Skip to main content
Log in

Conditional fitness benefits of the Rickettsia bacterial symbiont in an insect pest

  • Plant-microbe-animal interactions - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Inherited bacterial symbionts are common in arthropods and can have strong effects on the biology of their hosts. These effects are often mediated by host ecology. The Rickettsia symbiont can provide strong fitness benefits to its insect host, Bemisia tabaci, under laboratory and field conditions. However, the frequency of the symbiont is heterogeneous among field collection sites across the USA, suggesting that the benefits of the symbiont are contingent on additional factors. In two whitefly genetic lines collected from the same location, we tested the effect of Rickettsia on whitefly survival after heat shock, on whitefly competitiveness at different temperatures, and on whitefly competitiveness at different starting frequencies of Rickettsia. Rickettsia did not provide protection against heat shock nor affect the competitiveness of whiteflies at different temperatures or starting frequencies. However, there was a strong interaction between Rickettsia infection and whitefly genetic line. Performance measures indicated that Rickettsia was associated with significant female bias in both whitefly genetic lines, but in the second whitefly genetic line it conferred no significant fitness benefits nor conferred any competitive advantage to its host over uninfected whiteflies in population cages. These results help to explain other reports of variation in the phenotype of the symbiosis. Furthermore, they demonstrate the complex nature of these close symbiotic associations and the need to consider these interactions in the context of host population structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Asiimwe P, Kelly SE, Hunter MS (2014) Symbiont infection affects whitefly dynamics in the field. Basic Appl Ecol 15:507–515. doi:10.1016/j.baae.2014.08.005

    Article  Google Scholar 

  • Bordenstein SR, Uy JJ, Werren JH (2003) Host genotype determines cytoplasmic incompatibility type in the haplodiploid genus Nasonia. Genetics 164:223–233

    PubMed  PubMed Central  CAS  Google Scholar 

  • Boyle L, O’Neill SL, Robertson HM, Karr TL (1993) Interspecific and intraspecific horizontal transfer of Wolbachia in Drosophila. Science 260:1796–1799

    Article  PubMed  CAS  Google Scholar 

  • Brelsfoard CL, Séchan Y, Dobson SL (2008) Interspecific hybridization yields strategy for South Pacific filariasis vector elimination. PLoS Negl Trop Dis 2:e129. doi:10.1371/journal.pntd.0000129

  • Bronstein JL (1994) Conditional outcomes in mutualistic interactions. Trends Ecol Evol 9:214–217. doi:10.1016/0169-5347(94)90246-1

    Article  PubMed  CAS  Google Scholar 

  • Brown PW (1998) A model to estimate cotton canopy temperature in the desert southwest. In: Proc Beltwide Cotton Conf, San Diego, CA, USA, 5–9 Jan 1998

  • Brumin M, Kontsedalov S, Ghanim M (2011) Rickettsia influences thermotolerance in the whitefly Bemisia tabaci B biotype. Insect Sci 18:57–66. doi:10.1111/j.1744-7917.2010.01396.x

    Article  Google Scholar 

  • Burke GR, McLaughlin HJ, Simon JC, Moran NA (2010) Dynamics of a recurrent Buchnera mutation that affects thermal tolerance of pea aphid hosts. Genetics 186:367–372. doi:10.1534/genetics.110.117440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Butler GD, Henneberry TJ, Clayton TE (1983) Bemisia tabaci (Homoptera, Aleyrodidae)—development, oviposition, and longevity in relation to temperature. Ann Entomol Soc Am 76:310–313. doi:10.1093/aesa/76.2.310

    Article  Google Scholar 

  • Caspi-Fluger A, Inbar M, Mozes-Daube N, Katzir N, Portnoy V, Belausov E, Hunter MS, Zchori-Fein E (2012) Horizontal transmission of the insect symbiont Rickettsia is plant-mediated. Proc Biol Sci 279:1791–1796. doi:10.1098/rspb.2011.2095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cass BN, Yallouz R, Bondy EC, Mozes-Daube N, Horowitz AR, Kelly SE, Zchori-Fein E, Hunter MS (2015) Dynamics of the endosymbiont Rickettsia in an insect pest. Microb Ecol 70:287–297. doi: 10.1007/s00248-015-0565-z

  • Chen D-Q, Montllor CB, Purcell AH (2000) Fitness effects of two facultative endosymbiotic bacteria on the pea aphid Acyrthosiphon pisum, and the blue alfalfa aphid, A. kondoi. Entomol Exp Appl 95:315–323. doi:10.1023/A:1004083324807

    Article  Google Scholar 

  • Chiel E, Inbar M, Mozes-Daube N, White JA, Hunter MS, Zchori-Fein E (2009) Assessments of fitness effects by the facultative symbiont Rickettsia in the sweetpotato whitefly (Hemiptera: Aleyrodidae). Ann Entomol Soc Am 102:413–418. doi:10.1603/008.102.0309

    Article  Google Scholar 

  • De Barro PJ, Liu SS, Boykin LM, Dinsdale AB (2011) Bemisia tabaci: a statement of species status. Annu Rev Entomol 56:1–19. doi:10.1146/annurev-ento-112408-085504

    Article  PubMed  CAS  Google Scholar 

  • Dinsdale A, Cook L, Riginos C, Buckley YM, De Barro P (2010) Refined global analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) mitochondrial cytochrome oxidase 1 to identify species level genetic boundaries. Ann Entomol Soc Am 103:196–208. doi:10.1603/AN09061

  • Drost YC, van Lenteren JC, van Roermund HJW (1998) Life-history parameters of different biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae) in relation to temperature and host plant: a selective review. Bull Entomol Res 88:219–229

    Article  Google Scholar 

  • Fan Y, Wernegreen JJ (2013) Can’t take the heat: high temperature depletes bacterial endosymbionts of ants. Microb Ecol 66:727–733. doi:10.1007/s00248-013-0264-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferrari J, Scarborough CL, Godfray HCJ (2007) Genetic variation in the effect of a facultative symbiont on host-plant use by pea aphids. Oecologia 153:323–329. doi:10.1007/s00442-007-0730-2

    Article  PubMed  Google Scholar 

  • Fujii Y, Kageyama D, Hoshizaki S, Ishikawa H, Sasaki T (2001) Transfection of Wolbachia in Lepidoptera: the feminizer of the adzuki bean borer Ostrinia scapulalis causes male killing in the Mediterranean flour moth Ephestia kuehniella. Proc Biol Sci 268:855–859. doi:10.1098/rspb.2001.1593

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gottlieb Y, Ghanim M, Chiel E, Gerling D, Portnoy V, Steinberg S, Tzuri G, Horowitz AR, Belausov E, Mozes-Daube N, Kontsedalov S, Gershon M, Gal S, Katzir N, Zchori-Fein E (2006) Identification and localization of a Rickettsia sp. in Bemisia tabaci (Homoptera: Aleyrodidae). Appl Environ Microbiol 72:3646–3652. doi:10.1128/AEM.72.5.3646-3652.2006

  • Guo JY, Cong L, Wan FH (2012) Multiple generation effects of high temperature on the development and fecundity of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) biotype B. Insect Sci 20:541–549. doi:10.1111/j.1744-7917.2012.01546.x

    Article  PubMed  Google Scholar 

  • Hammer TJ, Bowers MD (2015) Gut microbes may facilitate insect herbivory of chemically defended plants. Oecologia 179:1–14. doi:10.1007/s00442-015-3327-1

  • Harris LR, Kelly SE, Hunter MS, Perlman SJ (2009) Population dynamics and rapid spread of Cardinium, a bacterial endosymbiont causing cytoplasmic incompatibility in Encarsia pergandiella (Hymenoptera: Aphelinidae). Heredity 104:239–246. doi:10.1038/hdy.2009.130

    Article  PubMed  Google Scholar 

  • Hedges LM, Brownlie JC, O’Neill SL, Johnson KN (2008) Wolbachia and virus protection in insects. Science 322:702. doi:10.1126/science.1162418

    Article  PubMed  CAS  Google Scholar 

  • Henderson CF, Tilton EW (1955) Tests with acaricides against the brow wheat mite. J Econ Entomol 48:157–161

    Article  CAS  Google Scholar 

  • Hendry TA, Hunter MS, Baltrus DA (2014) The facultative symbiont Rickettsia protects an invasive whitefly against entomopathogenic Pseudomonas syringae strains. Appl Environ Microbiol 80:7161–7168. doi:10.1128/AEM.02447-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Himler AG, Adachi-Hagimori T, Bergen JE, Kozuch A, Kelly SE, Tabashnik BE, Chiel E, Duckworth VE, Dennehy TJ, Zchori-Fein E, Hunter MS (2011) Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias. Science 332:254–256. doi:10.1126/science.1199410

    Article  PubMed  CAS  Google Scholar 

  • Hussa EA, Goodrich-Blair H (2013) It takes a village: ecological and fitness impacts of multipartite mutualism. Annu Rev Microbiol 67:161–178. doi:10.1146/annurev-micro-092412-155723

    Article  PubMed  CAS  Google Scholar 

  • Jaenike J, Unckless R, Cockburn SN, Boelio LM, Perlman SJ (2010) Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont. Science 329:212–215. doi:10.1126/science.1188235

    Article  PubMed  CAS  Google Scholar 

  • Jia FX, Yang MS, Yang WJ, Wang JJ (2009) Influence of continuous high temperature conditions on Wolbachia infection frequency and the fitness of Liposcelis tricolor (Psocoptera: Liposcelididae). Environ Entomol 38:1365–1372

    Article  PubMed  Google Scholar 

  • Kiers ET, Palmer TM, Ives AR, Bruno JF, Bronstein JL (2010) Mutualisms in a changing world: an evolutionary perspective. Ecol Lett 13:1459–1474. doi:10.1111/j.1461-0248.2010.01538.x

    Article  Google Scholar 

  • Kondo N, Shimada M, Fukatsu T (2005) Infection density of Wolbachia endosymbiont affected by co-infection and host genotype. Biol Lett 1:488–491

    Article  PubMed  PubMed Central  Google Scholar 

  • Kontsedalov S, Zchori-Fein E, Chiel E, Gottlieb Y, Inbar M, Ghanim M (2008) The presence of Rickettsia is associated with increased susceptibility of Bemisia tabaci (Homoptera: Aleyrodidae) to insecticides. Pest Manag Sci 64:789–792. doi:10.1002/ps.1595

    Article  PubMed  CAS  Google Scholar 

  • Lukasik P, Guo H, van Asch M, Ferrari J, Godfray HC (2013) Protection against a fungal pathogen conferred by the aphid facultative endosymbionts Rickettsia and Spiroplasma is expressed in multiple host genotypes and species and is not influenced by co-infection with another symbiont. J Evol Biol 26:2654–2661. doi:10.1111/jeb.12260

    Article  PubMed  CAS  Google Scholar 

  • Mahadav A, Kontsedalov S, Czosnek H, Ghanim M (2009) Thermotolerance and gene expression following heat stress in the whitefly Bemisia tabaci B and Q biotypes. Insect Biochem Mol Biol 39:668–676. doi:10.1016/j.ibmb.2009.08.002

    Article  PubMed  CAS  Google Scholar 

  • McGraw EA, Merritt DJ, Droller JN, O’Neill SL (2001) Wolbachia-mediated sperm modification is dependent on the host genotype in Drosophila. Proc Biol Sci 268:2565–2570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Montllor C, Maxmen A, Purcell A (2002) Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol Entomol 27:189–195

    Article  Google Scholar 

  • Morag N, Klement E, Saroya Y, Lensky I, Gottlieb Y (2012) Prevalence of the symbiont Cardinium in Culicoides (Diptera: Ceratopogonidae) vector species is associated with land surface temperature. FASEB J 26:4025–4034. doi:10.1096/fj.12-21041

    Article  PubMed  CAS  Google Scholar 

  • Muniz M, Nombela G (2001) Differential variation in development of the B- and Q-biotypes of Bemisia tabaci (Homoptera: Aleyrodidae) on sweet pepper at constant temperatures. Environ Entomol 30:720–727

    Article  Google Scholar 

  • Naranjo SE, Ellsworth PC (2009) Fifty years of the integrated control concept: moving the model and implementation forward in Arizona. Pest Manag Sci 65:1267–1286. doi:10.1002/ps.1861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nava-Camberos U, Riley DG, Harris MK (2001) Temperature and host plant effects on development, survival and fecundity of Bemisia argentifolii (Homoptera: Aleyrodidae). Environ Entomol 30:55–63. doi:10.1603/0046-225X-30.1.55

    Article  Google Scholar 

  • Normark BB, Ross L (2014) Genetic conflict, kin and the origins of novel genetic systems. Philos Trans R Soc B 369:20130364. doi:10.1098/rstb.2013.0364

    Article  Google Scholar 

  • Oliveira MRV, Henneberry TJ, Anderson P (2001) History, current status, and collaborative research projects for Bemisia tabaci. Crop Prot 20:709–723. doi:10.1016/S0261-2194(01)00108-9

    Article  Google Scholar 

  • Oliver KM, Russell JA, Moran NA, Hunter MS (2003) Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci USA 100:1803–1807. doi:10.1073/pnas.0335320100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oliver KM, Moran NA, Hunter MS (2005) Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proc Natl Acad Sci USA 102:12795–12800. doi:10.1073/pnas.0506131102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oliver KM, Campos J, Moran NA, Hunter MS (2008) Population dynamics of defensive symbionts in aphids. Proc Biol Sci 275:293–299

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliver KM, Smith AH, Russell JA (2014) Defensive symbiosis in the real world—advancing ecological studies of heritable, protective bacteria in aphids and beyond. Funct Ecol 28:341–355. doi:10.1111/1365-2435.12133

    Article  Google Scholar 

  • Policastro PF, Munderloh UG, Fischer ER, Hackstadt T (1997) Rickettsia rickettsii growth and temperature-inducible protein expression in embryonic tick cell lines. J Med Microbiol 46:839–845

    Article  PubMed  CAS  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  • Rigaud T, Juchault P, Mocquard JP (1991) Experimental study of temperature effects on the sex ratio of broods in terrestrial crustacea Armadillidium vulgare Latr. Possible implications in natural populations. J Evol Biol 4:603–617. doi:10.1046/j.1420-9101

    Article  Google Scholar 

  • Russell JA, Moran NA (2006) Costs and benefits of symbiont infection in aphids: variation among symbionts and across temperatures. Proc R Soc B 273:603–610. doi:10.1098/rspb.2005.3348

    Article  PubMed  PubMed Central  Google Scholar 

  • Scarborough CL, Ferrari J, Godfray HC (2005) Aphid protected from pathogen by endosymbiont. Science 310:1781. doi:10.1126/science.1120180

    Article  PubMed  CAS  Google Scholar 

  • Shan HW, Lu YH, Bing XL, Liu SS, Liu YQ (2014) Differential responses of the whitefly Bemisia tabaci symbionts to unfavorable low and high temperatures. Microb Ecol 68:472–482. doi:10.1007/s00248-014-0424-3

    Article  PubMed  Google Scholar 

  • Sloan DB, Moran NA (2012) Endosymbiotic bacteria as a source of carotenoids in whiteflies. Biol Lett 8:986–989. doi:10.1098/rsbl.2012.0664

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Teixeira L, Ferreira A, Ashburner M (2008) The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol 6:2753–2763. doi:10.1371/journal.pbio.1000002

    Article  CAS  Google Scholar 

  • Thompson JN (1997) Evaluating the dynamics of coevolution among geographically structured populations. Ecology 78:1619–1623

    Article  Google Scholar 

  • Wagner T (1995) Temperature-dependent development, mortality and adult size of sweetpotato whitefly biotype B (Homoptera: Aleyrodidae) on cotton. Environ Entomol 24:1179–1188

    Article  Google Scholar 

  • Wagner SM, Martinez AJ, Ruan YM, Kim KL, Lenhart PA, Dehnel AC, Oliver KM, White JA (2015) Facultative endosymbionts mediate dietary breadth in a polyphagous herbivore. Funct Ecol. doi:10.1111/1365-2435.12459

    Google Scholar 

  • Wang K, Tsai JH (1996) Temperature effect on development and reproduction of silverleaf whitefly (Homoptera: Aleyrodidae). Ann Entomol Soc Am 89:375–384. doi:10.1093/aesa/89.3.375

    Article  Google Scholar 

  • Wernegreen JJ (2012) Mutualism meltdown in insects: bacteria constrain thermal adaptation. Curr Opin Microbiol 15:255–262. doi:10.1016/j.mib.2012.02.001

    Article  PubMed  PubMed Central  Google Scholar 

  • Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6:741–751. doi:10.1038/nrmicro1969

    Article  PubMed  CAS  Google Scholar 

  • Wiwatanaratanabutr I, Kittayapong P (2009) Effects of crowding and temperature on Wolbachia infection density among life cycle stages of Aedes albopictus. J Invertebr Pathol 102:220–224. doi:10.1016/j.jip.2009.08.009

    Article  PubMed  Google Scholar 

  • Xi Z, Khoo CC, Dobson SL (2005) Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science 310:326–328. doi:10.1126/science.1117607

    Article  PubMed  CAS  Google Scholar 

  • Xie J, Butler S, Sanchez G, Mateos M (2014) Male killing Spiroplasma protects Drosophila melanogaster against two parasitoid wasps. Heredity 112:399–408. doi:10.1038/hdy.2013.118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang T-C, Chi H (2006) Life tables and development of Bemisia argentifolii (Homoptera: Aleyrodidae) at different temperatures. J Econ Entomol 99:691–698. doi:10.1603/0022-0493-99.3.691

    Article  PubMed  Google Scholar 

  • Zchori-Fein E, Lahav T, Freilich S (2014) Variations in the identity and complexity of endosymbiont combinations in whitefly hosts. Front Microbiol 5:310. doi:10.3389/fmicb.2014.00310

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by the United States Department of Agriculture AFRI grant 2010-03752 to MSH, research Grant No. US-4304-10 R from the United States–Israel Binational Agricultural Research and Development Fund (to MSH and Einat Zchori-Fein), National Science Foundation Grants DEB-1020460 (to MSH and AGH) and IOS-1256905 (to MSH and Stephan Schmitz-Esser), a National Institutes of Health training grant 1K 12 GM00708 (to AGH), and a Center for Insect Science Research Award (to BNC). We thank Nick Dowdy, Brennan Zehr, Jimmy Conway, and Ling Zhong for help with the experimental setup and whitefly rearing, and Mohammad Torabi for statistical advice.

Author contribution statement

BNC, AGH, and MSH conceived and designed the experiments. BNC, AGH, ECB, JEB, SEK, and SKF performed the experiments. BNC, AGH, ECB, and MSH analyzed the data. BNC, AGH, and MSH wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha S. Hunter.

Additional information

Communicated by Caroline Müller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cass, B.N., Himler, A.G., Bondy, E.C. et al. Conditional fitness benefits of the Rickettsia bacterial symbiont in an insect pest. Oecologia 180, 169–179 (2016). https://doi.org/10.1007/s00442-015-3436-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-015-3436-x

Keywords

Navigation