Y. (1986). Sampling spiders and carabid beetles with pitfall traps: The effect of increased sampling effort. Annales Entomologici Fennici, 52, 109–111.

    Google Scholar 

  • Nieminen, M., & van Nouhuys, S. (2017). The roles of trophic interactions, competition and landscape in determining metacommunity structure of a seed-feeding weevil and its parasitoids. Annales Zoologici Fennici, 54, 83–95.

    Article  Google Scholar 

  • Nienstedt, K., & Poehling, H. M. (1995). Markierung von Aphiden mit 15N-eine geignete Methode zur Quantifizierung der Prädationsleistung polyphager Prädatoren? Mitteilungen der Deutschen Gesselchaft für Allgemeine und Angewandte Entomologie, 10, 227–230.

    Google Scholar 

  • Nienstedt, K., & Poehling, H. M. (2000). 15N-marked aphids for predation studies under field conditions. Entomologia Experimentalis et Applicata, 94, 319–323.

    Article  Google Scholar 

  • Noel, G. R., & Atibalentja, N. (2006). Candidatus Paenicardinium endonii, an endosymbiont of the plant-parasitic nematode Heterodera glycines (Nemata: Tylenchida), affiliated to the phylum Bacteroidetes. International Journal of Systematic and Evolutionary Microbiology, 56, 1697–1702.

    Google Scholar 

  • Nordlander, G. (1987). A method for trapping Hylobius abietis (L.) with a standardized bait and its potential for forecasting seedling damage. Scandinavian Journal of Forest Research, 2, 199–213.

    Article  Google Scholar 

  • van Nouhuys, S. (2016). Diversity, population structure, and individual behaviour of parasitoids as seen using molecular markers. Current Opinion in Insect Science, 14, 94–99.

    Article  PubMed  Google Scholar 

  • van Nouhuys, S., & Lei, G. (2004). Parasitoid–host metapopulation dynamics: The causes and consequences of phenological asynchrony. Journal of Animal Ecology, 73, 526–535.

    Article  Google Scholar 

  • Novakova, E., Hypsa, V., & Moran, N. A. (2009). Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution. BMC Microbiology, 9, 143.

    Article  PubMed  PubMed Central  Google Scholar 

  • Noyes, J. S. (1982). Collecting and preserving chalcid wasps (Hymenoptera: Chalcidoidea). Journal of Natural History, 16, 315–334.

    Article  Google Scholar 

  • Noyes, J. S. (1984). In a fog. Chalcid Forum, 3, 4–5.

    Google Scholar 

  • Noyes, J. S. (1989). A study of five methods of sampling Hymenoptera (Insecta) in a tropical rainforest, with special reference to the Parasitica. Journal of Natural History, 23, 285–298.

    Google Scholar 

  • Nyffeler, M. (1982). Field studies on the ecological role of the spiders as insect predators in agroecosystems (abandoned grassland, meadows and cereal fields). Swiss Federal Institute of Technology, Zurich, Ph.D. Thesis.

    Google Scholar 

  • Nyffeler, M. (1999). Prey selection of spiders in the field. Journal of Arachnology, 27, 317–324.

    Google Scholar 

  • Nyffeler, M., & Benz, G. (1988a). Feeding ecology and predatory importance of wolf spiders (Pardosa spp.) (Araneae, Lycosidae) in winter wheat fields. Journal of Applied Ecology, 106, 123–134.

    Google Scholar 

  • Nyffeler, M., & Benz, G. (1988b). Prey and predatory importance of micryphantid spiders in winter wheat fields and hay meadows. Journal of Applied Entomology, 105, 190–197.

    Google Scholar 

  • Nyffeler, M., Sterling, W. L., & Dean, D. A. (1992). Impact of the striped lynx spider (Araneae: Oxyopidae) and other natural enemies on the cotton fleahopper (Hemiptera: Miridae) in Texas cotton. Environmental Entomology, 21, 1178–1188.

    Article  Google Scholar 

  • O’Connor, L., Plichart, C., Sang, A. C., Brelsfoard, C. L., Bossin, H. C., & Dobson, S. L. (2012). Open release of male mosquitoes infected with a Wolbachia biopesticide: Field performance and infection containment. PLoS Neglected Tropical Diseases, 6, e1797.

    Google Scholar 

  • O’Donnell, D. J. (1982). Taxonomy of the immature stages of parasitic Hymenoptera associated with aphids. Imperial College, University of London, Ph.D. Thesis.

    Google Scholar 

  • O’Donnell, D. J., & Mackauer, M. (1989). A morphological and taxonomic study of first instar larvae of Aphidiinae (Hymenoptera: Braconidae). Systematic Entomology, 14, 197–219.

    Article  Google Scholar 

  • O’Neill, S. L. (2018). The use of Wolbachia by the world mosquito program to interrupt transmission of Aedes aegypti transmitted viruses. In R. Hilgenfeld, & S. G. Vasudevan (Eds.), Dengue and Zika: Control and antiviral treatment strategies (pp. 355–360). Springer.

    Google Scholar 

  • O’Neill, S. L., Hoffmann, A. A., & Werren, J. H. (Eds.). (1997). Influential passengers; inherited microorganisms and arthropod reproduction. Oxford University Press.

    Google Scholar 

  • O’Neill, S. L., Kittayapong, P., Braig, H. R., Andreadis, T. G., Gonzalez, J. P., & Tesh, R. B. (1995). Insect densoviruses may be widespread in mosquito cell-lines. Journal of General Virology, 76, 2067–2074.

    Article  PubMed  Google Scholar 

  • Obrist, M. K., & Duelli, P. (1996). Trapping efficiency of funnel- and cup traps for epigeal arthropods. Mitteilungen der Schweizerischen Entomologischen Gesellschaft, 69, 361–369.

    Google Scholar 

  • Oelbermann, K., & Scheu, S. (2002). Stable isotope enrichment (δ15N and δ13C) in a generalist predator (Pardosa lugubris, Araneae: Lycosidae): Effects of prey quality. Oecologia, 130, 337–344.

    Article  PubMed  Google Scholar 

  • Ogino, T., Uehara, T., Muraji, M., Yamaguchi, T., Ichihashi, T., Suzuki, T., Kainoh, Y., & Shimoda, M. (2016). Violet LED light enhances the recruitment of a thrip predator in open fields. Scientific Reports, 6, 32302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okassa, M., Tixier, M. S., & Kreiter, S. (2010). Morphological and molecular diagnostics of Phytoseiulus persimilis and Phytoseiulus macropilis (Acari: Phytoseiidae). Experimental and Applied Acarology, 52, 291–303.

    Article  PubMed  Google Scholar 

  • Olive, C. W. (1982). Behavioral response of a sit-and-wait predator to spatial variation in foraging gain. Ecology, 63, 912–920.

    Article  Google Scholar 

  • Oliver, K. M., Russell, J. A., Moran, N. A., & Hunter, M. S. (2003). Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proceedings of the National Academy of Sciences USA, 100, 1803–1807.

    Article  CAS  Google Scholar 

  • Oliver, K. M., Campos, J., Moran, N. A., & Hunter, M. S. (2008). Population dynamics of defensive symbionts in aphids. Proceedings of the Royal Society of London B, 275, 293–299.

    Google Scholar 

  • Oliver, K. M., Degnan, P. H., Hunter, M. S., & Moran, N. A. (2009). Bacteriophages encode factors required for protection in a symbiotic mutualism. Science, 325, 992–994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver, K. M., Degnan, P. H., Burke, G. R., & Moran, N. A. (2010). Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annual Review of Entomology, 55, 247–266.

    Article  CAS  PubMed  Google Scholar 

  • Oliver, K. M., Noge, K., Huang, E. M., Campos, J. M., Becerra, J. X., & Hunter, M. S. (2012). Parasitic wasp responses to symbiont-based defense in aphids. BMC Biology, 10, 11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliver, K. M., Smith, A. H., & Russell, J. A. (2014). Defensive symbiosis in the real world -advancing ecological studies of heritable, protective bacteria in aphids and beyond. Functional Ecology, 28, 341–355.

    Article  Google Scholar 

  • Orzack, S. H., & Parker, E. D. (1990). Genetic variation for sex ratio traits within a natural population of a parasitic wasp, Nasonia vitripennis. Genetics, 124, 373–384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osawa, N. (1992). Sibling cannibalism in the ladybird beetle Harmonia axyridis–fitness consequences for mother and offspring. Researches on Population Ecology, 34, 45–55.

    Article  Google Scholar 

  • Osborne, J. L., Clark, S. J., Morris, R. J., Williams, I. H., Riley, J. R., Smith, A. D., Reynolds, D. R., & Edwards, A. S. (1999). A landscape-scale study of bumble bee foraging range and constancy, using harmonic radar. Journal of Applied Ecology, 36, 519–533.

    Article  Google Scholar 

  • Osborne, K. H., & Allen, W. W. (1999). Allen-vac: An internal collection bag retainer allows for snag-free arthropod sampling in woody scrub. Environmental Entomology, 28, 594–596.

    Article  Google Scholar 

  • Ostrom, P. H., Colunga-Garcia, M., & Gage, S. H. (1997). Establishing pathways of energy flow for insect predators using stable isotope ratios: field and laboratory evidence. Oecologia, 109, 108–113.

    Google Scholar 

  • Otis, D. L., Burnham, G. C., White, G. C., & Anderson, D. R. (1978). Statistical inference from capture data on closed populations. Wildlife Monographs, 62, 1–135.

    Google Scholar 

  • Ouyang, F., Yang, B., Cao, J., Feng, Y., & Ge, F. (2014). Tracing prey origins, proportions and feeding periods for predatory beetles from agricultural systems using carbon and nitrogen stable isotope analyses. Biological Control, 71, 23–29.

    Article  Google Scholar 

  • Owen, J. A. (1981). Trophic variety and abundance of hoverflies (Diptera, Syrphidae) in an English suburban garden. Holarctic Ecology, 4, 221–228.

    Google Scholar 

  • Owen, J. A. (1995). A pitfall trap for repetitive sampling of hypogean arthropod faunas. Entomologist’s Record, 107, 225–228.

    Google Scholar 

  • Owen, J. A., Townes, H., & Townes, M. (1981). Species diversity of Ichneumonidae and Serphidae (Hymenoptera) in an English suburban garden. Biological Journal of the Linnean Society, 16, 315–336.

    Article  Google Scholar 

  • Pakarinen, E. (1994). Autotomy in arionid and limacid slugs. Journal of Molluscan Studies, 60, 19–23.

    Article  Google Scholar 

  • Paredes, J. C., Herren, J. K., Schupfer, F., & Lemaitre, B. (2016). The role of lipid competition for endosymbiont-mediated protection against parasitoid wasps in Drosophila. Mbio, 7, 01006-16.

    Google Scholar 

  • Pannebakker, B. A., Loppin, B., Elemans, C. P. H., Humblot, L., & Vavre, F. (2007). Parasitic inhibition of cell death facilitates symbiosis. Proceedings of the National Academy of Sciences USA, 104, 213–215.

    Article  CAS  Google Scholar 

  • Pannebakker, B. A., Schidlo, N. S., Boskamp, G. J. F., Dekker, L., van Dooren, T. J. M., Beukeboom, L. W., Zwaan, B. J., Brakefield, P. M., & van Alphen, J. J. (2005). Sexual functionality of Leptopilina clavipes (Hymenoptera: Figitidae) after reversing Wolbachia-induced parthenogenesis. Journal of Evolutionary Biology, 18, 1019–1028.

    Article  CAS  PubMed  Google Scholar 

  • Parker, E. D., & Orzack, S. H. (1985). Genetic variation for the sex ratio in Nasonia vitripennis. Genetics, 110, 93–105.

    Article  PubMed  PubMed Central  Google Scholar 

  • Parker, F. D., & Bohart, R. M. (1966). Host-parasite associations in some twig-nesting Hymenoptera from western North America. Pan-Pacific Entomologist, 42, 91–98.

    Google Scholar 

  • Parker, G. G., Smith, A. P., & Hogan, K. P. (1992). Access to the upper forest canopy with a large tower crane. BioScience, 42, 664–670.

    Article  Google Scholar 

  • Parmenter, R. R., & MacMahon, J. A. (1989). Animal density estimation using a trapping web design: Field validation experiments. Ecology, 70, 169–179.

    Article  Google Scholar 

  • Parr, M. J. (1965). A population study of a colony of imaginal Ischnura elegans (van der Linden) (Odonata: Coenagriidae) at Dale, Pembrokeshire. Field Studies, 2, 237–282.

    Google Scholar 

  • Parratt, S. R., Frost, C. L., Schenkel, M. A., Rice, A., Hurst, G. D. D., & King, K. C. (2016). Superparasitism drives heritable symbiont epidemiology and host sex ratio in a wasp. PLoS Pathogens, 12, e1005629.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pasteur, N., Pasteur, G., Bonhomme, F., Catalan, J., & Britton-Davidian, J. (1988). Practical Isozyme Genetics. Ellis Horwood Ltd.

    Google Scholar 

  • Pastorok, R. A. (1981). Prey vulnerability and size selection by Chaoborus larvae. Ecology, 62, 1311–1324.

    Article  Google Scholar 

  • Pausch, R. D., Roberts, S. J., Bamey, R. J., & Armbrust, E. J. (1979). Linear pitfall traps, a modification of an established trapping method. The Great Lakes Entomologist, 12, 149–151.

    Google Scholar 

  • Pearson, C. E., Symondson, W. O. C., Clare, E. L., Ormerod, S. J., Iparraguirre Bolaños, E., & Vaughan, I. P. (2018). The effects of pastoral intensification on the feeding interactions of generalist predators in streams. Molecular Ecology, 27, 590–602.

    Google Scholar 

  • Pedley, S. M., Oxbrough, A., Martin, R. D., Irwin, S., Kelly, T.C., & O’Halloran, J. (2016). Can ground-based assessments of forest biodiversity reflect the biological condition of canopy assemblages? Forest Ecology and Management, 359, 190–198.

    Google Scholar 

  • Pekár, S. (1999). Some observations on overwintering of spiders (Araneae) in two contrasting orchards in the Czech Republic. Agriculture, Ecosystems and Environment, 73, 205–210.

    Google Scholar 

  • Pekár, S. (2000). Webs, diet, and fecundity of Theridion impressum (Araneae: Theridiidae). European Journal of Entomology, 97, 47–50.

    Article  Google Scholar 

  • Pekár, S. (2002). Differential effects of formaldehyde concentration and detergent on the catching efficiency of surface active arthropods by pitfall traps. Pedobiologia, 46, 539–547.

    Article  Google Scholar 

  • Penagos, D. I., Magallanes, R., Valle, J., Cisneros, J., Martinez, A. M., Goulson, D., Chapman, J. W., Caballero, P., Cave, R. D., & Williams, T. (2003). Effect of weeds on insect pests of maize and their natural enemies in Southern Mexico. International Journal of Pest Management, 49, 155–161.

    Article  Google Scholar 

  • Peng, R., Christian, K., Gibb, K. (1999). The effect of levels of green ant, Oecophylla smaragdina (F.) colonisation on cashew yield in northern Australia. In L. W. Hong, & S. S. Sastroumo (Eds.), Symposium on Biological Control in the Tropics (pp. 24–28). CABI Publishing.

    Google Scholar 

  • Penz, T., Schmitz-Esser, S., Kelly, S. E., Cass, B. N., Muller, A., Woyke, T., Malfatti, S. A., Hunter, M. S., & Horn, M. (2012). Comparative genomics suggests an independent origin of cytoplasmic incompatibility in Cardinium hertigii. PLoS Genetics, 8, e1003012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peralta, G., Frost, C. M., Rand, T. A., Didham, R. K., & Tylianakis, J. M. (2014). Complexity and redundancy of interactions enhance attack rates and spatial stability in host-parasitoid food webs. Ecology, 95, 1888–1896.

    Article  PubMed  Google Scholar 

  • Pérez-Maluf, R., Kaiser, L., Wajnberg, E., & Carton, Y. (1998). Genetic variability of conditioned probing responses to a fruit odor in Leptopilina boulardi (Hymenoptera: Eucoilidae), a Drosophila parasitoid. Behavior Genetics, 28, 67–73.

    Google Scholar 

  • Perfecto, I., Horwith, B., van der Meer, J., Schultz, B., McCuinness, H., & Dos Santos, A. (1986). Effects of plant diversity and density on the emigration rate of two ground beetles, Harpalus pennsylvanicus and Evarthrus sodalis (Coleoptera: Carabidae), in a system of tomatoes and beans. Environmental Entomology, 15, 1028–1031.

    Article  Google Scholar 

  • Perlman, S. J., Hunter, M. S., & Zchori-Fein, E. (2006). The emerging diversity of Rickettsia. Proceedings of the Royal Society of London B, 273, 2097–2106.

    Google Scholar 

  • Perry, J. N. (1989). Review: Population variation in entomology 1935–1950. The Entomologist, 108, 184–198.

    Google Scholar 

  • Perry, J. N. (1998). Measures of spatial pattern for counts. Ecology, 79, 1008–1017.

    Article  Google Scholar 

  • Perry, J. N., & Bowden, J. (1983). A comparative analysis of Chrysoperla carnea catches in light- and suction-traps. Ecological Entomology, 8, 383–394.

    Article  Google Scholar 

  • Perry, K. I., Wallin, K. F., Wenzel, J. W., & Herms, D. A. (2017). Characterizing movement of ground-dwelling arthropods with a novel mark-capture method using fluorescent powder. Journal of Insect Behavior, 30, 32–47.

    Article  Google Scholar 

  • Perrot-Minnot, M. J., Guo, L. R., & Werren, J. H. (1996). Single and double infections with Wolbachia in the parasitic wasp Nasonia vitripennis effects on compatibility. Genetics, 143, 961–972.

    Google Scholar 

  • Petersen, M. K. (1999). The timing of dispersal of the predatory beetles Bembidion lampros and Tachyporus hypnorum from hibernating sites into arable fields. Entomologia Experimentalis et Applicata, 90, 221–224.

    Article  Google Scholar 

  • Peterson, B. J., & Fry, B. (1987). Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics., 18, 293–320.

    Article  Google Scholar 

  • Petráková, L., Líznarová, E., Pekár, S., Haddad, C. R., Sentenská, L., & Symondson, W. O. C. (2015). Discovery of a monophagous true predator, a specialist termite-eating spider (Araneae: Ammoxenidae). Scientific Reports, 5, 14013.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pettersson, R. B. (1996). Effect of forestry on the abundance and diversity of arboreal spiders in the boreal spruce forest. Ecography, 19, 221–228.

    Article  Google Scholar 

  • Pfeiffenberger, C., Lear, B. C., Keegan, K. P., & Allada, R. (2010). Locomotor activity level monitoring using the Drosophila Activity Monitoring (DAM) System. Cold Spring Harbor Protocols. https://doi.org/10.1101/pdb.prot5518

    Article  PubMed  Google Scholar 

  • Pfiffner, L., Luka, H. (2000). Overwintering of arthropods in soils of arable fields and adjacent semi-natural habitats. Agriculture, Ecosystems and Environment, 78, 215–222.

    Google Scholar 

  • Phillips, A., Milligan, P. J. M., Broomfield, G., & Molyneux, D. H. (1988). Identification of medically important Diptera by analysis of cuticular hydrocarbons. In M. W. Service (Ed.), Biosystematics of haematophagous insects, Systematics Association Special Volume No. 37. Clarendon Press, Chapter 4.

    Google Scholar 

  • Phillipson, J. (1960). A contribution to the feeding biology of Mitopus morio (F.) (Phalangida). Journal of Animal Ecology, 29, 35–43.

    Article  Google Scholar 

  • Pianka, E. R. (1973). The structure of lizard communities. Annual Review of Ecology and Systematics, 4, 53–74.

    Article  Google Scholar 

  • Pickard, R. S. (1975). Relative abundance of syrphid species in a nest of the wasp Ectemnius cavifrons compared with that in the surrounding habitat. Entomophaga, 20, 143–151.

    Article  Google Scholar 

  • Pickett, J. A. (1988). Integrating use of beneficial organisms with chemical crop protection. Philosophical Transactions of the Royal Society of London B, 318, 203–211.

    Article  CAS  Google Scholar 

  • Piel, J. (2002). A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles. Proceedings of the National Academy of Sciences USA, 99, 14002–14007.

    Article  CAS  Google Scholar 

  • Piel, J., Hui, D. Q., Wen, G. P., Butzke, D., Platzer, M., Fusetani, N., & Matsunaga, S. (2004). Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei. Proceedings of the National Academy of Sciences USA, 101, 16222–16227.

    Article  CAS  Google Scholar 

  • Pielou, E. C. (1984). The interpretation of ecological data. Wiley.

    Google Scholar 

  • Pike, N., & Kingcombe, R. (2009). Antibiotic treatment leads to the elimination of Wolbachia endosymbionts and sterility in the diplodiploid collembolan Folsomia candida. BMC Biology, 7, 54.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinnegar, J. K., & Polunin, N. V. C. (2000). Contributions of stable-isotope data to elucidating food webs of Mediterranean rocky littoral fishes. Oecologia, 122, 399–409.

    Article  CAS  PubMed  Google Scholar 

  • Pinol, J., San Andres, V., Clare, E. L., Mir, G., & Symondson, W. O. C. (2014). A pragmatic approach to the analysis of diets of generalist predators: The use of next generation sequencing with no blocking probes. Molecular Ecology Resources, 14, 18–26.

    Article  CAS  PubMed  Google Scholar 

  • Piovia-Scott, J., Yang, L. H., Wright, A. N. (2017). Trophic cascades in time: The causes and consequences of temporal variation in the strength of top-down effects. Annual Review of Ecology, Evolution, and Systematics, 48, 281–300.

    Google Scholar 

  • Piper, R. W., & Compton, S. G. (2002). A novel technique for relocating concealed insects. Ecological Entomology, 27, 251–253.

    Article  Google Scholar 

  • Platt, J., Caldwell, J. S., & Kok, L. T. (1999). An easily replicated, inexpensive Malaise-type trap design. Journal of Entomological Science, 34, 154–157.

    Article  Google Scholar 

  • Poehling, H. M. (1987). Effect of reduced dose rates of pirimicarb and fenvalerate on aphids and beneficial arthropods in winter wheat. Bulletin IOBC/WPRS Working Group Integrated Control of Cereal Pests, 10, 184–193.

    Google Scholar 

  • Polin, S., Le Gallic, J. F., Simon, J. C., Tsuchida, T., & Outreman, Y. (2015). Conditional reduction of predation risk associated with a facultative symbiont in an insect. PLoS ONE, 10, e0143728.

    Article  PubMed  PubMed Central  Google Scholar 

  • Polis, G. A. (1991). Complex trophic interactions in deserts: An empirical critique of food-web theory. American Naturalist, 138, 123–155.

    Article  Google Scholar 

  • Polis, G. A. (1999). Why are parts of the world green? Multiple factors control productivity and the distribution of biomass. Oikos, 86, 3–15.

    Article  Google Scholar 

  • Polis, G. A., Holt, R. D., Menge, B. A., & Winemiller, K. O. (1996). Time, space, and life history: Influences on food webs. In G. A. Polis, & K. O. Winemiller (Eds.), Food webs: Integration of patterns and dynamics (pp. 435–460). Chapman and Hall.

    Chapter  Google Scholar 

  • Polis, G. A., Myers, C. A., & Holt, R. D. (1989). The ecology and evolution of intraguild predation: Potential competitors that eat each other. Annual Review of Ecology and Systematics, 20, 297–330.

    Article  Google Scholar 

  • Polis, G. A., & Strong, D. R. (1996). Food web complexity and community dynamics. American Naturalist, 147, 813–846.

    Article  Google Scholar 

  • Pollard, E. (1968). Hedges. III. The effect of removal of the bottom flora of a hawthorn hedgerow on the Carabidae of the hedge bottom. Journal of Applied Ecology, 5, 125–139.

    Article  Google Scholar 

  • Pollard, E. (1977). A method for assessing changes in the abundance of butterflies. Biological Conservation, 12, 115–134.

    Article  Google Scholar 

  • Pollet, M., & Desender, K. (1985). Adult and larval feeding ecology in Pterostichus melanarius Ill. (Coleoptera, Carabidae). Mededelingen van de Fakulteit Landbouwwetenschappen Rijksuniversiteit Gent, 50, 581–594.

    Google Scholar 

  • Pollet, M., & Desender, K. (1986). Prey selection in carabid beetles (Col: Carabidae): Are diel activity patterns of predators and prey synchronised? Mededelingen van de Fakulteit Landbouwwetenschappen Rijksuniversiteit Gent, 51, 957–971.

    Google Scholar 

  • Pollet, M., & Desender, K. (1988). Quantification of prey uptake in pasture inhabiting carabid beetles. Mededelingen van de Fakulteit Landbouwwetenschappen Rijksuniversiteit Gent, 53, 1119–1129.

    Google Scholar 

  • Pollet, M., & Desender, K. (1990). Investigating the food passage in Pterostichus melanarius (Coleoptera, Carabidae): An attempt to explain its feeding behaviour. Mededelingen van de Fakulteit Landbouwwetenschappen Rijksuniversiteit Gent, 55, 527–540.

    Google Scholar 

  • Pollet, M., & Grootaert, P. (1987). Ecological data on Dolichopodidae (Diptera) from a woodland ecosytem: I. Colour preference, detailed distribution and comparison of different sampling techniques. Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, Entomologie, 57, 173–186.

    Google Scholar 

  • Pollet, M., & Grootaert, P. (1993). Factors affecting the responses of Empidoidea (Insecta, Diptera) to coloured traps. Belgian Journal of Zoology, 123, Supplement 1, 58–59.

    Google Scholar 

  • Pollet, M., & Grootaert, P. (1994). Optimizing the water trap technique to collect Empidoidea (Diptera). Studia Dipterologica, 1, 33–48.

    Google Scholar 

  • Pollet, M., & Grootaert, P. (1996). An estimation of the natural value of dune habitats using Empidoidea (Diptera). Biodiversity and Conservation, 5, 859–880.

    Article  Google Scholar 

  • Pollock, K. H., Nichols, J. D., Brownie, C., & Hines, J. E. (1990). Statistical inference for capture-recapture experiments. Wildlife Monographs, 107, 1–97.

    Google Scholar 

  • Pompanon, F., Deagle, B. E., Symondson, W. O. C., Brown, D. S., Jarman, S. D., & Taberlet, P. (2012). Who is eating what: Diet assessment using next generation sequencing. Molecular Ecology, 21, 1931–1950.

    Article  CAS  PubMed  Google Scholar 

  • Ponsard, S., & Arditi, R. (2000). What can stable isotopes (δ15N and δ13C) tell about the food web of soil macro-invertebrates? Ecology, 81, 852–864.

    Google Scholar 

  • Poser, T. (1988). Chilopoden als Prädatoren in einem Laubwald. Pedobiologia, 31, 261–281.

    Article  Google Scholar 

  • Post, D. M. (2002). Using stable isotopes to estimate trophic position: Models, methods and assumptions. Ecology, 83, 703–718.

    Article  Google Scholar 

  • Post, D. M., Pace, M. L., & Hairston, N. G. (2000). Ecosystem size determines food-chain length in lakes. Nature, 405, 1047–1049.

    Article  CAS  PubMed  Google Scholar 

  • Poulin, R. (2010). Network analysis shining light on parasite ecology and diversity. Trends in Parasitology, 26, 492–498.

    Article  PubMed  Google Scholar 

  • Poulson, D. F., & Sakaguchi, B. (1961). Nature of sex-ratio agent in Drosophila. Science, 133, 1489–1490.

    Article  CAS  PubMed  Google Scholar 

  • Powell, W. (1980). Toxares deltiger (Haliday) (Hymenoptera: Aphidiidae) parasitising the cereal aphid, Metopolophium dirhodum (Walker) (Hemiptera: Aphididae), in southern England: A new host-parasitoidrecord. Bulletin of Entomological Research, 70, 407–409.

    Article  Google Scholar 

  • Powell, W. (1982). The identification of hymenopterous parasitoids attacking cereal aphids in Britain. Systematic Entomology, 7, 465–473.

    Article  Google Scholar 

  • Powell, W. (1999). Parasitoid hosts. In J. Hardie, & A. K. Minks (Eds.), Pheromones of non-lepidopteran insects associated with agricultural plants (pp. 405–427). CABI Publishing.

    Google Scholar 

  • Powell, W., & Bardner, R. (1984). Effects of polyethylene barriers on the numbers of epigeal predators caught in pitfall traps in plots of winter wheat with and without soil-surface treatments of fonofos. Bulletin IOBC/WPRS Working Group Integrated Control of Cereal Pests, 8, 136–138.

    Google Scholar 

  • Powell, W., Dean, G. J., & Bardner, R. (1985). Effects of pirimicarb, dimethoate and benomyl on natural enemies of cereal aphids in winter wheat. Annals of Applied Biology, 106, 235–242.

    Article  CAS  Google Scholar 

  • Powell, W., Hardie, J., Hick, A. J., Höller, C., Mann, J., Merritt, L., Nottingham, S. F., Wadhams, L. J., Witthinrich, J., & Wright, A. F. (1993). Responses of the parasitoid Praon volucre (Hymenoptera: Braconidae) to aphid sex pheromone lures in cereal fields in autumn: Implications for parasitoid manipulation. European Journal of Entomology, 90, 435–438.

    Google Scholar 

  • Powell, W., Hawthorne, A., Hemptinne, J. L., Holopainen, J. K., den Nijs, L. J. F. M., Riedel, W., & Ruggle, P. (1995). Within-field spatial heterogeneity of arthropod predators and parasitoids. Acta Jutlandica, 70, 235–242.

    Google Scholar 

  • Powell, W., & Walton, M. P. (1989). The use of electrophoresis in the study of hymenopteran parasitoids of agricultural pests. In H. D. Loxdale, & J. den Hollander (Eds.), Electrophoretic studies on agricultural pests (pp. 443–466). Clarendon Press.

    Google Scholar 

  • Prasifka, J. R., Heinz, K. M., & Sansone, C. G. (2001). Field testing rubidium marking for quantifying intercrop movement of predatory arthropods. Environmental Entomology, 30, 711–719.

    Article  Google Scholar 

  • Prasifka, J. R., Krauter, P. C., Heinz, K. M., Sansone, C. G., & Minzenmayer, R. R. (1999). Predator conservation in cotton: Using grain sorghum as a source for insect predators. Biological Control, 16, 223–229.

    Article  Google Scholar 

  • Preisser, E. L., & Bolnick, D. I. (2008). The many faces of fear: Comparing the pathways and impacts of nonconsumptive predator effects on prey populations. PLoS ONE, 3(6), e2465.

    Article  PubMed  PubMed Central  Google Scholar 

  • Preisser, E. L., Bolnick, D. I., & Benard, M. F. (2005). Scared to death? The effects of intimidation and consumption in predator–prey interactions. Ecology, 86, 501–509.

    Article  Google Scholar 

  • Proft, J., Maier, W. A., & Kampen, H. (1999). Identification of six sibling species of the Anopheles maculipennis complex (Diptera: Culicidae) by a polymerase chain reaction assay. Parasitology Research, 85, 837–843.

    Article  CAS  PubMed  Google Scholar 

  • Pruess, K. P., Lal Saxena, K. M., & Koinzan, S. (1977). Quantitative estimation of alfalfa insect populations by removal sweeping. Environmental Entomology, 6, 705–708.

    Article  Google Scholar 

  • Purvis, G., & Fadl, A. (1996). Emergence of Carabidae (Coleoptera) from pupation: A technique for studying the “productivity” of carabid habitats. Annales Zoologici Fennici, 33, 215–223.

    Google Scholar 

  • Putman, W. L. (1965). Paper chromatography to detect predation on mites. Canadian Entomologist, 97, 435–441.

    Article  Google Scholar 

  • Putman, A. I., & Carbone, I. (2014). Challenges in analysis and interpretation of microsatellite data for population genetic studies. Ecology and Evolution, 4, 4399–4428.

    Article  PubMed  PubMed Central  Google Scholar 

  • Quicke, D. L. J. (1993). Principles and techniques of contemporary taxonomy. Chapman and Hall.

    Book  Google Scholar 

  • Quinn, M. A., Kepner, R. L., Walgenbach, D. D., Foster, R. N., Bohls, R. A., Pooler, P. D., Reuter, K. C., & Swain, J. L. (1993). Grasshopper stages of development as indicators of nontarget arthropod activity: Implications for grasshopper management programs on mixed-grass rangeland. Environmental Emtomology, 22, 532–540.

    Article  Google Scholar 

  • Rabb, R. L., & Bradley, J. R. (1970). Marking host eggs by Telenomus sphingis. Annals of the Entomological Society of America, 63, 1053–1056.

    Article  Google Scholar 

  • Rácz, V. (1983). Populations of predatory Heteroptera in apple orchards under different types of management. Proceedings of the International Conference of Integrated Plant Protection, 2, 34–39.

    Google Scholar 

  • Radwan, Z., Lövei, C. L. (1982). Distribution and bionomics of ladybird beetles (Col., Coccinellidae) living in an apple orchard near Budapest, Hungary. Zeitschrift für Angewandte Entomologie, 94, 169–175.

    Google Scholar 

  • Raffaelli, D., & Hall, S. J. (1992). Compartments and predation in an estuarine food web. Journal of Animal Ecology, 61, 551–560.

    Article  Google Scholar 

  • Raffel, T. R, Martin, L. B., & Rohr, J. R. (2008). Parasites as predators: Unifying natural enemy ecology. Trends in Ecology and Evolution, 23, 610–618.

    Google Scholar 

  • Ragsdale, D. W., Larson, A. D., & Newsom, L. D. (1981). Quantitative assessement of the predators of Nezara viridula eggs and nymphs within a soybean agroecosystem using ELISA. Environmental Entomology, 10, 402–405.

    Article  Google Scholar 

  • Rao, Q., Rollat-Farnier, P. A., Zhu, D. T., Santos-Garcia, D., Silva, F. J., Moya, A., Latorre, A., Klein, C. C., Vavre, F., Sagot, M. F., Liu, S. S., Mouton, L., & Wang, X. W. (2015). Genome reduction and potential metabolic complementation of the dual endosymbionts in the whitefly Bemisia tabaci. BMC Genomics, 16, 226.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rasmussen, L. B., Jensen, K., Sørensen, J. G., Sverrisdóttir, E., Nielsen, K. L., Overgaard, J., & Kristensen, T. N. (2018). Are commercial stocks of biological control agents genetically depauperate?–A case study on the pirate bug Orius majusculus Reuter. Biological Control, 127, 31–38.

    Article  Google Scholar 

  • Raworth, D. A., & Choi, M. Y. (2001). Determining numbers of active carabid beetles per unit area from pitfall-trap data. Entomologia Experimentalis et Applicata, 98, 95–108.

    Article  Google Scholar 

  • Raymond, B., Darby, A. C., & Douglas, A. E. (2000). Intraguild predators and the spatial distribution of a parasitoid. Oecologia, 124, 367–372.

    Article  CAS  PubMed  Google Scholar 

  • Raymond, L., Vialatte, A., & Plantegenest, M. (2014). Combination of morphometric and isotopic tools for studying spring migration dynamics in Episyrphus balteatus. Ecosphere, 5, 1–16.

    Article  Google Scholar 

  • Redfern, M., & Askew, R. R. (1992). Plant galls, naturalists’ handbooks No 17. Richmond Publishing Co. Ltd.

    Google Scholar 

  • Reeve, J. D., Simpson, J. A., & Fryar, J. S. (1996). Extended development in Thanasimus dubius (F.) (Coleoptera: Cleridae), a predator of the southern pine beetle. Journal of Entomological Science, 31, 123–131.

    Article  Google Scholar 

  • Renault, S., Stasiak, K., Federici, B., & Bigot, Y. (2005). Commensal and mutualistic relationships of reoviruses with their parasitoid wasp hosts. Journal of Insect Physiology, 51, 137–148.

    Article  CAS  PubMed  Google Scholar 

  • Renner, F. (1986). Zur Nischendifferenzierung bei Pirata-Arten (Araneida, Lycosidae). Verhandlungen des Naturwissenschaftlichen Vereins im Hamburg (NF), 28, 75–90.

    Google Scholar 

  • Reynolds, D. R., Riley, J. R., Armes, N. J., Cooter, R. J., Tucker, M. R., & Colvin, J. (1997). Techniques for quantifying insect migration. In D. R. Dent, & M. P. Walton (Eds.), Methods in ecological and agricultural entomology (pp. 111–145). CAB International.

    Google Scholar 

  • Ricci, C. (1986). Seasonal food preferences and behaviour of Rhyzobius litura. In I. Hodek (Ed.), Ecology of aphidophaga (pp. 119–123). Academia, Prague and W. Junk.

    Google Scholar 

  • Rice, R. E., & Jones, R. A. (1982). Collections of Prospaltella perniciosi Tower (Hymenoptera: Aphelinidae) on San Jose scale (Homoptera: Diaspididae) pheromone traps. Environmental Entomology, 11, 876–880.

    Article  Google Scholar 

  • Rich, M. C., Gough, L., & Boelman, N. T. (2013). Arctic arthropod assemblages in habitats of differing shrub dominance. Ecography, 36, 994–1003.

    Article  Google Scholar 

  • Richards, L. A., & Coley, P. D. (2007). Seasonal and habitat differences affect the impact of food and predation on herbivores: A comparison between gaps and understory of a tropical forest. Oikos, 116, 31–40.

    Article  Google Scholar 

  • Richardson, B. J., Baverstock, P. R., & Adams, M. (1986). Allozyme electrophoresis. Academic Press.

    Google Scholar 

  • Richardson, K. M., Griffin, P. C., Lee, S. F., Ross, P. A., Endersby-Harshman, N. M., Schiffer, M., & Hoffmann, A. A. (2019). A Wolbachia infection from Drosophila that causes cytoplasmic incompatibility despite low prevalence and densities in males. Heredity, 122, 428–440.

    Google Scholar 

  • Riddick, E. W. (2003). Factors affecting progeny production of Anaphes iole. BioControl, 48, 177–189.

    Article  Google Scholar 

  • Riecken, U. (1999). Effects of short-term sampling on ecological characterization and evaluation of epigeic spider communities and their habitats for site assessment studies. Journal of Arachnology, 27, 189–195.

    Google Scholar 

  • Riecken, U., & Raths, U. (1996). Use of radio telemetry for studying dispersal and habitat use of Carabus coriaceus L. Annales Zoologici Fennici, 33, 109–116.

    Google Scholar 

  • Rieux, R., Simon, S., & Defrance, H. (1999). Role of hedgerows and ground cover management on arthropod populations in pear orchards. Agriculture, Ecosystems and Environment, 73, 119–127.

    Google Scholar 

  • Riddick, E. W., & Mills, N. J. (1994). Potential of adult carabids (Coleoptera: Carabidae) as predators of fifth-instar codling moth (Lepidoptera: Tortricidae) in apple orchards in California. Environmental Entomology, 23, 1338–1345.

    Google Scholar 

  • Riley, J. R., Smith, A. D., Reynolds, D. R., Edwards, A. S., Osborne, J. L., Williams, I. H., Carreck, N. L., & Poppy, G. M. (1996). Tracking bees with harmonic radar. Nature, 379, 29–30.

    Article  CAS  Google Scholar 

  • Ripple, W. J., Estes, J. A., Schmitz, O. J., Constant, V., Kaylor, M. J., Lenz, A., Motley, J. L., Self, K. E., Taylor, D. S., & Wolf, C. (2016). What is a trophic cascade? Trends in Ecology and Evolution, 31, 842–849.

    Google Scholar 

  • Roberts, H. R. (1973). Arboreal Orthoptera in the rain forests of Costa Rica collected with insecticide: A report on the grasshoppers (Acrididae), including new species. Proceedings of the Academy of Natural Sciences, Philadelphia, 125, 46–66.

    Google Scholar 

  • Rocca, M., & Greco, N. M. (2015). Structure of the Tortricid-parasitoid community in a recently introduced crop. Neotropical Entomology, 44, 553–3559.

    Article  CAS  PubMed  Google Scholar 

  • Rock, D. I., Smith, A. H., Joffe, J., Albertus, A., Wong, N., O’Connor, M., Oliver, K. M., & Russell, J. A. (2018). Context-dependent vertical transmission shapes strong endosymbiont community structure in the pea aphid, Acyrthosiphon pisum. Molecular Ecology, 27, 2039–2056.

    Article  PubMed  Google Scholar 

  • Roland, J., McKinnon, G., Backhouse, C., & Taylor, P. D. (1996). Even smaller radar tags on insects. Nature, 381, 120.

    Article  CAS  Google Scholar 

  • Rollinson, D., & Stothard, J. R. (1994). Identification of pests and pathogens by random amplification of polymorphic DNA (RAPDs). In D. L. Hawksworth (Ed.), Identification and characterization of pest organisms. CAB International.

    Google Scholar 

  • Roltsch, W., Hanna, R., Zalom, F., Shorey, H., & Mayse, M. (1998). Spiders and vineyard habitat relationships in central California. In C. H. Pickett, & R. L. Bugg (Eds.), Enhancing biological control (pp. 311–338). University of California Press.

    Google Scholar 

  • Room, R. M. (1977). 32P labelling of immature stages of Heliothis armigera (Hubner) and H. punctigera Wallengren (Lepidoptera: Noctuidae): Relationships of doses to radioactivity, mortality and label half-life. Journal of the Australian Entomological Society, 16, 245–251.

    Article  Google Scholar 

  • Romeis, J., Shanower, T.G., & Zebitz, C. P. W. (1998). Response of Trichogramma egg parasitoids to coloured sticky traps. BioControl, 43, 17–27.

    Google Scholar 

  • Rosengren, R., Vepsaläinen, K., & Wuorenrinne, H. (1979). (1979) Distribution, nest densities and ecological significance of wood ants (the Formica rufa group) in Finland. Bulletin SROP, 2, 181–213.

    Google Scholar 

  • Rosenheim, J. A., & Brodeur, J. (2002). A simple trap to study small-scale movement by walking arthropods. Entomologia Experimentalis et Applicata, 103, 283–285.

    Article  Google Scholar 

  • Rosenheim, J. A., Kaya, H. K., Ehler, L. E., Marois, J. J., & Jaffee, B. A. (1995). Intraguild predation among biocontrol agents: Theory and evidence. Biological Control, 5, 303–335.

    Article  Google Scholar 

  • Rosenheim, J. A., Limburg, D. D., & Colfer, R. G. (1999). Impact of generalist predators on a biological control agent, Chrysoperla carnea: Direct observations. Ecological Applications, 9, 409–417.

    Article  Google Scholar 

  • Rosenheim, J. A., Wilhoit, L. R., & Armer, C. A. (1993). Influence of intraguild predation among generalist insect predators on the suppression of a herbivore population. Oecologia, 96, 439–449.

    Article  PubMed  Google Scholar 

  • Roskam, J. C. (1982). Larval characters of some eurytomid species (Hymenoptera, Chalcidoidea). Proceedings Koninklijke Nederlandse Akademie van Wetenschappen, 85, 293–305.

    Google Scholar 

  • Rossi, M. N., & Fowler, H. G. (2000). Ant predation of larval Diatraea saccharalis Fab. (Lep., Crambidae) in new sugarcane in Brazil. Journal of Applied Entomology, 124, 245–247.

    Article  Google Scholar 

  • Rothacher, L., Ferrer-Suay, M., & Vorburger, C. (2016). Bacterial endosymbionts protect aphids in the field and alter parasitoid community composition. Ecology, 97, 1712–1723.

    Google Scholar 

  • Rott, A. S., & Godfray, H. C. J. (2000). The structure of a leafminer-parasitoid community. Journal of Animal Ecology, 69, 274–289.

    Article  Google Scholar 

  • Roubinet, E., Birkhofer, K., Malsher, G., Staudacher, K., Ekbom, B., Traugott, M., & Jonsson, M. (2017). Diet of generalist predators reflects effects of cropping period and farming system on extra-and intraguild intraguild prey. Ecological Applications, 27, 1167–1177.

    Article  PubMed  Google Scholar 

  • Roush, R. T. (1989). Genetic variation in natural enemies: Critical issues for colonization in biological control. In M. Mackauer, L. E. Ehler, & J. Rolands (Eds.) Critical issues in biological control (pp. 263–288). Intercept.

    Google Scholar 

  • Roush, R. T. (1990). Genetic considerations in the propagation of entomophagous species. In R. R. Baker, & P. E. Dunn (Eds.), New directions in biological control: Alternatives for suppressing agricultural pests and diseases (pp. 373–287).

    Google Scholar 

  • Rubin, B. E., Sanders, J. G., Turner, K. M., Pierce, N. E., & Kocher, S. D. (2018). Social behaviour in bees influences the abundance of Sodalis (Enterobacteriaceae) symbionts. Royal Society Open Science, 5, 180369.

    Google Scholar 

  • Russell, J. A., Funaro, C. F., Giraldo, Y. M., Goldman-Huertas, B., Suh, D., Kronauer, D. J., et al. (2012). A veritable menagerie of heritable bacteria from ants, butterflies, and beyond: Broad molecular surveys and a systematic review. PLoS ONE, 7, e51027.

    Google Scholar 

  • Russell, J. A., Goldman-Huertas, B., Moreau, C. S., Baldo, L., Stahlhut, J. K., Werren, J. H., & Pierce, N. E. (2009). Specialization and geographic isolation among Wolbachia symbionts from ants and lycaenid butterflies. Evolution, 63, 624–640.

    Article  CAS  PubMed  Google Scholar 

  • Russell, J. A., Weldon, S., Smith, A. H., Kim, K. L., Hu, Y., Łukasik, P., et al. (2013). Uncovering symbiont‐driven genetic diversity across North American pea aphids. Molecular Ecology, 22, 2045–2059.

    Google Scholar 

  • Růžička, V. (2000). Spiders in rocky habitats in central Bohemia. Journal of Arachnology, 28, 217–222.

    Article  Google Scholar 

  • Růžička, V., & Antušs, P. (1997). Collecting spiders from rocky habitats. Newsletter of the British Arachnological Society, 80, 4–5.

    Google Scholar 

  • Ryan, S. L., & Saul, G. B. (1968). Post-fertilization effect of incompatibility factors in Mormoniella. Molecular and General Genetics, 103, 29–36.

    Article  CAS  PubMed  Google Scholar 

  • Sabree, Z. L., Kambhampati, S., & Moran, N. A. (2009). Nitrogen recycling and nutritional provisioning by Blattabacterium, the cockroach endosymbiont. Proceedings of the National Academy of Sciences USA, 106, 19521–19526.

    Article  CAS  Google Scholar 

  • Saeed, R., Razaq, M., & Hardy, I. C. W. (2015). The importance of alternative host plants as reservoirs of the cotton leaf hopper, Amrasca devastans, and its natural enemies. Journal of Pest Science, 88, 517–531.

    Article  Google Scholar 

  • Sakaguchi, B., & Poulson, D. F. (1963). Interspecific transfer of sex-ratio condition from Drosophila willlistoni to D. melanogaster. Genetics, 48, 841–861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakurai, M., Koga, R., Tsuchida, T., Meng, X. Y., & Fukatsu, T. (2005). Rickettsia symbiont in the pea aphid Acyrthosiphon pisum: Novel cellular tropism, effect on host fitness, and interaction with the essential symbiont Buchnera. Applied and Environmental Microbiology, 71, 4069–4075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salar, P., Semetey, O., Danet, J. L., Boudon-Padieu, E., & Foissac, X. (2010). Candidatus Phlomobacter fragariae and the proteobacterium associated with the low sugar content syndrome of sugar beet are related to bacteria of the arsenophonus clade detected in hemipteran insects. European Journal of Plant Pathology, 126, 123–127.

    Article  Google Scholar 

  • Salmon, J. T., & Horner, N. V. (1977). Aerial dispersion of spiders in north central Texas. Journal of Arachnology, 5, 153–157.

    Google Scholar 

  • Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). In C. Nolan (Ed.), Molecular cloning: A laboratory manual. Volumes I-III. Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Sampson, B. J., Rinehart, T. A., Liburd, O. E., Stringer, S. J., & Spiers, J. M. (2006). Biology of parasitoids (Hymenoptera) attacking Dasineura oxycoccana and Prodiplosis vaccinii (Diptera: Cecidomyiidae) in cultivated blueberries. Annals of the Entomological Society of America, 99, 113–120.

    Article  Google Scholar 

  • Samu, F., & Kiss, B. (1997). Mark-recapture study to establish population density of the dominant wolf spider in Hungarian agricultural fields. Bulletin of the British Ecological Society, 28, 265–269.

    Google Scholar 

  • Samu, F., & Lövei, G. L. (1995). Species richness of a spider community (Araneae): Extrapolation from simulated increasing sampling effort. European Journal of Entomology, 92, 633–638.

    Google Scholar 

  • Samu, F., Németh, J., & Kiss, B. (1997). Assessment of the efficiency of a hand-held suction device for sampling spiders: Improved density estimation or oversampling? Annals of Applied Biology, 130, 371–378.

    Article  Google Scholar 

  • Samu, F., & Sárospataki, M. (1995a). Design and use of a hand-hold suction sampler, and its comparison with sweep net and pitfall trap sampling. Folia Entomologica Hungarica, 56, 195–203.

    Google Scholar 

  • Samu, F., & Sárospataki, M. (1995b). Estimation of population sizes and “home ranges” of polyphagous predators in alfalfa using mark-recapture: an exploratory study. Acta Jutlandica, 70, 47–55.

    Google Scholar 

  • Samu, F., Sunderland, K. D., Topping, C. J., & Fenlon, J. S. (1996). A spider population in flux: Selection and abandonment of artificial web-sites and the importance of intraspecific interactions in Lepthyphantes tenuis (Araneae: Linyphiidae) in wheat. Oecologia, 106, 228–239.

    Article  PubMed  Google Scholar 

  • Samways, M. J. (1983). Community structure of ants (Hymenoptera: Formicidae) in a series of habitats associated with citrus. Journal of Applied Ecology, 20, 833–847.

    Article  Google Scholar 

  • Samways, M. J. (1986). Spatial and temporal population patterns of Aonidiella aurantii (Hemiptera; Diaspididae) parasitoids (Hymenoptera: Aphelinidae and Encyrtidae) caught on yellow sticky traps in citrus. Bulletin of Entomological Research, 76, 265–274.

    Article  Google Scholar 

  • Sanders, D., Thébault, E., Kehoe, R., & van Veen, F. J. F. (2018). Trophic redundancy reduces vulnerability to extinction cascades. Proceedings of the National Academy of Sciences USA, 115, 2419–2424.

    Article  CAS  Google Scholar 

  • Santos-Garcia, D., Silva, F. J., Morin, S., Dettner, K., & Kuechler, S. M. (2017). The all-rounder Sodalis-a new bacteriome-associated endosymbiont of the lygaeoid bug Henestaris halophilus (Heteroptera: Henestarinae) and a critical examination of its evolution. Genome Biology and Evolution, 9, 2893–2910.

    Google Scholar 

  • Sargent, J. R., & George, S. G. (1975). Methods in zone electrophoresis (3rd ed.). BDH Chemicals Ltd.

    Google Scholar 

  • Sauphanor, B., Chabrol, L., Faivre d’Arcier, F., Sureau, F., & Lenfant, C. (1993). Side effects of diflubenzuron on a pear psylla predator: Forficula auricularia. Entomophaga, 38, 163–74.

    Google Scholar 

  • Saugstad, E. S., Bram, R. A., & Nyquist, W. E. (1967). Factors influencing sweep net sampling of alfalfa. Journal of Economic Entomology, 60, 421–426.

    Article  Google Scholar 

  • Scarborough, C. L., Ferrari, J., & Godfray, H. C. J. (2005). Aphid protected from pathogen by endosymbiont. Science, 310, 1781–1781.

    Article  CAS  PubMed  Google Scholar 

  • Schaupp, W. C., & Kulman, H. M. (1992). Attack behaviour and host utilization of Coccygomimus disparis (Hymenoptera: Ichneumonidae) in the laboratory. Environmental Entomology., 21, 401–408.

    Article  Google Scholar 

  • Schausberger, P. (1999). Predation preference of Typhlodromus pyri and Kampimodromus aberrans (Acari: Phytoseiidae) when offered con- and heterospecific immature life stages. Experimental and Applied Acarology, 23, 389–398.

    Article  Google Scholar 

  • Scheller, H. V. (1984). Pitfall trapping as the basis for studying ground beetle (Carabidae) predation in spring barley. Tiddskrift voor Plantearl, 88, 317–324.

    Google Scholar 

  • Schellhorn, N. A., Bellati, J., Paull, C. A., & Maratos, L. (2008). Parasitoid and moth movement from refuge to crop. Basic and Applied Ecology, 9, 691–700.

    Article  Google Scholar 

  • Schenk, D., & Bacher, S. (2002). Functional response of a generalist insect predator to one of its prey species in the field. Journal of Animal Ecology, 71, 524–531.

    Article  Google Scholar 

  • Scheu, S., & Falca, M. (2000). The soil food web of two beech forests (Fagus sylvatica) of contrasting humus type: Stable isotope analysis of a macro- and a mesofauna-dominated community. Oecologia, 123, 285–296.

    Article  CAS  PubMed  Google Scholar 

  • Schlötterer, C. (2004). The evolution of molecular markers—just a matter of fashion? Nature Reviews Genetics, 5, 63–69.

    Article  PubMed  Google Scholar 

  • Schmid-Araya, J. M., Schmid, P. E., Robertson, A., Winterbottom, J., Gjerlov, C., & Hildrew, A. G. (2002). Connectance in stream food webs. Journal of Animal Ecology, 71, 1056–1062.

    Article  Google Scholar 

  • Schmidt, J. M., Barney, S. K., Williams, M. A., Bessin, R. T., Coolong, T. W., & Harwood, J. D. (2014). Predator-prey trophic relationships in response to organic management practices. Molecular Ecology, 23, 3777–3789.

    Article  PubMed  Google Scholar 

  • Schmitz, O. J. (2003). Top predator control of plant biodiversity and productivity in an old-field ecosystem. Ecology Letters, 6, 156–163.

    Article  Google Scholar 

  • Schmitz, O. J., Hambäck, P. A., & Beckerman, A. P. (2000). Trophic cascades in terrestrial systems: a review of the effects of carnivore removals on plants. American Naturalist, 155, 141–153.

    Google Scholar 

  • Schmitz, O. J., & Suttle, K. B. (2001). Effects of top predator species on direct and indirect interactions in a food web. Ecology, 82, 2072–20181.

    Article  Google Scholar 

  • Schneider, F. (1969). Bionomics and physiology of aphidophagous Syrphidae. Annual Review of Entomology, 14, 103–124.

    Article  Google Scholar 

  • Schneider, M. V., Beukeboom, L. W., Driessen, G., Lapchin, L., Bernstein, C., & van Alphen, J. J. M. (2002). Geographical distribution and genetic relatedness of sympatrical thelytokous and arrhenotokous populations of the parasitoid Venturia canescens (Hymenoptera). Journal of Evolutionary Biology, 15, 191–200.

    Article  CAS  Google Scholar 

  • Schneider, K., & Duelli, P. (1997). A comparison of trap efficiency of window and Malaise traps. Mitteilungen der Deutschen Gesellschaft für Allgemeine und Angewandte Entomologie, 11, 843–846.

    Google Scholar 

  • Schoenly, K., Beaver, R. A., & Heumier, T. A. (1991). On the trophic relations of insects: A food-web approach. American Naturalist, 137, 597–638.

    Article  Google Scholar 

  • Schoenly, K. G., Cohen, J. E., Heong, K. L., Arida, G. S., Barrion, A. T., & Litsinger, J. A. (1996b). Quantifying the impact of insecticides on food web structure of rice-arthropod populations in a Philippine farmer’s irrigated field: A case study. In G. A. Polis, & K. O. Winemiller (Eds.), Food Webs: Integration of patterns and dynamics (pp. 343–351). Chapman and Hall.

    Google Scholar 

  • Schoenly, K. G., Cohen, J. E., Heong, K. L., Litsinger, J. A., Aquino, G. B., Barrion, A. T., & Arida, G. (1996a). Food web dynamics of irrigated rice fields at five elevations in Luzon, Philippines. Bulletin of Entomological Research, 86, 451–466.

    Google Scholar 

  • Schönrogge, K., & Crawley, M. J. (2000). Quantitative webs as a means of assessing the impact of alien insects. Journal of Animal Ecology, 69, 841–868.

    Article  PubMed  Google Scholar 

  • Schultz, M. J., Tan, A. L., Gray, C. N., Isern, S., Michael, S. F., Frydman, H. M., & Connor, J. H. (2018). Wolbachia wStri blocks Zika virus growth at two independent stages of viral replication. Mbio, 9, 738. https://doi.org/10.1128/mBio.00738-18

  • Scott, J. A. (1973). Convergence of population biology and adult behaviour in two sympatric butterflies, Neominois ridingsii (Papilionoidea: Nymphalidae) and Amblyscirtes simius (Hesperoidea: Hesperiidae). Journal of Animal Ecology, 42, 663–672.

    Article  Google Scholar 

  • Scribner, K. T., & Bowman, T. D. (1998). Microsatellites identify depredated waterfowl remains from glaucous gull stomachs. Molecular Ecology, 7, 1401–1405.

    Article  CAS  Google Scholar 

  • Seber, G. A. F. (1965). A note on the multiple-recapture census. Biometrika, 52, 249.

    Article  CAS  PubMed  Google Scholar 

  • Seber, G. A. F. (1973). The estimation of animal abundance and related parameters. Griffin.

    Google Scholar 

  • Sedivy, J., & Kocourek, F. (1988). Comparative studies on two methods for sampling insects in an alfalfa seed stand in consideration of a chemical control treatment. Journal of Applied Entomology, 106, 312–318.

    Article  Google Scholar 

  • Seeb, J. E., Carvalho, G., Hauser, L., Naish, K., Roberts, S., & Seeb, L. W. (2011). Single-nucleotide polymorphism (SNP) discovery and applications of SNP genotyping in nonmodel organisms. Molecular Ecology Resources, 11, 1–8.

    Article  PubMed  Google Scholar 

  • Sekamatte, B., Latigo, M., & Russell-Smith, A. (2001). The potential of protein- and sugar-based baits to enhance predatory ant activity and reduce termite damage to maize in Uganda. Crop Protection, 20, 653–662.

    Article  CAS  Google Scholar 

  • Semetey, O., Gatineau, F., Bressan, A., & Boudon-Padieu, E. (2007). Characterization of a gamma-3 proteobacteria responsible for the syndrome “basses richesses” of sugar beet transmitted by Pentastiridius sp. (Hemiptera, Cixiidae). Phytopathology, 97, 72–78.

    Article  CAS  PubMed  Google Scholar 

  • Service, M. W., Voller, A., & Bidwell, E. (1986). The enzyme-linked immnunosorbent assay (ELISA) test for the identification of blood-meals of haematophagous insects. Bulletin of Entomological Research, 76, 321–330.

    Google Scholar 

  • Settle, W. H., Ariawan, H., Astuti, E. T., Cahyana, W., Hakima, A. L., Hindayana, D., Lestari, A. S., & Pajarningsih, S. (1996). Managing tropical rice pests through conservation of generalist natural enemies and alternative prey. Ecology, 77, 1975–1988.

    Article  Google Scholar 

  • Settle, W. H., & Wilson, L. T. (1990). Behavioral-factors affecting differential parasitism by Anagrus epos (Hymenoptera, Mymaridae), of two species of erythroneuran leafhoppers (Homoptera, Cicadellidae). Journal of Animal Ecology, 59, 877–891.

    Article  Google Scholar 

  • Shameer, K. S., Nasser, M., Mohan, C., & Hardy, I. C. W. (2018). Direct and indirect influences of intercrops on the coconut defoliator Opisina arenosella. Journal of Pest Science, 91, 259–275.

    Article  CAS  PubMed  Google Scholar 

  • Shaw, M. R. (1997). Rearing parasitic Hymenoptera. The Amateur Entomologist, 25, 1–46.

    Google Scholar 

  • Shaw, M. R., & Huddleston, T. (1991). Classification and biology of braconid wasps. Handbooks for the Identification of British Insects, Royal Entomological Society of London 7(11), 1–126.

    Google Scholar 

  • Sheehan, K. B., Martin, M., Lesser, C. F., Isberg, R. R., & Newton, I. L. G. (2016). Identification and characterization of a candidate Wolbachia pipientis type IV effector that interacts with the actin cytoskeleton. Mbio, 7,622. https://doi.org/10.1128/mBio.00622-16

  • Shepard, M., & Waddill, V. H. (1976). Rubidium as a marker for Mexican bean beetles, Epilachana varivestis (Coleoptera: Coccinellidae). Canadian Entomologist, 108, 337–339.

    Article  Google Scholar 

  • Shepherd, A. M., Clark, S. A., & Kempton, A. (1973). Intracellular organism associated with tissues of Heterodera spp. Nematologica, 19, 31–34.

    Article  Google Scholar 

  • Sheppard, S. K., & Harwood, J. D. (2005). Advances in molecular ecology: Tracking trophic links through predator–prey food-webs. Functional Ecology, 19, 751–762.

    Article  Google Scholar 

  • Sherlock, P. L., Bowden, J., & Digby, P. G. N. (1986). Studies of elemental composition as a biological marker in insects. V. The elemental composition of Rhopalosiphum padi (L.) (Hemiptera: Aphididae) from Prunus padus at different localities. Bulletin of Entomological Research, 76, 621–632.

    Article  CAS  Google Scholar 

  • Shi, M., White, V. L., Schlub, T., Eden, J. S., Hoffmann, A. A., Holmes, E. C. (2018). No detectable effect of Wolbachia wMel on the prevalence and abundance of the RNA virome of Drosophila melanogaster. Proceedings of the Royal Society of London B, 285, 1165.

    Google Scholar 

  • Short, J. R. T. (1952). The morphology of the head of larval Hymenoptera with special reference to the head of the Ichneumonoidea, including a classification of the final instar larvae of the Braconidae. Transactions of the Royal Entomological Society of London, 103, 27–84.

    Article  Google Scholar 

  • Short, J. R. T. (1959). A description and classification of the final instar larvae of the Ichneumonidae (Insecta, Hymenoptera). Proceedings of the United States National Museum, 110, 391–511.

    Article  Google Scholar 

  • Short, J. R. T. (1970). On the classification of the final instar larvae of the Ichneumonidae (Hymenoptera). Transactions of the Royal Entomological Society of London, Supplement, 122, 185–210.

    Google Scholar 

  • Short, J. R. T. (1978). The final larval instars of the Ichneumonidae. Memoirs of the American Entomology Institute, 25, 1–508.

    Google Scholar 

  • Shropshire, J. D., On, J., Layton, E. M., Zhou, H., & Bordenstein, S. R. (2018). One prophage WO gene rescues cytoplasmic incompatibility in Drosophila melanogaster. Proceedings of the National Academy of Sciences, 115, 4987–4991.

    Google Scholar 

  • Sigsgaard, L., Villareal, S., Gapud, V., & Rajotte, E. (1999). Directional movement of predators between the irrigated rice field and its surroundings. In L. W. Hong, & S. S. Sastroumo (Eds.), Symposium on Biological Control in the Tropics (pp. 43–47). CABI Publishing.

    Google Scholar 

  • Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., & Flook, P. (1994). Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America, 87, 651–701.

    Article  CAS  Google Scholar 

  • Simon, U., Pfütze, J., & Thömen, D. (2001). A time-sorting stem-eclector. Ecological Entomology, 26, 325–329.

    Article  Google Scholar 

  • Singh, R., & Sinha, T. B. (1980). Bionomics of Trioxys (Binodoxys) indicus Sibba Rao and Sharma, an aphidiid parasitoid of Aphis craccivora Koch. Zeitschrift für Angewandte Entomologie, 90, 233–237.

    Google Scholar 

  • Sint, D., & Traugott, M. (2016). Food Web Designer: A flexible tool to visualize interaction networks. Journal of Pest Science, 89, 1–5.

    Article  PubMed  Google Scholar 

  • Sivasubramaniam, W., Wratten, S. D., & Klimaszewski, J. (1997). Species composition, abundance, and activity of predatory arthropods in carrot fields, Canterbury, New Zealand. New Zealand Journal of Zoology, 24, 205–212.

    Article  Google Scholar 

  • Skinner, G. J. (1980). The feeding habits of the woodant, Formica rufa (Hymenoptera: Formicidae), in limestone woodland in north-west England. Journal of Animal Ecology, 49, 417–433.

    Article  Google Scholar 

  • Skinner, S. W. (1985). Son-killer–a 3rd Extrachromosomal factor affecting the sex-ratio in the parasitoid wasp, Nasonia (=Mormoniella) vitripennis. Genetics, 109, 745–759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skovgård, H. (2002). Dispersal of the filth fly parasitoid Spalangia cameroni (Hymenoptera: Pteromalidae) in a swine facility using fluorescent dust marking and sentinel pupal bags. Environmental Entomology, 31, 425–431.

    Article  Google Scholar 

  • Skuhravý, V. (1960). Die Nahrung des Ohrwurmes (Forficula auricularia L.) in den Feldkulturen. Acta Societatis Entomologicae Čechoslovenicae, 57, 329–339.

    Google Scholar 

  • Skuhravý, V. (1970). Zur Anlockungsfahigkeit von Formalin für Carabiden in Bodenfallen. Beitrage zur Entomologie, 20, 371–374.

    Google Scholar 

  • Skvarla, M. J., Larson, J. L., & Dowling, A. P. G. (2014). Pitfalls and preservatives: A review. The Journal of the Entomological Society of Ontario, 145, 15–43.

    Google Scholar 

  • Smith, A. D., & Riley, J. R. (1996). Signal processing in a novel radar system for monitoring insect migration. Computers and Electronics in Agriculture, 15, 267–278.

    Article  Google Scholar 

  • Smith, A. H., Lukasik, P., O’Connor, M. P., Lee, A., Mayo, G., Drott, M. T., Doll, S., Tuttle, R., Disciullo, R. A., Messina, A., Oliver, K. M., & Russell, J. A. (2015). Patterns, causes and consequences of defensive microbiome dynamics across multiple scales. Molecular Ecology, 24, 1135–1149.

    Article  PubMed  Google Scholar 

  • Smith, C. C., & Fretwell, S. D. (1974). The optimal balance between size and number of offspring. American Naturalist, 108, 499–506.

    Article  Google Scholar 

  • Smith, C. R., Heinz, K. M., Sansone, C. G., & Flexner, J. L. (2000). Impact of recombinant baculovirus applications on target heliothines and nontarget predators in cotton. Biological Control, 19, 201–214.

    Article  Google Scholar 

  • Smith, J. G. (1976). Influence of crop background on natural enemies of aphids on Brussels sprouts. Annals of Applied Biology, 83, 15–29.

    Article  Google Scholar 

  • Smith, J. W., Stadelbacher, E. A., & Gantt, C. W. (1976). A comparison of techniques for sampling beneficial arthropod populations associated with cotton. Environmental Entomology, 5, 435–444.

    Article  Google Scholar 

  • Smith, K. G. V. (1974) Rearing the Hymenoptera Parasitica. Leaflets of the Amateur Entomologists Society, 35, 1–15.

    Google Scholar 

  • Smith, S. M. (1988). Pattern of attack on spruce budworm egg masses by Trichogramma minutum (Hymenoptera: Trichogrammatidae) released in forest stands. Environmental Entomology, 17, 1009–1015.

    Article  Google Scholar 

  • Snider, R. M., & Snider, R. J. (1997). Efficiency of arthropod extraction from soil cores. Entomological News, 108, 203–208.

    Google Scholar 

  • Snyder, W. E., & Ives, A. R. (2003). Interactions between specialist and generalist natural enemies: Parasitoids, predators, and pea aphid biocontrol. Ecology, 84, 91–107.

    Article  Google Scholar 

  • Snyder, W. E., & Wise, D. H. (2001). Contrasting trophic cascades generated by a community of generalist predators. Ecology, 82, 1571–1583.

    Article  Google Scholar 

  • Soenjaro, E. (1979). Effect of labelling with the radioisotope 65Zn on the performance of the eulophid, Colpoclypeus florus, a parasite of Tortricidae. Entomologia Experimentalis et Applicata, 25, 304–310.

    Article  Google Scholar 

  • Sol, R. (1961). Über den Eingriff von Insektiziden in das Wechselspiel von Aphis fabae Scop. und einigen ihrer Episiten. Entomophaga, 6, 7–33.

    Article  Google Scholar 

  • Sol, R. (1966). The occurrence of aphidivorous Syrphids and their larvae on different crops, with the help of coloured water traps. In I. Hodek (Ed.), Ecology of aphidophagoüs Insects (pp. 181–184). Academia, Prague and W. Junk.

    Google Scholar 

  • Sontowski, R., Gerth, M., Richter, S., Gruppe, A., Schlegel, M., van Dam, N. M., & Bleidorn, C. (2020). Infection patterns and fitness effects of Rickettsia and Sodalis symbionts in the green lacewing Chrysoperla carnea. Insects, 11, 867.

    Google Scholar 

  • Sotherton, N. W. (1984). The distribution and abundance of predatory arthropods overwintering on farmland. Annals of Applied Biology, 105, 423–429.

    Article  Google Scholar 

  • Sotherton, N. W. (1985). The distribution and abundance of predatory arthropods overwintering in field boundaries. Annals of Applied Biology, 106, 17–21.

    Article  Google Scholar 

  • Southwood, T. R. E. (1962). Migration of terrestrial arthropods in relation to habitat. Biological Reviews, 37, 171–214.

    Article  Google Scholar 

  • Southwood, T. R. E. (1966). Ecological methods. Chapman and Hall.

    Google Scholar 

  • Southwood, T. R. E., & Henderson, P. A. (2000). Ecological methods (3rd ed.). Blackwell Science.

    Google Scholar 

  • Southwood, T. R. E., & Pleasance, H. J. (1962). A hand-operated suction apparatus for the extraction of arthropods from grassland and similar habitats, with notes on other models. Bulletin of Entomological Research, 53, 125–128.

    Article  Google Scholar 

  • Speight, M. R., & Lawton, J. H. (1976). The influence of weed-cover on the mortality imposed on artificial prey by predatory ground beetles in cereal fields. Oecologia, 23, 211–223.

    Article  CAS  PubMed  Google Scholar 

  • Spence, J. R., & Niemelä, J. K. (1994). Sampling carabid assemblages with pitfall traps: The madness and the method. Canadian Entomologist, 126, 881–894.

    Article  Google Scholar 

  • Spiller, D. A., & Schoener, T. W. (1990). A terrestrial field experiment showing the impact of eliminating top predators on foliage damage. Nature, 347, 469–472.

    Article  Google Scholar 

  • Stahlhut, J. K., Desjardins, C. A., Clark, M. E., Baldo, L., Russell, J. A., Werren, J. H., & Jaenike, J. (2010). The mushroom habitat as an ecological arena for global exchange of Wolbachia. Molecular Ecology, 19, 1940–1952.

    Article  PubMed  Google Scholar 

  • Standen, V. (2000). The adequacy of collecting techniques for estimating species richness of grassland invertebrates. Journal of Applied Ecology, 37, 884–893.

    Article  Google Scholar 

  • Stark, J. D., Vargas, R. I., Thalman, R. K. (1991). Diversity and abundance of Oriental Fruit Fly parasitoids in guava orchards in Kauai, Hawaii. Journal of Economic Entomology, 84, 1460–1467.

    Google Scholar 

  • Starý, P. (1970). Biology of aphid parasites (Hymenoptera: Aphidiidae) with respect to integrated control. Series Entomologica, 6, 1–643.

    Google Scholar 

  • Staudacher, K., Jonsson, M., & Traugott, M. (2016). Diagnostic PCR assays to unravel food web interactions in cereal crops with focus on biological control of aphids. Journal of Pest Science, 89, 281–293.

    Article  PubMed  Google Scholar 

  • Staudacher, K., Rubbmark, O. R., Birkhofer, K., Malsher, G., Sint, D., Jonsson, M., & Traugott, M. (2017). Habitat heterogeneity induces rapid changes in the feeding behaviour of generalist arthropod predators. Functional Ecology, 32, 809–819.

    Article  Google Scholar 

  • Steffan, S. A., Daane, K. M., & Mahr, D. L. (2001). 15N-enrichment of plant tissue to mark phytophagous insects, associated parasitoids, and flower-visiting entomophaga. Entomologia Experimentalis et Applicata, 98, 173–180.

    Article  Google Scholar 

  • Stenbacka, F., Hjalten, J., Hilsszczanski, J., Ball, J. P., Gibb, H., Johansson, T., Pettersson, R. B., & Danell, K. (2010). Saproxylic parasitoid (Hymenoptera, Ichneumonoidea) communities in managed boreal forest landscapes. Insect Conservation and Diversity, 3, 114–123.

    Article  Google Scholar 

  • Stephens, M. J., France, C. M., Wratten, S. D., & Frampton, C. (1998). Enhancing biological control of leafrollers (Lepidoptera: Tortricidae) by sowing buckwheat (Fagopyrum esculentum) in an orchard. Biocontrol Science and Technology, 8, 547–558.

    Article  Google Scholar 

  • Sterling, W. (1989). Estimating the abundance and impact of predators and parasites on Heliothis populations. In E. G., King, & R. D. Jackson (Eds.), Proceedings of the Workshop on Biological Control of Heliothis: increasing the effectiveness of natural enemies (pp. 37–56). U.S. Department of Agriculture.

    Google Scholar 

  • Stern, V. M., Schlinger, E. I., & Bowen, W. R. (1965). Dispersal studies of Trichogramma semifumatum (Hymenoptera: Trichogrammatidae) tagged with radioactive phosphorus. Annals of the Entomological Society of America, 58, 234–240.

    Article  CAS  PubMed  Google Scholar 

  • Steyskal, G. C. (1977). History and use of the McPhail trap. The Florida Entomologist, 60, 11–16.

    Article  Google Scholar 

  • Steyskal, G. C. (1981). A bibliography of the Malaise trap. Proceedings of the Entomological Society of Washington, 83, 225–229.

    Google Scholar 

  • Stoewen, J. F., & Ellis, C. R. (1991). Evaluation of a technique for monitoring predation of Western corn rootworm eggs, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). Proceedings of the Entomological Society of Ontario, 122, 27–33.

    Google Scholar 

  • Storck-Weyhermüller, S. (1988). Einfluss naturlicher Feinde auf die Populationsdynamik der Getreideblattlause im Winterweizen Mittelhessens (Homoptera: Aphididae). Entomologia Generalis, 13, 189–206.

    Article  Google Scholar 

  • Stork, N. E., & Hammond, P. M. (1997). Sampling arthropods from tree-crowns by fogging with knockdown insecticides: Lessons from oak tree beetle assemblages in Richmond Park (UK). In N. E. Stork, J. Adis, & R. K. Didham (Eds.), Canopy arthropods (pp. 3–26). Chapman and Hall.

    Google Scholar 

  • Stork, N. E., Hammond, P. M., Russell, B. L., & Hadwen, W. L. (2001). The spatial distribution of beetles within the canopies of oak trees in Richmond Park, U.K. Ecological Entomology, 26, 302–311.

    Article  Google Scholar 

  • Stouthamer, R. (1997) Wolbachia-induced thelytoky. In S. L. O’Neill, A. A. Hoffmann, & J. H. Werren (Eds.) Influential passengers: Microbes and invertebrate reproduction (pp. 102–24). Oxford University Press.

    Google Scholar 

  • Stouthamer, R., & Kazmer, D. J. (1994). Cytogenetics of microbe-associated parthenogenesis and its consequences for gene flow in Trichogramma wasps. Heredity, 73, 317–327.

    Article  Google Scholar 

  • Stouthamer, R., Luck, R. F., & Hamilton, W. D. (1990). Antibiotics cause parthenogenetic Trichogramma (Hymenoptera, Trichogrammatidae) to revert to sex. Proceedings of the National Academy of Sciences USA, 87, 2424–2427.

    Article  CAS  Google Scholar 

  • Stouthamer, R., Breeuwer, J. A. J., & Hurst, G. D. D. (1999). Wolbachia pipientis: Microbial manipulator of arthropod reproduction. Annual Review of Microbiology, 53, 71–102.

    Article  CAS  PubMed  Google Scholar 

  • Stradling, D. J. (1987). Nutritional ecology of ants. In F. Slansky, & J. G. Rodriguez (Eds.), Nutritional ecology of insects, mites, spiders and related invertebrates (pp. 927–969). Wiley.

    Google Scholar 

  • Strand, M. R., & Burke, G. R. (2013). Polydnavirus-wasp associations: Evolution, genome organization, and function. Current Opinion in Virology, 3, 587–594.

    Article  CAS  PubMed  Google Scholar 

  • Strand, M. R., Roitberg, B. D., & Papaj, D. R. (1990). Acridine orange: A potentially useful internal marker of Hymenoptera and Diptera. Journal of the Kansas Entomological Society, 63, 634–637.

    Google Scholar 

  • Stuart, M. K., & Burkholder, W. E. (1991). Monoclonal antibodies specific for Laelius pedatus (Bethylidae) and Bracon hebetor (Braconidae), two hymenopterous parasitoids of stored product pests. Biological Control, 1, 302–308.

    Article  Google Scholar 

  • Stuart, M. K., & Greenstone, M. H. (1996) Serological diagnosis of parasitism: A monoclonal antibody-based immunodot assay for Microplitis croceipes (Hymenoptera: Braconidae). In W. O. C. Symondson, & J. E. Liddell (Eds.), The ecology of agricultural pests: Biochemical approaches, Systematics Association Special Volume 53 (pp. 300–321). Chapman and Hall.

    Google Scholar 

  • Stuart, M. K., & Greenstone, M. H. (1997). Immunological detection of hymenopteran parasitism in Helicoverpa zea and Heliothis virescens. Biological Control, 8, 197–202.

    Article  Google Scholar 

  • Stucky, B. J. (2016). A new live trap for the acoustically orienting parasitoid fly Emblemasoma erro (Diptera: Sarcophagidae). Florida Entomologist, 99, 559–562.

    Article  Google Scholar 

  • Suckling, D. M., Burnip, G. M., Gibb, A. R., Stavely, F. J. L., & Wratten, S. D. (1996). Comparison of suction and beating tray sampling for apple pests and their natural enemies. In Proceedings of the 49th New Zealand Plant Protection Conference (pp. 41–47) New Zealand Plant Protection Society.

    Google Scholar 

  • Sudakaran, S., Kost, C., & Kaltenpoth, M. (2017). Symbiont acquisition and replacement as a source of ecological innovation. Trends in Microbiology, 25, 375–390.

    Article  CAS  PubMed  Google Scholar 

  • Sugihara, G., Bersier, L. F., & Schoenly, K. (1997). Effects of taxonomic and trophic aggregation on food web properties. Oecologia, 112, 272–284.

    Article  PubMed  Google Scholar 

  • Sumer, F., Tuncbilek, A. S., Oztemiz, S., Pintureau, B., Rugman-Jones, P., & Stouthamer, R. (2009). A molecular key to the common species of Trichogramma of the Mediterranean region. BioControl, 54, 617–624.

    Article  CAS  Google Scholar 

  • Summers, C. G., Garrett, R. E., & Zalom, F. G. (1984). New suction device for sampling arthropod populations. Journal of Economic Entomology, 77, 817–823.

    Article  Google Scholar 

  • Sunderland, K. D. (1975). The diet of some predatory arthropods in cereal crops. Journal of Applied Ecology, 12, 507–515.

    Article  Google Scholar 

  • Sunderland, K. D. (1987). Spiders and cereal aphids in Europe. Bulletin IOBC/WPRS Working Group Integrated Control of Cereal Pests, 10, 82–102.

    Google Scholar 

  • Sunderland, K. D. (1988). Quantitative methods for detecting invertebrate predation occurring in the field. Annals of Applied Biology, 112, 201–224.

    Article  Google Scholar 

  • Sunderland, K. D. (1991). The ecology of spiders in cereals. Proceedings of the 6th International Symposium on Pests and Diseases of Small Grain Cereals and Maize, Halle/Saale, 1, 269–280.

    Google Scholar 

  • Sunderland, K. D. (1992). Effects of pesticides on the population ecology of polyphagous predators. Aspects of Applied Biology, 31, 19–28.

    Google Scholar 

  • Sunderland, K. D. (1996). Progress in quantifying predation using antibody techniques. In W. O. C. Symondson, & J. E. Liddell (Eds.), The ecology of agricultural pests: Biochemical approaches, Systematics Association Special Volume 53 (pp. 419–455). Chapman and Hall.

    Google Scholar 

  • Sunderland, K. D. (2002). Invertebrate pest control by carabids. In J. Holland (Ed.), The agroecology of carabid beetles (pp. 165–214). Intercept.

    Google Scholar 

  • Sunderland, K. D., Axelsen, J. A., Dromph, K., Freier, B., Hemptinne, J. L., Holst, N. H., Mols, P. J. M., Petersen, M. K., Powell, W., Ruggle, P., Triltsch, H., & Winder, L. (1997). Pest control by a community of natural enemies. Acta Jutlandica, 72, 271–326.

    Google Scholar 

  • Sunderland, K. D., Chambers, R. J., Helyer, N. L., & Sopp, P. I. (1992). Integrated pest management of greenhouse crops in Northern Europe. Horticultural Reviews, 13, 1–66.

    CAS  Google Scholar 

  • Sunderland, K. D., Crook, N. E., Stacey, D. L., & Fuller, B. T. (1987a). A study of feeding by polyphagous predators on cereal aphids using ELISA and gut dissection. Journal of Applied Ecology, 24, 907–933.

    Google Scholar 

  • Sunderland, K. D., Fraser, A. M., & Dixon, A. F. G. (1986a). Distribution of linyphiid spiders in relation to capture of prey in cereal fields. Pedobiologia, 29, 367–375.

    Google Scholar 

  • Sunderland, K. D., Fraser, A. M., & Dixon, A. F. G. (1986b). Field and laboratory studies on money spiders (Linyphiidae) as predators of cereal aphids. Journal of Applied Ecology, 23, 433–447.

    Google Scholar 

  • Sunderland, K. D., Hawkes, C., Stevenson, J. H. McBride, J., Smart, L. E., Sopp, P., Powell, W., Chambers, R. J., & Carter, O. C. R. (1987b). Accurate estimation of invertebrate density in cereals. Bulletin IOBC/WPRS Working Group Integrated Control of Cereal Pests, 10, 71–81.

    Google Scholar 

  • Sunderland, K. D., Lövei, G. L., & Fenlon, J. (1995b). Diets and reproductive phenologies of the introduced ground beetles Harpalus affinis and Clivina australasiae (Coleoptera: Carabidae) in New Zealand. Australian Journal of Zoology, 43, 39–50.

    Google Scholar 

  • Sunderland, K. D., De Snoo, G. R., Dinter, A., Hance, T., Helenius, J., Jepson, P., Kromp, B., Lys, J. A., Samu, F., Sotherton, N. W., Toft, S., & Ulber, B. (1995a). Density estimation for invertebrate predators in agroecosystems. Acta Jutlandica, 70, 133–162.

    Google Scholar 

  • Sunderland, K. D., & Sutton, S. L. (1980). A serological study of arthropod predation on woodlice in a dune grassland ecosystem. Journal of Animal Ecology, 49, 987–1004.

    Article  Google Scholar 

  • Sunderland, K. D., & Topping, C. J. (1995). Estimating population densities of spiders in cereals. Acta Jutlandica, 70, 13–22.

    Google Scholar 

  • Sunderland, K. D., & Vickerman, G. P. (1980). Aphid feeding by some polyphagous predators in relation to aphid density in cereal fields. Journal of Applied Ecology, 17, 389–396.

    Article  Google Scholar 

  • Surber, E. W. (1936). Rainbow trout and bottom fauna production in one mile of stream. Transactions of the American Fisheries Society, 66, 193–202.

    Article  Google Scholar 

  • Sutherland, J. P., Sullivan, M. S., & Poppy, G. M. (1999). The influence of floral character on the foraging behaviour of the hoverfly, Episyrphus balteatus. Entomologia Experimentalis et Applicata, 93, 157–164.

    Article  Google Scholar 

  • Sutherland, W. J. (1996). Ecological census techniques. Cambridge University Press.

    Google Scholar 

  • Symondson, W. O. C. (1992). Pest control. In B. Caplan (Ed.), The Complete manual of organic gardening (pp. 290–333). Headline Book Publishing.

    Google Scholar 

  • Symondson, W. O. C. (2002a). Diagnostic techniques for determining carabid diets. In J. Holland (Ed.), The agroecology of carabid beetles (pp. 137–164). Intercept.

    Google Scholar 

  • Symondson, W. O. C. (2002b). Molecular identification of prey in predator diets. Molecular Ecology, 11, 627–641.

    Google Scholar 

  • Symondson, W. O. C., & Hemingway, J. (1997). Biochemical and molecular techniques. In D. R. Dent, & M. P. Walton (Eds.), Methods in ecological and agricultural entomology (pp. 293–350). CAB International.

    Google Scholar 

  • Symondson, W. O. C., Glen, D. M., Erickson, M. L., Liddell, J. E., & Langdon, C. J. (2000). Do earthworms help to sustain the slug predator Pterostichus melanarius (Coleoptera: Carabidae) within crops? Investigations using monoclonal antibodies. Molecular Ecology, 9, 1279–1292.

    Google Scholar 

  • Symondson, W. O. C., Glen, D. M., Wiltshire, C. W., Langdon, C. J., & Liddell, J. E. (1996). Effects of cultivation techniques and methods of straw disposal on predation by Pterostichus melanarius (Coleoptera: Carabidae) upon slugs (Gastropoda: Pulmonata) in an arable field. Journal of Applied Ecology, 33, 741–753.

    Google Scholar 

  • Symondson, W. O. C., & Liddell, J. E. (Eds.). (1996). The ecology of agricultural pests: Biochemical approaches. Chapman and Hall.

    Google Scholar 

  • Symondson, W. O. C., Sunderland, K. D., & Greenstone, M. (2002). Can generalist predators be effective biocontrol agents? Annual Review of Entomology, 47, 561–594.

    Google Scholar 

  • Szyszko, J., Vermeulen, H. J. W., & den Boer, P. J. (1996). Survival and reproduction in relation to habitat quality and food availability for Pterostichus oblongopunctatus F. (Carabidae, Col.). Acta Jutlandica, 71, 25–40.

    Google Scholar 

  • Takano, S. I., Tuda, M., Takasu, K., Furuya, N., Imamura, Y., Kim, S., Tashiro, K., Iiyama, K., Tavares, M., & Amaral, A. C. (2017). Unique clade of alphaproteobacterial endosymbionts induces complete cytoplasmic incompatibility in the coconut beetle. Proceedings of the National Academy of Sciences USA, 114, 6110–6115.

    Google Scholar 

  • Taubert, S., & Hertl, F. (1985). Eine neue tragbare Insektensaugfalle mit Elektro-Batterie-Betreib. Mitteilungen Deutsche Gesellschaft für Algemeine und Angewandte Entomologie, 4, 433–437.

    Google Scholar 

  • Taylor, A. J., Müller, C. B., & Godfray, H. C. J. (1998). Effect of aphid predators on oviposition behaviour of aphid parasitoids. Journal of Insect Behavior, 11, 297–302.

    Article  Google Scholar 

  • Taylor, D. B., & Szalanski, A. L. (1999). Identification of Muscidifurax spp. by polymerase chain reaction–restriction fragment length polymorphism. Biological Control, 15, 270–273.

    Article  Google Scholar 

  • Taylor, L. R. (1955). The standardization of air-flow in insect suction traps. Annals of Applied Biology, 43, 390–408.

    Article  Google Scholar 

  • Taylor, L. R. (1962). The absolute efficiency of insect suction traps. Annals of Applied Biology, 50, 405–421.

    Article  Google Scholar 

  • Taylor, P. J., Matamba, E., Steyn, J. N., Nangammbi, T., Zepeda-Mendoza, M. L., & Bohmann, K. (2017). Diet determined by next generation sequencing reveals pest consumption and opportunistic foraging by bats in macadamia orchards in South Africa. Acta Chiropterologica, 19, 239–254.

    Article  Google Scholar 

  • Teixeira, L., Ferreira, A., & Ashburner, M. (2008). The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biology, 6, 2753–2763.

    Article  CAS  Google Scholar 

  • Terry, R. S., Smith, J. E., Sharpe, R. G., Rigaud, T., Littlewood, D. T. J., Ironside, J. E., Rollinson, D., Bouchon, D., MacNeil, C., Dick, J. T., & Dunn, A. M. (2004). Widespread vertical transmission and associated host sex-ratio distortion within the eukaryotic phylum Microspora. Proceedings of the Royal Society of London B, 271, 1783–1789.

    Article  Google Scholar 

  • Thepparit, C., Hirunkanokpun, S., Popov, V. L., Foil, L. D., & Macaluso, K. R. (2013). Dissemination of bloodmeal acquired Rickettsia felis in cat fleas, Ctenocephalides felis. Parasites and Vectors, 6, 49.

    Google Scholar 

  • Thiede, U. (1981). Über die Verwendung von Acryglasrohrchen zur Untersuchung der Biologie und ökologie solitarer aculeater Hymenopteren. Deutsche Entomologische Zeitschrift, 28, 45–53.

    Article  Google Scholar 

  • Thiele, H. V. (1977). Carabid beetles in their environments. Springer.

    Book  Google Scholar 

  • Thomas, C. D. (1989). Predator-herbivore interactions and the escape of isolated plants from phytophagous insects. Oikos, 55, 291–298.

    Article  Google Scholar 

  • Thomas, C. F. G., & Jepson, P. C. (1997). Field-scale effects of farming practices on linyphiid spider populations in grass and cereals. Entomologia Experimentalis et Applicata, 84, 59–69.

    Article  Google Scholar 

  • Thomas, C. F. G., & Jepson, P. C. (1999). Differential aerial dispersal of linyphiid spiders from a grass and a cereal field. Journal of Arachnology, 27, 294–300.

    Google Scholar 

  • Thomas, C. F. G., Parkinson, L., & Marshall, E. J. P. (1998). Isolating the components of activity-density for the carabid beetle Pterostichus melanarius in farmland. Oecologia, 116, 103–112.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, D. B., & Sleeper, E. L. (1977). The use of pitfall-traps for estimating the abundance of arthropods, with special reference to the Tenenebrionidae (Coleoptera). Annals of the Entomological Society of America, 70, 242–248.

    Article  Google Scholar 

  • Thomas, M. B., Wratten, S. D., & Sotherton, N. W. (1992). The creation of ‘island’ habitats in farmland to manipulate populations of beneficial arthropods: Predator densities and species composition. Journal of Applied Ecology, 29, 524–531.

    Article  Google Scholar 

  • Thomas, R. S. (2002). An immunological and behavioural study of the role of carabid beetle larvae as slug control agents in cereal crops. Cardiff University, Ph.D. Thesis.

    Google Scholar 

  • Thomas, S., Verma, J., Woolfit, M., & O'Neill, S. L. (2018). Wolbachia-mediated virus blocking in mosquito cells is dependent on XRN1-mediated viral RNA degradation and influenced by viral replication rate. PLoS Pathogens, 14, e1006879.

    Google Scholar 

  • Thompson, D. J. (1978). Prey size selection by larvae of the damselfly Ischnura elegans (Odonata). Journal of Animal Ecology, 47, 786–796.

    Article  Google Scholar 

  • Thorbek, P., Topping, C., & Sunderland, K. (2002). Validation of a simple method for monitoring aerial activity of spiders. Journal of Arachnology, 30, 57–64.

    Article  Google Scholar 

  • Thornhill, E. W. (1978) A motorised insect sampler. Proceedings of the National Academy of Sciences USA, 24, 205–207.

    Google Scholar 

  • Ticehurst, M., & Reardon, R. (1977). Malaise trap: A comparison of 2 models for collecting adult stage of gypsy moth parasites. Melsheimer Entomological Series, 23, 17–19.

    Google Scholar 

  • Tilmon, K. J., Danforth, B. N., Day, W. H., & Hoffmann, N. P. (2000). Determining parasitoid species composition in a host population: A molecular approach. Annals of the Entomological Society of America, 93, 640–647.

    Article  CAS  Google Scholar 

  • Timms, L. L., Walker, S. C., & Smith, S. M. (2012). Establishment and dominance of an introduced herbivore has limited impact on native host-parasitoid food webs. Biological Invasions, 14, 229–244.

    Article  Google Scholar 

  • Tobin, J. E. (1997). Competition and coexistence of ants in a small patch of rainforest canopy in Peruvian Amazonia. Journal of the New York Entomological Society, 105, 105–112.

    Google Scholar 

  • Tobolewski, J., Kaliszewski, M. J., Colwell, R. K., & Oliver, J. H. (1992). Detection and identification of mammalian DNA from the gut of museum specimens of ticks. Journal of Medical Entomology, 29, 1049–1051.

    Article  CAS  PubMed  Google Scholar 

  • Toft, S., Vangsgaard, C., & Goldschmidt, H. (1995). The distance method used to measure densities of web spiders in cereal fields. Acta Jutlandica, 90, 33–45.

    Google Scholar 

  • Toju, H., & Fukatsu, T. (2011). Diversity and infection prevalence of endosymbionts in natural populations of the chestnut weevil: Relevance of local climate and host plants. Molecular Ecology, 20, 853–868.

    Google Scholar 

  • Toju, H., & Baba, Y. (2018). DNA metabarcoding of spiders, insects, and springtails for exploring potential linkage between above- and below-ground food webs. Zoological Letters, 4, 4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomasetto, F., Tylianakis, J. M., Reale, M., Wratten, S., & Goldson, S. L. (2017). Intensified agriculture favors evolved resistance to biological control. Proceedings of the National Academy of Sciences USA, 114, 3885–3890.

    Article  CAS  Google Scholar 

  • Tomlin, A. D., McLeod, D. G. R., Moore, L. V., Whistlecraft, J. W., Miller, J. J., & Tolman, J. H. (1992). Dispersal of Aleochara bilineata (Col.: Staphylinidae) following inundative releases in urban gardens. Entomophaga, 37, 55–63.

    Article  Google Scholar 

  • Tonkyn, D. W. (1980). The formula for the volume sampled by a sweep net. Annals of the Entomological Society of America, 73, 452–454.

    Article  Google Scholar 

  • Topham, M., & Beardsley, J. W. (1975). Influence of nectar source plants on the New Guinea sugarcane weevil parasite, Lixophaga sphenophori (Villeneuve). Proceedings of the Hawaiian Entomological Society, 22, 145–154.

    Google Scholar 

  • Topping, C. J. (1993). Behavioural responses of three linyphiid spiders to pitfall traps. Entomologia Experimentalis et Applicata, 68, 287–293.

    Article  Google Scholar 

  • Topping, C. J., & Luff, M. L. (1995). Three factors affecting the pitfall trap catch of linyphiid spiders (Araneae: Linyphiidae). Bulletin of the British Arachnological Society, 10, 35–38.

    Google Scholar 

  • Topping, C. J., & Sunderland, K. D. (1992). Limitations to the use of pitfall traps in ecological studies exemplified by a study of spiders in a field of winter wheat. Journal of Applied Ecology, 29, 485–491.

    Article  Google Scholar 

  • Topping, C. J., & Sunderland, K. D. (1994). Methods for quantifying spider density and migration in cereal crops. Bulletin of the British Arachnological Society, 9, 209–213.

    Google Scholar 

  • Topping, C. J., & Sunderland, K. D. (1995). Method for monitoring aerial dispersal by spiders. Acta Jutlandica, 70, 245–256.

    Google Scholar 

  • Topping, C. J., & Sunderland, K. D. (1998). Population dynamics and dispersal of Lepthyphantes tenuis in an ephemeral habitat. Entomologia Experimentalis et Applicata, 87, 29–41.

    Article  Google Scholar 

  • Topping, C. J., Sunderland, K. D., & Bewsey, J. (1992). A large improved rotary trap for sampling aerial invertebrates. Annals of Applied Biology, 121, 707–714.

    Article  Google Scholar 

  • Törmälä, T. (1982). Evaluation of five methods of sampling field layer arthropods, particularly the leafhopper community, in grassland. Annales Entomologici Fennici, 48, 1–16.

    Google Scholar 

  • Townes, H. (1962). Design for a Malaise trap. Proceedings of the Entomological Society of Washington, 64, 253–262.

    Google Scholar 

  • Traugott, M. (2002). Dispersal power, home range and habitat preference of cantharid larvae (Coleoptera: Cantharidae) in arable land. European Journal of Soil Biology, 38, 79–83.

    Article  Google Scholar 

  • Traugott, M., Bell, J. R., Broad, G. R., Powell, W., van Veen, F. J. F., Vollhardt, I. M. G., & Symondson, W. O. C. (2008). Endoparasitism in cereal aphids: Molecular analysis of a whole parasitoid community. Molecular Ecology, 17, 3928–3938.

    Article  CAS  PubMed  Google Scholar 

  • Traugott, M., Bell, J. R., Raso, L., Sint, D., & Symondson, W. O. C. (2012). Generalist predators disrupt parasitoid aphid control by direct and coincidental intraguild predation. Bulletin of Entomological Research, 102, 239–247.

    Article  CAS  PubMed  Google Scholar 

  • Traugott, M., & Symondson, W. O. C. (2008). Molecular analysis of predation on parasitized hosts. Bulletin of Entomological Research, 98, 223–231.

    Article  CAS  PubMed  Google Scholar 

  • Tretzel, E. (1955). Technik und Bedeutung des Fallenfanges für ökologische Untersuchungen. Zoologische Anzeiger, 155, 276–287.

    Google Scholar 

  • Triltsch, H. (1997). Gut contents in field sampled adults of Coccinella septempunctata L. (Col.: Coccinellidae). Entomophaga, 42, 125–131.

    Google Scholar 

  • Trimble, R. M., & Brach, E. J. (1985). Effect of color on sticky-trap catches of Pholetesor ornigis (Hymenoptera: Braconidae), a parasite of the spotted tentiform leafminer Phyllonorycter blancardella (Lepidoptera: Gracillariidae). Canadian Entomologist, 117, 1559–1564.

    Article  Google Scholar 

  • Tsai, Z. M., Jau, P. H., Kuo, N. C., Kao, J. C., Lin, K. Y., Chang, F. R., Yang, E. C., & Wang, H. (2013). A high-range-accuracy and high-sensitivity harmonic radar using pulse pseudorandom code for bee searching. IEEE Transactions on Microwave Theory and Techniques, 61, 666–675.

    Article  Google Scholar 

  • Tsuchida, T., Koga, R., & Fukatsu, T. (2004). Host plant specialization governed by facultative symbiont. Science, 303, 1989–1989.

    Article  CAS  PubMed  Google Scholar 

  • Tsuchida, T., Koga, R., Horikawa, M., Tsunoda, T., Maoka, T., Matsumoto, S., Simon, J. C., & Fukatsu, T. (2010). Symbiotic bacterium modifies aphid body color. Science, 330, 1102–1104.

    Article  CAS  PubMed  Google Scholar 

  • Turelli, M. (1994). Evolution of incompatibility-inducing microbes and their hosts. Evolution, 48, 1500–1513.

    PubMed  Google Scholar 

  • Turelli, M., Cooper, B. S., Richardson, K. M., Ginsberg, P. S., Peckenpaugh, B., Antelope, C. X., Kim, K. J., May, M. R., Abrieux, A., Wilson, D. A., Bronski, M. J., Moore, B. R., Gao, J. J., Eisen, M. B., Chiu, J. C., Conner, W. R., & Hoffmann, A. A. (2018). Rapid global spread of wRi-like Wolbachia across multiple Drosophila. Current Biology, 28, 963–971.

    Article  CAS  PubMed  Google Scholar 

  • Turelli, M., & Hoffmann, A. A. (1991). Rapid spread of an inherited incompatibility factor in California Drosophila. Nature, 353, 440–442.

    Article  CAS  PubMed  Google Scholar 

  • Turelli, M., Hoffmann, A. A., & McKechnie, S. W. (1992). Dynamics of cytoplasmic incompatibility and mtDNA variation in natural Drosophila simulans populations. Genetics, 132, 713–723.

    Google Scholar 

  • Turelli, M., & Hoffmann, A. A. (1995). Cytoplasmic incompatibility in Drosophila simulans–dynamics and parameter estimates from natural populations. Genetics, 140, 1319–1338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turnbull, A. L., & Nicholls, C. F. (1966). A ‘quick trap’ for area sampling of arthropods in grassland communities. Journal of Economic Entomology, 59, 1100–1104.

    Article  Google Scholar 

  • Tylianakis, J. M., Tscharntke, T., & Klein, A. M. (2006). Diversity, ecosystem function, and stability of parasitoid–host interactions across a tropical habitat gradient. Ecology, 87, 3047–3057.

    Article  PubMed  Google Scholar 

  • Udayagiri, S., Mason, C. E., & Pesek, J. D. (1997). Coleomegilla maculata, Coccinella septempunctata (Coleoptera: Coccinellidae), Chrysoperla carnea (Neuroptera: Chrysopidae), and Macrocentrus grandii (Hymenoptera: Braconidae) trapped on colored sticky traps in corn habitats. Environmental Entomology, 26, 983–988.

    Article  Google Scholar 

  • Uetz, G. W., & Unzicker, J. D. (1976). Pitfall trapping in ecological studies of wandering spiders. Journal of Arachnology, 3, 101–111.

    Google Scholar 

  • Ulber, B., & Wolf-Schwerin, G. (1995). A comparison of pitfall trap catches and absolute density estimates of carabid beetles in oilseed rape fields. Acta Jutlandica, 70, 77–86.

    Google Scholar 

  • Unckless, R. L., Boelio, L. M., Herren, J. K., & Jaenike, J. (2009). Wolbachia as populations within individual insects: Causes and consequences of density variation in natural populations. Proceedings of the Royal Society of London B, 276, 2805–2811.

    Google Scholar 

  • Unckless, R. L., & Jaenike, J. (2012). Maintenance of a male-killing Wolbachia in Drosophila innubila by male-killing dependent and male-killing independent mechanisms. Evolution, 66, 678–689.

    Article  PubMed  Google Scholar 

  • Valladares, G. R., & Salvo, A. (1999). Insect-plant food webs could provide new clues for pest management. Environmental Entomology, 28, 539–544.

    Article  Google Scholar 

  • Vannini, M., Conti, A., Ferreti, J., & Becciolini, A. (1993). Trophic exchange in Pardosa hortensis (Lycosidae, Araneae). Journal of Zoology, 231, 163–166.

    Article  Google Scholar 

  • Varaldi, J., Fouillet, P., Ravallec, M., Lopez-Ferber, M., Bouletreau, M., & Fleury, F. (2003). Infectious behavior in a parasitoid. Science, 302, 1930–1930.

    Article  CAS  PubMed  Google Scholar 

  • Varennes, Y.-D., Boyer, S., & Wratten, S. D. (2014). Un-nesting DNA Russian dolls–the potential for constructing food webs using residual DNA in empty aphid mummies. Molecular Ecology, 23, 3925–3933.

    Article  CAS  PubMed  Google Scholar 

  • Vargas, R. I., Stark, J. D., Prokopy, R. J., & Green, T. I. (1991). Response of Oriental fruit fly and associated parasitoids to coloured balls. Journal of Economic Entomology, 84, 1503–1507.

    Article  Google Scholar 

  • Varley, M. J., Copland, M. J. W., Wratten, S. D., & Bowie, M. H. (1993). Parasites and predators. In S. D. Wratten (Ed.), Video techniques in animal ecology and behaviour (pp. 33–63). Chapman and Hall.

    Google Scholar 

  • Vaughan, I. P., Gotelli, N. J., Memmott, J., Pearson, C. E., Woodward, G., & Symondson, W. O. C. (2018). econullnetr: An R package using null models to analyse the structure of ecological networks and identify resource selection. Methods in Ecology and Evolution, 9, 728–733.

    Article  Google Scholar 

  • Vavre, F., Fleury, F., Lepetit, D., Fouillet, P., & Bouletreau, M. (1999). Phylogenetic evidence for horizontal transmission of Wolbachia in host-parasitoid associations. Molecular Biology and Evolution, 16, 1711–1723.

    Article  CAS  PubMed  Google Scholar 

  • van Veen, F. J. F., Memmott, J., & Godfray, H. C. J. (2006a). Indirect effects, apparent competition and biological control. In J. Brodeur, & G. Boivin (Eds.), Trophic and guild interactions in biological control (pp. 145–169). Springer

    Google Scholar 

  • van Veen, F. J. F., Morris, R. J., & Godfray, H. C. J. (2006b). Apparent competition, quantitative food webs, and the structure of phytophagous insect communities. Annual Review of Entomology, 51, 1–689.

    Google Scholar 

  • van Veen, F. J. F., Müller, C. B., Pell, J. K., & Godfray, H. C. J. (2008). Food web structure of three guilds of natural enemies: Predators, parasitoids and pathogens of aphids. Journal of Animal Ecology, 77, 191–200.

    Article  PubMed  Google Scholar 

  • Vega, F. E., Barbosa, P., & Panduro, A. P. (1990). An adjustable water-pan trap for simultaneous sampling of insects at different heights. Florida Entomologist, 73, 656–660.

    Article  Google Scholar 

  • Veijalainen, A., Sääksjärvi, I. E., Erwin, T. L., Gomez, I. C., & Longino, J. T. (2013). Subfamily composition of Ichneumonidae (Hymenoptera) from western Amazonia: Insights into diversity of tropical parasitoid wasps. Insect Conservation and Diversity, 6, 28–37.

    Article  Google Scholar 

  • Vestheim, H., & Jarman, S. N. (2008). Blocking primers to enhance PCR amplification of rare sequences in mixed samples–a case study on prey DNA in Antarctic krill stomachs. Frontiers in Zoology, 5, 12.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vickerman, G. P., & Sunderland, K. D. (1975). Arthropods in cereal crops: Nocturnal activity, vertical distribution and aphid predation. Journal of Applied Ecology, 12, 755–766.

    Article  Google Scholar 

  • Villemant, C., & Ramzi, H. (1995). Predators of Lymantria dispar (Lep. Lymantriidae) egg masses: Spatio-temporal variation of their impact during the 1988–89 pest generation in the Mamora cork oak forest (Morocco). Entomophaga, 40, 441–456.

    Article  Google Scholar 

  • Virant-Doberlet, M., King, R. A., Polajnar, J., & Symondson, W. O. C. (2011). Molecular diagnostics reveal spiders that exploit prey vibrational signals used in sexual communication. Molecular Ecology, 20, 2204–2216.

    Article  PubMed  Google Scholar 

  • Vogt, E. A., & Nechols, J. R. (1991). Diel activity patterns of the squash bug egg parasitoid Gryon pennsylvanicum (Hymenoptera: Scelionidae). Annals of the Entomological Society of America, 84, 303–308.

    Article  Google Scholar 

  • Vogt, J. T., Grantham, R. A., Smith, W. A., & Arnold, D. C. (2001). Prey of the red imported fire ant (Hymenoptera: Formicidae) in Oklahoma peanuts. Environmental Entomology, 30, 123–128.

    Article  Google Scholar 

  • Völkl, W., & Starý, P. (1988). Parasitisation of Uroleucon species (Hom., Aphididae) on thistles (Compositae, Cardueae). Journal of Applied Entomology, 106, 500–506.

    Article  Google Scholar 

  • Voller, A., Bidwell, D. E., & Bartlett, A. (1979). The enzyme-linked immunosorbent assay (ELISA). Dynatech Europe.

    Google Scholar 

  • Vorburger, C., & Gouskov, A. (2011). Only helpful when required: A longevity cost of harbouring defensive symbionts. Journal of Evolutionary Biology, 24, 1611–1617.

    Article  CAS  PubMed  Google Scholar 

  • Vorburger, C., Gehrer, L., & Rodriguez, P. (2010). A strain of the bacterial symbiont Regiella insecticola protects aphids against parasitoids. Biology Letters, 6, 109–111.

    Article  PubMed  Google Scholar 

  • Vorburger, C., & Perlman, S. J. (2018). The role of defensive symbionts in host–parasite coevolution. Biological Reviews, 93, 1747–1764.

    Google Scholar 

  • Vorburger, C., Sandrock, C., Gouskov, A., Castaneda, L. E., & Ferrari, J. (2009). Genotypic variation and the role of defensive endosymbionts in an all-parthenogenetic host-parasitoid interaction. Evolution, 63, 1439–1450.

    Article  PubMed  Google Scholar 

  • Vorley, W. T. (1986). The activity of parasitoids (Hymenoptera: Braconidae) of cereal aphids (Hemiptera: Aphididae) in winter and spring in southern England. Bulletin of Entomological Research, 76, 491–504.

    Article  Google Scholar 

  • Waage, J. K. (1983). Aggregation in field parasitoid populations: Foraging time allocation by a population of Diadegma (Hymenoptera, Ichneumonidae). Ecological Entomology, 8, 447–453.

    Article  Google Scholar 

  • Wäckers, F. L. (1994). The effect of food deprivation on the innate visual and olfactory preferences in the parasitoid Cotesia rubecula. Journal of Insect Physiology, 40, 641–649.

    Article  Google Scholar 

  • Wagner, S. M., Martinez, A. J., Ruan, Y. M., Kim, K. L., Lenhart, P. A., Dehnel, A. C., Oliver, K. M., & Whit, J. A. (2015). Facultative endosymbionts mediate dietary breadth in a polyphagous herbivore. Functional Ecology, 29, 1402–1410.

    Article  Google Scholar 

  • Wajnberg, E. (2004). Measuring genetic variation in natural enemies used for biological control: Why and how? In L. E. Ehler, R. Sforza, & T. Mateille (Eds.), Genetics, evolution, and biological control (pp. 19–37). CAB International Publishing.

    Google Scholar 

  • Wajnberg, E. (2010). Genetics of the behavioral ecology of egg parasitoids. In F. L. Cônsoli, J. R. P. Parra, & R. A. Zucchi (Eds.), Egg parasitoids in agroecosystems with emphasis on Trichogramma (pp. 149–165). Springer.

    Google Scholar 

  • Wajnberg, E., & Colazza, S. (1998). Genetic variability in the area searched by a parasitic wasp: Analysis from automatic video tracking of the walking path. Journal of Insect Physiology, 44, 437–444.

    Article  CAS  PubMed  Google Scholar 

  • Wajnberg, E., Curty, C., & Colazza, S. (2004). Genetic variation in the mechanisms of direct mutual interference in a parasitic wasp: Consequences in terms of patch-time allocation. Journal of Animal Ecology, 73, 1179–1189.

    Article  Google Scholar 

  • Wajnberg, E., Curty, C., & Jervis, M. (2012). Intra-population genetic variation in the temporal pattern of egg maturation in a parasitoid wasp. PLoS ONE, 7(9), e45915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wajnberg, E., Rosi, M. C., & Colazza, S. (1999). Genetic variation in patch time allocation in a parasitic wasp. Journal of Animal Ecology, 68, 121–133.

    Article  Google Scholar 

  • Walker, T. J. (1993). Phonotaxis in female Ormia ochracea (Diptera: Tachinidae), a parasitoid of field crickets. Journal of Insect Behavior, 6, 389–410.

    Article  Google Scholar 

  • Walker, T., Johnson, P. H., Moreira, L. A., Iturbe-Ormaetxe, I., Frentiu, F. D., McMeniman, C. J., Leong, Y. S., Dong, Y., Axford, J., Kriesner, P., Lloyd, A. L., Ritchie, S. A., O’Neill, S. L., & Hoffmann, A. A. (2011). The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature, 476, 450–453.

    Article  CAS  PubMed  Google Scholar 

  • Wallin, H. (1985). Spatial and temporal distribution of some abundant carabid beetles (Coleoptera: Carabidae) in cereal fields and adjacent habitats. Pedobiologia, 28, 19–34.

    Article  Google Scholar 

  • Wallin, H. (1986). Habitat choice of some field-inhabiting carabid beetles (Coleoptera: Carabidae) studied by recapture of marked individuals. Ecological Entomology, 11, 457–466.

    Article  Google Scholar 

  • Wallin, H., & Ekbom, B. S. (1988). Movements of carabid beetles (Coleoptera: Carabidae) inhabiting cereal fields: A field tracing study. Oecologia, 77, 39–43.

    Article  CAS  PubMed  Google Scholar 

  • Wallin, H., & Ekbom, B. S. (1994). Influence of hunger level and prey densities on movement patterns in three species of Pterostichus beetles (Coleoptera: Carabidae). Environmental Entomology, 23, 1171–1181.

    Article  Google Scholar 

  • Waloff, N. (1975). The parasitoids of the nymphal and adult stages of leafhoppers (Auchenorrhyncha, Homoptera). Transactions of the Royal Entomological Society of London, 126, 637–686.

    Google Scholar 

  • Waloff, N., & Jervis, M. A. (1987). Communities of parasitoids associated with leafhoppers and planthoppers in Europe. Advances in Ecological Research, 17, 281–402.

    Article  Google Scholar 

  • Wang, F., Fang, Q., Wang, B. B., Yan, Z. C., Hong, J., Bao, Y., Kuhn, J. H., Werren, J. H., Song, Q., & Ye, G. (2017). A novel negative-stranded RNA virus mediates sex ratio in its parasitoid host. PLoS Pathogens, 13, e1006201.

    Google Scholar 

  • Wang, X. P., Müller, J., An, L., Ji, L., Liu, Y., Wang, X., & Hao, Z. (2014). Intra-annual variations in abundance and speceis composition of carabid beetles in a temperate forest in Northeast China. Journal of Insect Conservation, 18, 85–98.

    Article  Google Scholar 

  • Wanner, H., Gu, H., Hattendorf, B., Guenther, D., & Dorn, S. (2006). Using the stable isotope marker 44Ca to study dispersal and host-foraging activity in parasitoids. Journal of Applied Ecology, 43, 1031–1039.

    Article  CAS  Google Scholar 

  • Warren, P. H. (1994) Making connections in food webs. Trends in Ecology and Evolution, 9, 136–141.

    Google Scholar 

  • Watanabe, K., Yukuhiro, F., Matsuura, Y., Fukatsu, T., & Noda, H. (2014). Intrasperm vertical symbiont transmission. Proceedings of the National Academy of Sciences USA, 111, 7433–7437.

    Google Scholar 

  • Waters, T. F. (1962). Diurnal periodicity in the drift of stream invertebrates. Ecology, 43, 316–320.

    Article  Google Scholar 

  • Watt, A. D., Stork, N. E., McBeath, C., & Lawson, G. L. (1997). Impact of forest management on insect abundance and damage in a lowland tropical forest in southern Cameroon. Journal of Applied Ecology, 34, 985–998.

    Article  Google Scholar 

  • Way, M. J., Javier, G., & Heong, K. L. (2002). The role of ants, especially the fire ant, Solenopsis geminata (Hymenoptera: Formicidae), in the biological control of tropical upland rice pests. Bulletin of Entomological Research, 92, 431–437.

    Article  CAS  PubMed  Google Scholar 

  • Webster, C. L., Waldron, F. M., Robertson, S., Crowson, D., Ferrari, G., Quintana, J. F., et al. (2015). The discovery, distribution, and evolution of viruses associated with Drosophila melanogaster. PLoS Biology, 13, e1002210.

    Google Scholar 

  • Wedincamp, J., & Foil, L. D. (2002). Vertical transmission of Rickettsia felis in the cat flea (Ctenocephalides felis Bouche). Journal of Vector Ecology, 27, 96–101.

    PubMed  Google Scholar 

  • Weekman, G. T., & Ball, H. J. (1963). A portable electrically operated collecting device. Journal of Economic Entomology, 56, 708–709.

    Article  Google Scholar 

  • Weeks, A. R., & Breeuwer, J. A. J. (2001). Wolbachia-induced parthenogenesis in a genus of phytophagous mites. Proceedings of the Royal Society of London B, 268, 2245–2251.

    Article  CAS  Google Scholar 

  • Weeks, A. R., Marec, F., & Breeuwer, J. A. J. (2001). A mite species that consists entirely of haploid females. Science, 292, 2479–2482.

    Article  CAS  PubMed  Google Scholar 

  • Weeks, R. D., & McIntyre, N. E. (1997). A comparison of live versus kill pitfall trapping techniques using various killing agents. Entomologia Experimentalis et Applicata, 82, 267–273.

    Article  Google Scholar 

  • Weeks, A. R., Velten, R., & Stouthamer, R. (2003). Incidence of a new sex-ratio-distorting endosymbiotic bacterium among arthropods. Proceedings of the Royal Society of London B, 270, 1857–1865.

    Article  Google Scholar 

  • Wehling, A., & Heimbach, U. (1991). Untersuchungen zur Wirkung von Pflanzenschutzmitteln auf Spinnen (Araneae) am Beispiel einiger Insektizide. Nachrichtenblatt Des Deutschen Pflanzenschutzdienstes, 43, 24–30.

    Google Scholar 

  • Wei, S. J., Zhou, Y., Fan, X. L., Hoffmann, A. A., Cao, L. J., Chen, X. X., & Xu, Z. F. (2017). Different genetic structures revealed resident populations of a specialist parasitoid wasp in contrast to its migratory host. Ecology and Evolution, 7, 5400–5409.

    Article  PubMed  PubMed Central  Google Scholar 

  • Weinert, L. A., Araujo-Jnr, E. V., Ahmed, M. Z., & Welch, J. J. (2015). The incidence of bacterial endosymbionts in terrestrial arthropods. Proceedings of the Royal Society of London B, 282, 0249.

    Google Scholar 

  • Weinert, L. A., Werren, J. H., Aebi, A., Stone, G. N., & Jiggins, F. M. (2009). Evolution and diversity of Rickettsia bacteria. BMC Biology, 7, 6.

    Google Scholar 

  • Weisser, W. W., & Völkl, W. (1997). Dispersal in the aphid parasitoid, Lysiphlebus cardui (Marshall) (Hym., Aphidiidae). Journal of Applied Entomology, 121, 23–28.

    Article  Google Scholar 

  • Werner, E. E., & Peacor, S. D. (2003). A review of trait-mediated indirect interactions in ecological communities. Ecology, 84, 1083–1100.

    Article  Google Scholar 

  • Werren, J. H., Baldo, L., & Clark, M. E. (2008). Wolbachia: Master manipulators of invertebrate biology. Nature Reviews Microbiology, 6, 741–751.

    Article  CAS  PubMed  Google Scholar 

  • Werren, J. H. & Bartos, J. D. (2001). Recombination in Wolbachia. Current Biology, 11, 431–435.

    Google Scholar 

  • Werren, J. H., Hurst, G. D. D., Zhang, W., Breeuwer, J. A. J., Stouthamer, R., & Majerus, M. E. N. (1994). Rickettsial relative associated with male killing in the ladybird beetle Adalia bipunctata. Journal of Bacteriology, 176, 388–394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werren, J. H. & O’Neill, S. L. (1997). The evolution of heritable symbionts, In S. L. O’Neill, A. A. Hoffmann, & J. H. Werren (Eds.). Influential passengers: Microbes and invertebrate reproduction (pp. 1–41). Oxford University Press.

    Google Scholar 

  • Werren, J. H., Skinner, S. W., & Huger, A. M. (1986). Male-killing bacteria in a parasitic wasp. Science, 231, 990–992.

    Article  CAS  PubMed  Google Scholar 

  • Weseloh, R. M. (1981). Relationship between colored sticky panel catches and reproductive behavior of forest tachinid parasitoids. Environmental Entomology, 10, 131–135.

    Article  Google Scholar 

  • Weseloh, R. M. (1990). Estimation of predation rates of gypsy moth larvae by exposure of tethered caterpillars. Environmental Entomology, 19, 448–455.

    Article  Google Scholar 

  • Weseloh, R. M. (1986a). Biological control of gypsy moths: help from a beetle. Frontiers of Plant Science, 39, 2–3.

    Google Scholar 

  • Weseloh, R. M. (1986b). Effect of photoperiod on progeny production and longevity of gypsy moth (Lepidoptera: Lymantriidae) egg parasite Ooencyrtus kuvanae (Hymenoptera: Encyrtidae). Environmental Entomology, 15, 1149–1153.

    Google Scholar 

  • Weseloh, R. M. (1993). Manipulation of forest ant (Hymenoptera: Formicidae) abundance and resulting impact on gypsy moth (Lepidoptera: Lymantriidae) populations. Environmental Entomology, 22, 587–594.

    Article  Google Scholar 

  • Wesolowska, W., & Russell-Smith, A. (2000). Jumping spiders from Mkomazi Game Reserve in Tanzania (Araneae: Salticidae). Tropical Zoology, 13, 11–27.

    Article  Google Scholar 

  • West, S. A., Cook, J. M., Werren, J. H., & Godfray, H. C. J. (1998). Wolbachia in two insect host-parasitoid communities. Molecular Ecology, 7, 1457–1465.

    Article  CAS  PubMed  Google Scholar 

  • Weyman, G. S., Jepson, P. C., & Sunderland, K. D. (1995). Do seasonal changes in numbers of aerially dispersing spiders reflect population density on the ground or variation in ballooning motivation? Oecologia, 101, 487–493.

    Article  CAS  PubMed  Google Scholar 

  • Whitcomb, W. H. (1980). Sampling spiders in soybean fields. In M. Kogan, & D. C. Herzog (Eds.), Sampling methods in soybean entomology (pp. 544–558). Springer-Verlag.

    Chapter  Google Scholar 

  • Whitcomb, W. H., & Bell, K. (1964). Predaceous insects, spiders, and mites of Arkansas cotton fields. University of Arkansas, Agricultural Experiment Station Bulletin, 690, 1–84.

    Google Scholar 

  • White, A. J., Wratten, S. D., Berry, N. A., & Weigmann, U. (1995). Habitat manipulation to enhance biological control of Brassica pests by hover flies. Journal of Economic Entomology, 88, 1171–1176.

    Article  Google Scholar 

  • White, G. C., Anderson, D. R., Burnham, K. P., & Otis, D. L. (1982). Capture-recapture and removal methods. Los Alamos National Laboratory.

    Google Scholar 

  • White, J. A., Richards, N. K., Laugraud, A., Saeed, A., Curry, M. M., & McNeill, M. R. (2015). Endosymbiotic candidates for parasitoid defense in exotic and native New Zealand weevils. Microbial Ecology, 70, 274–286.

    Article  PubMed  Google Scholar 

  • Whitfield, J. B., & Cameron, S. A. (1998). Hierarchical analysis of variation in the mitochondrial 16S rRNA gene among Hymenoptera. Molecular Biology and Evolution, 15, 1728–1743.

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson, J. D., Schmidt, G. T., & Biever, K. D. (1980). Comparative efficiency of sticky and water traps for sampling beneficial arthropods in red clover and the attraction of clover head caterpillar adults to anisyl acetone. Journal of the Georgia Entomological Society, 15, 124–131.

    Google Scholar 

  • Williams, D. D., & Feltmate, B. W. (1992). Aquatic insects. CAB International.

    Google Scholar 

  • Williams, G. (1958). Mechanical time-sorting of pitfall captures. Journal of Animal Ecology, 27, 27–35.

    Article  Google Scholar 

  • Williams, R. J., & Martinez, N. D. (2000). Simple rules yield complex food webs. Nature, 404, 180–183.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, L. T., & Gutierrez, A. P. (1980). Within-plant distribution of predators on cotton: Comments on sampling and predator efficiences. Hilgardia, 48, 1–11.

    Article  Google Scholar 

  • Winder, L., Hirst, D. J., Carter, N., Wratten, S. D., & Sopp, P. I. (1994). Estimating predation of the grain aphid Sitobion avenae by polyphagous predators. Journal of Applied Ecology, 31, 1–12.

    Article  Google Scholar 

  • Winder, L., Holland, J. M., Perry, J. N., Woolley, C., & Alexander, C. J. (2001). The use of barriered pitfall trapping for sampling beetles and spiders. Entomologia Experimentalis et Applicata, 98, 249–258.

    Article  Google Scholar 

  • Wirta, H. K., Hebert, P. D., Kaartinen, R., Prosser, S. W., Várkonyi, G., & Roslin, T. (2014). Complementary molecular information changes our perception of food web structure. Proceedings of the National Academy of Sciences USA, 111, 1885–1890.

    Article  CAS  Google Scholar 

  • Wolz, J. M., & Landis, D. A. (2014). Comparison of sampling methods of Aphis glycines predators across the diel cycle. Journal of Applied Entomology, 138, 475–484.

    Article  Google Scholar 

  • Woodcock, B. A. (2005). Pitfall trapping in ecological studies. In S. R. Leather (Ed.), Insect sampling in forest ecosystems (pp. 37–57). Blackwell Publishing.

    Chapter  Google Scholar 

  • Woodward, G., & Hildrew, A. G. (2001). Invasion of a stream food web by a new top predator. Journal of Animal Ecology, 70, 273–288.

    Article  Google Scholar 

  • Woodward, G., & Hildrew, A. G. (2002). Body-size determinants of niche overlap and intraguild predation within a complex food web. Journal of Animal Ecology, 71, 1063–1074.

    Article  Google Scholar 

  • Wool, D., van Emden, H. F., & Bunting, S. D. (1978). Electrophoretic detection of the internal parasite Aphidius matricariae in Myzus persicae. Annals of Applied Biology, 90, 21–26.

    Article  Google Scholar 

  • Work, T. T., Buddle, C. M., Korinus, L. M., & Spence, J. R. (2002). Pitfall trap size and capture of three taxa of litter-dwelling arthropods: Implications for biodiversity studies. Environmental Entomology, 31, 438–448.

    Article  Google Scholar 

  • Workman, C. (1978). Life cycle and population dynamics of Trochosa terricola Thorell (Araneae: Lycosidae) in a Norfolk grass heath. Ecological Entomology, 3, 329–340.

    Article  Google Scholar 

  • Wratten, S. D. (1994). Video techniques in animal ecology and behaviour. Chapman and Hall.

    Book  Google Scholar 

  • Wratten, S. D., Bowie, M. H., Hickman, J. M., Evans, A. M., Sedcole, J. R., & Tylianakis, J. M. (2003). Field boundaries as barriers to movement of hover flies (Diptera: Syrphidae) in cultivated land. Oecologia, 134, 605–611.

    Article  PubMed  Google Scholar 

  • Wratten, S. D., White, A. J., Bowie, M. H., Berry, N. A., & Weigmann, U. (1995). Phenology and ecology of hoverflies (Diptera: Syrphidae) in New Zealand. Environmental Entomology, 24, 595–600.

    Article  Google Scholar 

  • Wright, A. F., & Stewart, A. J. A. (1992). A study of the efficacy of a new inexpensive type of suction apparatus in quantitative sampling of grassland invertebrate populations. Bulletin of the British Ecological Society, 23, 116–120.

    Google Scholar 

  • Wyss, E. (1995). The effects of weed strips on aphids and aphidophagous predators in an apple orchard. Entomologia Experimentalis et Applicata, 75, 43–49.

    Article  Google Scholar 

  • Xie, J., Butler, S., Sanchez, G., & Mateos, M. (2014). Male killing Spiroplasma protects Drosophila melanogaster against two parasitoid wasps. Heredity, 112, 399–408.

    Article  CAS  PubMed  Google Scholar 

  • Xie, J. L., Vilchez, I., & Mateos, M. (2010). Spiroplasma bacteria enhance survival of Drosophila hydei attacked by the parasitic wasp Leptopilina heterotoma. PLoS ONE, 5, e12149.

    Google Scholar 

  • Xu, P. J., Liu, Y. Q., Graham, R. I., Wilson, K., & Wu, K. M. (2014). Densovirus is a mutualistic symbiont of a global crop pest (Helicoverpa armigera) and protects against a baculovirus and Bt biopesticide. PLoS Pathogens, 10, e1004490.

    Google Scholar 

  • Yahiro, K. (1997). Ground beetles (Coleoptera, Caraboidea) caught by a light trap during ten years. Esakia, 37, 57–69.

    Article  Google Scholar 

  • Yamaguchi, T., & Hasegawa, M. (1996). An experiment on ant predation in soil using a new bait trap method. Ecological Research, 11, 11–16.

    Article  Google Scholar 

  • Ye, Z., Vollhardt, I. M. G., Girtler, S., Wallinger, C., Tomanovic, Z., & Traugott, M. (2017). An effective molecular approach for assessing cereal aphid-parasitoid-endosymbiont networks. Scientific Reports, 7, 3138.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeargan, K. V., & Cothran, W. R. (1974). An escape barrier for improved suction sampling of Pardosa ramulosa and Nabis spp. populations in alfalfa. Environmental Entomology, 3, 189–191.

    Article  Google Scholar 

  • Yen, J. H., & Barr, A. R. (1971). New hypothesis of cause of cytoplasmic incompatibility in Culex pipiens L. Nature, 232, 657–658.

    Article  CAS  PubMed  Google Scholar 

  • Yen, J. H., & Barr, A. R. (1973). Etiological agent of cytoplasmic incompatibility in Culex pipiens. Journal of Invertebrate Pathology, 22, 242–250.

    Article  CAS  PubMed  Google Scholar 

  • Yodzis, P., & Winemiller, K. O. (1999). In search of operational trophospecies in a tropical aquatic food web. Oikos, 87, 327–340.

    Article  Google Scholar 

  • Young, L. J., & Young, J. (2013). Statistical ecology. Springer.

    Google Scholar 

  • Young, O. P., & Hamm, J. J. (1986). Rate of food passage and fecal production in Calosoma sayi (Coleoptera: Carabidae). Entomological News, 97, 21–27.

    Google Scholar 

  • Yusuf, M., & Turner, B. (2004). Characterisation of Wolbachia-like bacteria isolated from the parthenogenetic stored-product pest psocid Liposcelis bostrychophila (Badonnel) (Psocoptera). Journal of Stored Products Research, 40, 207–225.

    Article  Google Scholar 

  • Zabalou, S., Riegler, M., Theodorakopoulou, M., Stauffer, C., Savakis, C., & Bourtzis, K. (2004). Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. Proceedings of the National Academy of Sciences USA, 101, 15042–15045.

    Google Scholar 

  • Zaidi, R. H., Jaal, Z., Hawkes, N. J., Hemingway, J., & Symondson, W. O. C. (1999). Can the detection of prey DNA amongst the gut contents of invertebrate predators provide a new technique for quantifying predation in the field? Molecular Ecology, 8, 2081–2088.

    Article  CAS  PubMed  Google Scholar 

  • Zchori-Fein, E., & Bourtzis, K. (Eds.). (2011). Manipulative tenants: Bacteria associated with arthropods. CRC press.

    Google Scholar 

  • Zchori-Fein, E., Gottlieb, Y., Kelly, S. E., Brown, J. K., Wilson, J. M., Karr, T. L., & Hunter, M. S. (2001). A newly discovered bacterium associated with parthenogenesis and a change in host selection behavior in parasitoid wasps. Proceedings of the National Academy of Sciences USA, 98, 12555–12560.

    Google Scholar 

  • Zchori-Fein, E., & Perlman, S. J. (2004). Distribution of the bacterial symbiont Cardinium in arthropods. Molecular Ecology, 13, 2009–2016.

    Google Scholar 

  • Zchori-Fein, E., Perlman, S. J., Kelly, S. E., Katzir, N., & Hunter, M. S. (2004). Characterization of a ‘Bacteroidetes’ symbiont in Encarsia wasps (Hymenoptera: Aphelinidae): Proposal of Candidatus Cardinium hertigii. International Journal of Systematic and Evolutionary Microbiology, 54, 961–968.

    Google Scholar 

  • Zenger, J. T., & Gibb, T. J. (2001). Identification and impact of egg predators of Cyclocephala lurida and Popillia japonica (Coleoptera: Scarabaeidae) in turfgrass. Environmental Entomology, 30, 425–430.

    Article  Google Scholar 

  • Zentane, E., Quenu, H., Graham, R. I., & Cherrill, A. (2016). Suction samplers for grassland invertebrates: Comparison of numbers caught using Vortis™and G-vac devices. Insect Conservation and Diversity, 9, 470–474.

    Article  Google Scholar 

  • Zhang, Y. M., Bass, A. I., Fernández, D. C., Sharanowski, B. J. (2018). Habitat or temporal isolation: Unraveling herbivore–parasitoid speciation patterns using double digest RADseq. Ecology and Evolution, 8, 9803–9816.

    Google Scholar 

  • Zhang, J., Drummond, F. A., Liebman, M., & Hartke, A. (1997). Phenology and dispersal of Harpalus rufipes DeGeer (Coleoptera: Carabidae) in agroecosystems in Maine. Journal of Agricultural Entomology, 14, 171–186.

    Google Scholar 

  • Zhang, L. H., Yun, Y. L., Hu, G. W., & Peng, Y. (2018). Insights into the bacterial symbiont diversity in spiders. Ecology and Evolution, 8, 4899–4906.

    Google Scholar 

  • Zhou, X., Carter, N., & Powell, W. (1994). Seasonal distribution and aerial movement of adult coccinellids on farmland. Biocontrol Science and Technology, 4, 167–175.

    Google Scholar 

  • Zhu, Y. C., Burd, J. D., Elliott, N. C., & Greenstone, M. H. (2000). Specific ribosomal DNA marker for early PCR detection of Aphelinus hordei (Hymenoptera: Aphelinidae) and Aphidius colemani (Hymenoptera: Aphidiidae) from Diuraphis noxia (Homoptera: Aphididae). Annals of the Entomological Society of America, 93, 486–491.

    Google Scholar 

  • Zhu, Y. C., & Greenstone, M. H. (1999). Polymerase chain reaction techniques for distinguishing three species and two strains of Aphelinus (Hymenoptera: Aphelinidae) from Diuraphis noxia and Schizaphis graminum (Homoptera: Aphididae). Annals of the Entomological Society of America, 92, 71–79.

    Google Scholar 

  • Zmihorski, M., Sienkiewicz, P., & Tryjanowski, P. (2013). Neverending story: A lesson in using sampling efficieny methods with ground beetles. Journal of Insect Conservation, 17, 333–337.

    Google Scholar 

  • Zou, Y., de Kraker, J., Bianchi, F. J. J. A., van Telgen, M. D., Xiao, H., & van der Werf, W. (2017). Video monitoring of brown planthopper predation in rice shows flaws of sentinel methods. Scientific Reports, 7, 42210.

    Google Scholar 

  • Zug, R., & Hammerstein, P. (2012). Still a host of hosts for Wolbachia: Analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS ONE, 7, e38544.

    Google Scholar 

  • Zug, R., & Hammerstein, P. (2015). Bad guys turned nice? A critical assessment of Wolbachia mutualisms in arthropod hosts. Biological Reviews, 90, 89–111.

    Google Scholar 

  • Zwölfer, H. (1971). The structure and effect of parasite complexes attacking phytophagous host insects. In P. J. den Boer, & G. R. Gradwell (Eds.), Dynamics of populations. Proceedings of the Advanced Study Institute on ‘Dynamics of Numbers in Populations’, Oosterbeck (pp. 405–418). Centre for Agricultural Publishing and Documentation.

    Google Scholar 

Download references

Acknowledgements

We dedicate this chapter to the memory of our co-author Simon Leather, who passed away after the writing of this updated chapter for the third edition was completed. We wish to thank: Mark Walton for contributions to several sections, Brad Hawkins for sharing his thoughts concerning parasitoid communities, Mike Solomon for some mite technique references, Ian Hardy for editorial work and contributions to the food webs section, Eric Wajnberg for editorial suggestions, Hugh Loxdale, Nigel Stork and Anja Steenkiste for providing photographic material, Jan Cawley and Vyv Williams for photographic assistance, and the HRI Library staff for tracing publications. KDS and WP gratefully acknowledge funding by the UK Department for Environment, Food and Rural Affairs. SP acknowledges funding support from the Natural Sciences and Engineering Research Council of Canada (Discovery Grant Program), and the Swiss National Science Foundation (Sinergia program). PKA acknowledges funding support from Agriculture and Agri-Food Canada (A-BASE #2955).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul K. Abram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sunderland, K.D., Powell, W., Symondson, W.O.C., Leather, S.R., Perlman, S.J., Abram, P.K. (2023). Populations and Communities. In: Hardy, I.C., Wajnberg, E. (eds) Jervis's Insects as Natural Enemies: Practical Perspectives. Springer, Cham. https://doi.org/10.1007/978-3-031-23880-2_6

Download citation

Publish with us

Policies and ethics