Skip to main content
Log in

Allocation of pederin during lifetime ofPaederus rove beetles (Coleoptera: Staphylinidae): Evidence for polymorphism of hemolymph toxin

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Pederin, a hemolymph toxin found in the rove beetle genusPaederus, is quantified in individual specimens ofP. fuscipes andP. riparius. Whereas males always contain only small quantities of the toxin (0.1–1.5 µg), females are not so restricted (0.2–20.5 µg) and in most cases possess roughly 10-fold that in males. There are, however, females containing as little pederin as the males, and so two clearly separate groups of females can be discerned. These two groups hint at two types of females defined by the eggs they lay. About 85% of the females, i.e., those containing much of the substance, transfer pederin into every egg and thus are denoted (+)-females. The remaining 15%, the (−)-females, contain at best small amounts of the toxin, which is transferred in minute quantities into the first eggs while the subsequent ones lack pederin. With respect to the pederin content of their eggs, there is no overlap between these two types of females. If fed with pederin, (−)-females can transfer it into the eggs like (+)-females. After hatching the larvae store pederin when present. Larvae are not able to biosynthesize the toxin on their own, but storage of that received in the egg is very efficient, and the difference between larvae with and without pederin is preserved until imaginal eclosion. In (+)-females, pederin increases, probably reflecting a biosynthetic capacity, but in males and presumptive (−)-females the amount of pederin never exceeds the quantity transferred by parental (+)-females. Consequently, males and (−)-females probably are unable to biosynthesize pederin. This polymorphism of females may have a genetic basis. Individuals of all stages nevertheless sequester pederin if it is supplied with the diet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blum, M.S. 1981. Chemical Defenses of Arthropods. Academic Press, New York.

    Google Scholar 

  • Cardani, C., Ghiringhelli, D., Mondelli, R., Pavan, M., andQuilico, A. 1965a. Propriétés biologiques et composition chimique de la pédérine.Ann. Soc. Entomol. Fr. 1:813–816.

    Google Scholar 

  • Cardani, C., Ghiringhelli, D., Mondelli, R., andQuilico, A. 1965b. The structure of pederin.Tetrahedron Lett. 29:2537–2545.

    Google Scholar 

  • Cardani, C., Ghiringhelli, D., Mondelli, R., andQuilico, A. 1966. Struttura della pederina.Gazz. Chim. Ital. 96:3–38.

    Google Scholar 

  • Cardani, C., Ghiringhelli, D., Quilico, A., andSelva, A. 1967. The structure of pederone, a novel substance fromPaederus (Coleoptera Staphylinidae).Tetrahedron Lett. 41:4023–4025.

    Google Scholar 

  • Cardani, C., Fuganti, C., Ghiringhelli, D., Grasselli, P., Pavan, M., andValcurone, M.D. 1973. The biosynthesis of pederin.Tetrahedron Lett. 30:2815–2818.

    Google Scholar 

  • Carrel, J.E., McCairel, M.H., Slagle, A.J., Doom, J.P., Brill, J., andMcCormick, J.P. 1993. Cantharidin production in a blister beetle.Experientia 49:171–174.

    PubMed  Google Scholar 

  • Dettner, K. 1993. Defensive secretions and exocrine glands in free-living staphylinid beetles—their bearing on phylogeny (Coleoptera: Staphylinidae).Biochem. Syst. Ecol. 21:143–162.

    Google Scholar 

  • Dirzo, R., andHarper, J.L. 1982. Experimental studies on slug-plant interactions. IV. The performance of cyanogenic and acyanogenic morphs ofTrifolium repens in the field.J. Ecol. 70:119–138.

    Google Scholar 

  • Frank, J.H., andKanamitsu, K. 1987.Paederus, sensu lato (Coleoptera: Staphylinidae): Natural history and medical importance.J. Med. Entomol. 24:155–191.

    PubMed  Google Scholar 

  • Holz, C., Streil, G., Dettner, K., Dutemeyer, J., andBoland, W. 1994. Intersexual transfer of a toxic terpenoid during copulation and its paternal allocation to developmental stages: Quantification of cantharidin in cantharidin-producing oedemerids (Coleoptera: Oedemeridae) and canthariphilous pyrochroids (Coleoptera: Pyrochroidae).Z. Naturforsch. 49c:856–864.

    Google Scholar 

  • Horion, A. 1965. Staphylinidae Teil 2: Paederinae, pp. 1–84,in Faunistik der mitteleuropäischen Käfer, Vol. 10. Klostermann. Frankfurt a. M.

  • Ito, Y. 1934. Zur Kenntnis desPaederus-Giftes und der Dermatitis linearis. (IV. Mitteilung).Fukuoka Acta Med. 27:58–59.

    Google Scholar 

  • Jones, D.A. 1972. Cyanogenic glycosides and their function, pp. 103–124,in J.B. Harborne (ed.). Phytochemical Ecology. Annual Proceedings of the Phytochemical Society. No. 8. Academic Press, London.

    Google Scholar 

  • Jork, H., Funk, W., Fischer, W., andWimmer, H. 1989. Physikalische und chemische Nachweismethoden: Grundlagen, Reagenzien I, Vol. la of Dünnschicht-Chromatographic, Reagenzien und Nachweismethoden. VCH Verlagsgesellschaft, Weinheim.

    Google Scholar 

  • Kurosa, K. 1958. Studies on the life history ofPaederus fuscipes Curtis (Staphylinidae) (Studies on poisonous beetle, III).Jpn. J. Sanit. Zool. 9:245–276.

    Google Scholar 

  • Matsumoto, T., Yanagiya, M., Maeno, S., andYasuda, S. 1968. A revised structure of pederin.Tetrahedron Lett. 60:6297–6300.

    Google Scholar 

  • Netolitzky, F. 1919. Eine neue Gruppe blasenziehender Käfer aus Mitteleuropa (Paederus, Staphylinidae).Z. Angew. Entomol. 5:252–257.

    Google Scholar 

  • Pavan, M. 1963. Ricerche biologiche e mediche su pederina e su estratti purificati diPaederus fuscipes Curt. (Coleoptera Staphylinidae). Mario Ponzio, Pavia.

    Google Scholar 

  • Pavan, M. 1975. Sunto delle attuali conoscenze sulla pederina. Pubblicazioni dell'Istituto di Entomologia Agrania dell' Università di Pavia. pp. 1–35.

  • Pavan, M., andBo, G. 1953. Pederin, toxic principle obtained in the crystalline state from the beetlePaederus fuscipes Curt.Physiol. Comp. Oecol. 3:307–312.

    Google Scholar 

  • Pavan, M., andValcurone Dazzini, M. 1971. Toxicology and pharmacology—Arthropoda, pp. 365–409,in M. Florkin and B.T. Scheer (eds.). Chemical Zoology, Vol. IV. Arthropoda Part B. Academic Press, New York.

    Google Scholar 

  • Pawlowsky, E.N., andStein, A.K. 1927. Experimentelle Untersuchung über die Giftwirkung vonPaederus fuscipes Curt. (Coleoptera, Staphylinidae) auf den Menschen.Arch. Schiffs. Trop. Hyg. 31:271–282.

    Google Scholar 

  • Quilico, A., Cardani, C., Ghiringhelli, D., andPavan, M. 1961. Pederina e pseudopederina.Chim. Ind. 43:1434–1436.

    Google Scholar 

  • Sachs, L. 1984. Angewandte Statistik, 6th ed. Springer-Verlag, Berlin.

    Google Scholar 

  • Sierra, J.R., Woggon, W.-D., andSchmid, H. 1976. Transfer of cantharidin during copulation from the adult male to the femaleLytta vesicatoria (“Spanish flies”).Experientia 32:142–144.

    Google Scholar 

  • Théodorides, J. 1950. Considérations sur lesPaederus vésicants (Coleoptera: Staphylinidae) et essais de vésication avec des espèces de France.Bull. Soc. Pathol. Exot. 43:100–113.

    Google Scholar 

  • Vorderman, A.G. 1901. Huiduitslag veroorzaakt doorPaederus peregrinus, Fabr.Geneesk. Tijdschr. Ned. Indie 41:282–284.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kellner, R.L.L., Dettner, K. Allocation of pederin during lifetime ofPaederus rove beetles (Coleoptera: Staphylinidae): Evidence for polymorphism of hemolymph toxin. J Chem Ecol 21, 1719–1733 (1995). https://doi.org/10.1007/BF02033672

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02033672

Key Words

Navigation