Skip to main content

A Path to Produce High-Performance CdZnTe Crystals for Radiation Detection Applications: Crystal Growth by THM, Surface Preparation, and Electrode Deposition

  • Chapter
  • First Online:
High-Z Materials for X-ray Detection

Abstract

CdZnTe crystals are the perfect candidate for room-temperature X-ray and gamma-ray detection systems. The growth of detector-grade crystals, on the other hand, is challenging due to the unique properties of the CdZnTe. Having high ionicity of bonds, the low thermal conductivity of solid, segregation of Zn, and retrograde solubility of Te decreases the yield for melt growth techniques by causing high variance in performance of obtained crystals from the same ingot. Traveling heater method (THM) is a solution-based growth technique, one of the preferred growth methods to get high-quality crystals with high yield. Lowered growth temperatures, low segregation of Zn, and the ability to use the seed crystal are advantages of THM. This chapter covers the THM growth method for obtaining high-performance detector-grade CdZnTe crystal in detail. Crystal preparation techniques and electrode deposition methods are discussed. Obtained mobility-lifetime product, leakage current, and resistivity for growth crystals are compared with commercially available CdZnTe crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shalvoy, R. B., Fisher, G. B., & Stiles, P. J. (1977). Bond ionicity and structural stability of some average-valence-five materials studied by x-ray photoemission. Physical Review B, 15, 1680–1697. https://doi.org/10.1103/PhysRevB.15.1680

    Article  Google Scholar 

  2. Marchini, L., Zambelli, N., Piacentini, G., Zha, M., Calestani, D., Belas, E., & Zappettini, A. (2011). Characterization of CZT crystals grown by the boron oxide encapsulated vertical Bridgman technique for the preparation of X-ray imaging detectors. Nuclear Instruments and Methods in Physics Research A, 633, S92–S94. https://doi.org/10.1016/j.nima.2010.06.133

    Article  Google Scholar 

  3. Datta, A., Swain, S., Bhaladhare, S., & Lynn, K. G. (2012). Experimental studies on control of growth interface in MVB grown CdZnTe and its consequences. In IEEE nuclear science symposium conference record (pp. 4720–4726). https://doi.org/10.1109/NSSMIC.2011.6154703

    Chapter  Google Scholar 

  4. Zhang, Z., Guo, D., Kang, R., Gao, H., Jin, Z., & Meng, Y. (2010). Subsurface crystal lattice deformation machined by ultraprecision grinding of soft-brittle CdZnTe crystals. International Journal of Advanced Manufacturing Technology, 47, 1065–1081. https://doi.org/10.1007/s00170-009-2253-y

    Article  Google Scholar 

  5. Wolff, G. A., Hebert, R. A., & Broder, J. D. (1955). Electroluminescence of GaP. Physical Review, 100, 1144–1145. https://doi.org/10.1103/PhysRev.100.1144

    Article  Google Scholar 

  6. Schulze, R. G., & Petersen, P. E. (1974). Photoconductivity in solution-grown copper-doped GaP. Journal of Applied Physics, 45, 5307–5311. https://doi.org/10.1063/1.1663235

    Article  Google Scholar 

  7. Dost, S. (2006). Single crystal growth of semiconductors from metallic solutions. Elsevier.

    Google Scholar 

  8. Roy, U. N., Gueorguiev, A., Weiller, S., & Stein, J. (2009). Growth of spectroscopic grade Cd0.9Zn0.1Te:In by THM technique. Journal of Crystal Growth, 312, 33–36. https://doi.org/10.1016/j.jcrysgro.2009.09.035

    Article  Google Scholar 

  9. Chen, H., Awadalla, S. A., Redden, R., Bindley, G., Bolotnikov, A. E., Camarda, G. S., Carini, G., & James, R. B. (2010). High-performance, large-volume THM CdZnTe detectors for medical imaging and homeland security applications. In IEEE nuclear science symposium conference record. Nuclear science symposium (pp. 3629–3637). https://doi.org/10.1109/nssmic.2006.353781

    Chapter  Google Scholar 

  10. Awadalla, S. A., Mackenzie, J., Chen, H., Redden, B., Bindley, G., Duff, M. C., Burger, A., Groza, M., Buliga, V., Bradley, J. P., Dai, Z. R., Teslich, N., & Black, D. R. (2010). Characterization of detector-grade CdZnTe crystals grown by traveling heater method (THM). Journal of Crystal Growth, 312, 507–513. https://doi.org/10.1016/j.jcrysgro.2009.11.007

    Article  Google Scholar 

  11. Peterson, J. H. (2017). Understanding growth rate limitations in production of single-crystal cadmium zinc telluride (CZT) by the traveling heater method (THM). The University of Minnesota.

    Google Scholar 

  12. Ghaddar, C. K., Lee, C. K., Motakef, S., & Gillies, D. C. (1999). Numerical simulation of THM growth of CdTe in presence of rotating magnetic fields (RMF). Journal of Crystal Growth, 205, 97–111. https://doi.org/10.1016/S0022-0248(99)00206-7

    Article  Google Scholar 

  13. Roy, U. N., Weiler, S., Stein, J., Cui, Y., Groza, M., Buliga, V., & Burger, A. (2012). Zinc mapping in THM grown detector grade CZT. Journal of Crystal Growth, 347, 53–55. https://doi.org/10.1016/j.jcrysgro.2012.03.013

    Article  Google Scholar 

  14. Roy, U. N., Weiler, S., & Stein, J. (2010). Growth and interface study of 2 in diameter CdZnTe by THM technique. Journal of Crystal Growth, 312, 2840–2845. https://doi.org/10.1016/j.jcrysgro.2010.05.046

    Article  Google Scholar 

  15. Shiraki, H., Funaki, M., Ando, Y., Kominami, S., Amemiya, K., & Ohno, R. (2010). Improvement of the productivity in the THM growth of CdTe single crystal as nuclear radiation detector. IEEE Transactions on Nuclear Science, 57, 395–399. https://doi.org/10.1109/TNS.2009.2035316

    Article  Google Scholar 

  16. Shiraki, H., Funaki, M., Ando, Y., Tachibana, A., Kominami, S., & Ohno, R. (2009). THM growth and characterization of 100 mm diameter CdTe single crystals. IEEE Transactions on Nuclear Science, 56, 1717–1723. https://doi.org/10.1109/TNS.2009.2016843

    Article  Google Scholar 

  17. Hiroyuki, S., Funaki, M., Ando, Y., Kominami, S., Amemiya, K., & Ohno, R. (2007). Improvement of the productivity in the growth of CdTe single crystal by THM for the new PET system. In IEEE nuclear science symposium conference record (pp. 1783–1787).

    Google Scholar 

  18. Zhou, B., Jie, W., Wang, T., Xu, Y., Yang, F., Yin, L., Zhang, B., & Nan, R. (2018). Growth and characterization of detector-grade Cd0.9Zn0.1Te crystals by the traveling heater method with the accelerated crucible rotation technique. Journal of Electronic Materials, 47, 1125–1130. https://doi.org/10.1007/s11664-017-5853-6

    Article  Google Scholar 

  19. Hong, B., Zhang, S., Zheng, L., Zhang, H., Wang, C., & Zhao, B. (2020). Controlling nucleation during unseeded THM growth of CdZnTe crystal. Journal of Crystal Growth., 534, 125482. https://doi.org/10.1016/j.jcrysgro.2020.125482

    Article  Google Scholar 

  20. Roy, U. N., Camarda, G. S., Cui, Y., Gul, R., Yang, G., Zazvorka, J., Dedic, V., Franc, J., & James, R. B. (2019). Evaluation of CdZnTeSe as a high-quality gamma-ray spectroscopic material with better compositional homogeneity and reduced defects. Scientific Reports, 9. https://doi.org/10.1038/s41598-019-43778-3

  21. Sajjad, M., Chaudhuri, S. K., Kleppinger, J. W., Karadavut, O., & Mandal, K. C. (2020). Investigation on Cd0.9Zn0.1Te1-ySey single crystals grown by vertical Bridgman technique for high-energy gamma radiation detectors. In SPIE-Intl Soc Optical Eng (p. 49). https://doi.org/10.1117/12.2570592

    Chapter  Google Scholar 

  22. Luke, P. N., & Eissler, E. E. (1996). Performance of CdZnTe coplanar-grid gamma-ray detectors. IEEE Transactions on Nuclear Science, 43, 1481–1486. https://doi.org/10.1109/23.507088

    Article  Google Scholar 

  23. Bolotnikov, A. E., Camarda, G. S., Carini, G. A., Cui, Y., Kohman, K. T., Li, L., Salomon, M. B., & James, R. B. (2007). Performance-limiting defects in CdZnTe detectors. IEEE Transactions on Nuclear Science, 54, 821–827. https://doi.org/10.1109/TNS.2007.894555

    Article  Google Scholar 

  24. Szeles, C. (2004). Advances in the crystal growth and device fabrication technology of CdZnTe room temperature radiation detectors. IEEE Transactions on Nuclear Science, 51, 1242–1249.

    Article  Google Scholar 

  25. Szeles, C. (2004). CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications. Physica Status Solidi (B) Basic Research, 241, 783–790. https://doi.org/10.1002/pssb.200304296

    Article  Google Scholar 

  26. Wei, S. H., & Zhang, S. B. (2002). Chemical trends of defect formation and doping limit in II–VI semiconductors: The case of CdTe. Physical Review B - Condensed Matter and Materials Physics, 66, 1–10. https://doi.org/10.1103/PhysRevB.66.155211

    Article  Google Scholar 

  27. Fiederle, M., Fauler, A., Babentsov, V., Konrath, J. P., & Franc, J. (2004). Growth of high-resistivity CdTe and (Cd,Zn)Te crystals. Hard X-Ray and Gamma-Ray Detector Physics V, 5198, 48. https://doi.org/10.1117/12.506032

    Article  Google Scholar 

  28. Fiederle, M., Fauler, A., Konrath, J., Babentsov, V., Franc, J., & James, R. B. (2004). Comparison of undoped and doped high resistivity CdTe and (Cd,Zn)Te detector crystals. IEEE Transactions on Nuclear Science, 51, 1864–1868. https://doi.org/10.1109/TNS.2004.832958

    Article  Google Scholar 

  29. Biswas, K., & Du, M. H. (2012). What causes high resistivity in CdTe. New Journal of Physics, 14. https://doi.org/10.1088/1367-2630/14/6/063020

  30. Li, Q., Jie, W., Fu, L., Wang, T., Yang, G., Bai, X., & Zha, G. (2006). Optical and electrical properties of indium-doped Cd 0.9 Zn 0.1 Te crystal. Journal of Crystal Growth, 295, 124–128. https://doi.org/10.1016/j.jcrysgro.2006.07.030

    Article  Google Scholar 

  31. Zhang, Z., Gao, H., Jie, W., Guo, D., Kang, R., & Li, Y. (2008). Chemical mechanical polishing and nanomechanics of semiconductor CdZnTe single crystals. Semiconductor Science and Technology, 23. https://doi.org/10.1088/0268-1242/23/10/105023

  32. Zhang, Z., Meng, Y., Guo, D., Kang, R., & Gao, H. (2010). Nanoscale machinability and subsurface damage machined by CMP of soft-brittle CdZnTe crystals. International Journal of Advanced Manufacturing Technology, 47, 1105–1112. https://doi.org/10.1007/s00170-009-2225-2

    Article  Google Scholar 

  33. Rouse, A. A., Szeles, C., Ndap, J. O., Soldner, S. A., Parnham, K. B., Gaspar, D. J., Engelhard, M. H., Lea, A. S., Shutthanandan, S. V., Thevuthasan, T. S., & Baer, D. R. (2002). Interfacial chemistry and the performance of bromine-etched CdZnTe radiation detector devices. IEEE Transactions on Nuclear Science, 49(I), 2005–2009. https://doi.org/10.1109/TNS.2002.801705

    Article  Google Scholar 

  34. Bensouici, A., Carcelen, V., Plaza, J. L., De Dios, S., Vijayan, N., Crocco, J., Bensalah, H., Dieguez, E., & Elaatmani, M. (2010). Study of effects of polishing and etching processes on Cd 1-xZnxTe surface quality. Journal of Crystal Growth. https://doi.org/10.1016/j.jcrysgro.2010.03.045

  35. Özsan, M. E., Sellin, P. J., Veeramani, P., Hinder, S. J., Monnier, M. L. T., Prekas, G., Lohstroh, A., & Baker, M. A. (2010). Chemical etching and surface oxidation studies of cadmium zinc telluride radiation detectors. Surface and Interface Analysis, 42, 795–798. https://doi.org/10.1002/sia.3146

    Article  Google Scholar 

  36. Babar, S., Sellin, P. J., Watts, J. F., & Baker, M. A. (2013). An XPS study of bromine in methanol etching and hydrogen peroxide passivation treatments for cadmium zinc telluride radiation detectors. Applied Surface Science, 264, 681. Faculty of Engineering and Physical Sciences, University of.

    Article  Google Scholar 

  37. Bensalah, H., Plaza, J. L., Crocco, J., Zheng, Q., Carcelen, V., Bensouici, A., & Dieguez, E. (2011). The effect of etching time on the CdZnTe surface. Applied Surface Science, 257, 4633–4636. https://doi.org/10.1016/j.apsusc.2010.12.103

    Article  Google Scholar 

  38. Mescher, M. J., James, R. B., Schlesinger T. E., & Hermon, H. (2000). Method for surface passivation and protection of cadmium zinc telluride crystals, US006043106A. https://doi.org/10.1016/0375-6505(85)90011-2.

  39. Zázvorka, J., Franc, J., Beran, L., Moravec, P., Pekárek, J., & Veis, M. (2016). Dynamics of native oxide growth on CdTe and CdZnTe X-ray and gamma-ray detectors. Science and Technology of Advanced Materials, 17, 792–798. https://doi.org/10.1080/14686996.2016.1250105

    Article  Google Scholar 

  40. Hossain, A., Bolotnikov, A. E., Camarda, G. S., Cui, Y., Jones, D., Hall, J., Kim, K. H., Mwathi, J., Tong, X., Yang, G., & James, R. B. (2014). Novel approach to surface processing for improving the efficiency of CdZnTe detectors. Journal of Electronic Materials, 43, 2771–2777. https://doi.org/10.1007/s11664-013-2698-5

    Article  Google Scholar 

  41. Okwechime, I. O., Egarievwe, S. U., Hossain, A., Hales, Z. M., Egarievwe, A. A., & James, R. B. (2014). Chemical treatment of CdZnTe radiation detectors using hydrogen bromide and ammonium-based solutions. Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XVI, 9213, 165–169. https://doi.org/10.1117/12.2063067

    Article  Google Scholar 

  42. Bowman, P. T., Ko, E. I., & Sides, P. J. (1990). A potential hazard in preparing bromine-methanol solutions. Journal of the Electrochemical Society, 137, 1309–1311. https://doi.org/10.1149/1.2086655

    Article  Google Scholar 

  43. Zheng, Q., Dierre, F., Corregidor, V., Crocco, J., Bensalah, H., Plaza, J. L., Alves, E., & Dieguez, E. (2012). Electroless deposition of Au, Pt, or Ru metallic layers on CdZnTe. Thin Solid Films, 525, 56–63. https://doi.org/10.1016/j.tsf.2012.09.058

    Article  Google Scholar 

  44. Bell, S. J., Baker, M. A., Duarte, D. D., Schneider, A., Seller, P., Sellin, P. J., Veale, M. C., & Wilson, M. D. (2017). Performance comparison of small-pixel CdZnTe radiation detectors with gold contacts formed by sputter and electroless deposition. Journal of Instrumentation, 12. https://doi.org/10.1088/1748-0221/12/06/P06015

  45. Kim, K. H., Cho, S. H., Suh, J. H., Won, J. H., Hong, J. K., & Kim, S. U. (2009). Schottky-type polycrystalline CdZnTe X-ray detectors. Current Applied Physics, 9, 306–310. https://doi.org/10.1016/j.cap.2008.01.020

    Article  Google Scholar 

  46. Roy, U. N., Camarda, G. S., Cui, Y., Gul, R., Hossain, A., Yang, G., Mundle, R. M., Pradhan, A. K., & James, R. B. (2017). Assessment of a new ZnO:Al contact to CdZnTe for X- and gamma-ray detector applications. AIP Advances, 7, 1–6. https://doi.org/10.1063/1.5001701

    Article  Google Scholar 

  47. Li, L., Xu, Y., Zhang, B., Wang, A., Dong, J., Yu, H., & Jie, W. (2018). Preparation of indium tin oxide contact to n-CdZnTe gamma-ray detector. Applied Physics Letters, 112. https://doi.org/10.1063/1.5023133

  48. Zha, G., Jie, W., Tan, T., Zhang, W., & Xu, F. (2007). The interface reaction and schottky barrier between metals and CdZnTe. Journal of Physical Chemistry C, 111, 12834–12838. https://doi.org/10.1021/jp0734070

    Article  Google Scholar 

  49. Hölzl, J., & Schulte, F. K. (1979). Work function of metals. In J. Hölzl, F. K. Schulte, & H. Wagner (Eds.), Solid surface physics (pp. 1–150). Springer. https://doi.org/10.1007/BFb0048919

    Chapter  Google Scholar 

  50. Chen, H., Awadalla, S. A., Marthandam, P., Iniewski, K., Lu, P. H., & Bindley, G. (2009). CZT device with improved sensitivity for medical imaging and homeland security applications. Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XI, 7449, 15–31. https://doi.org/10.1117/12.828514

    Article  Google Scholar 

  51. Zázvorka, J., Franc, J., Dědič, V., & Hakl, M. (2014). Electric field response to infrared illumination in CdTe/CdZnTe detectors. Journal of Instrumentation, 9. https://doi.org/10.1088/1748-0221/9/04/C04038

  52. Narita, T., Bloser, P. F., Grindlay, J. E., & Jenkins, J. A. (2000). Development of gold-contacted flip-chip detectors with IMARAD CZT. Hard X-Ray, Gamma-Ray, and Neutron Detector Physics II, 4141, 89–96. https://doi.org/10.1117/12.407569

    Article  Google Scholar 

  53. Narita, T., Grindlay, J. E., Jenkins, J. A., Perrin, M., Marrone, D., Murray, R., & Connell, B. (2002). Design and preliminary tests of a prototype CZT imaging array. X-Ray and Gamma-Ray Instrumentation for Astronomy XII, 4497, 79–87. https://doi.org/10.1117/12.454234

    Article  Google Scholar 

  54. Funaki, M., Ozaki, T., Satoh, K., & Ohno, R. (1999). Growth and characterization of CdTe single crystals for radiation detectors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 436, 120–126. https://doi.org/10.1016/S0168-9002(99)00607-5

    Article  Google Scholar 

  55. Xu, Y., Jie, W., Sellin, P. J., Wang, T., Fu, L., Zha, G., & Veeramani, P. (2009). Characterization of CdZnTe crystals grown using a seeded modified vertical Bridgman method. IEEE Transactions on Nuclear Science, 56, 2808–2813. https://doi.org/10.1109/TNS.2009.2026277

    Article  Google Scholar 

  56. Asahi, T., Oda, O., Taniguchi, Y., & Koyama, A. (1996). Growth and characterization of 100 mm diameter CdZnTe single crystals by the vertical gradient freezing method. Journal of Crystal Growth, 161, 20–27. https://doi.org/10.1016/0022-0248(95)00606-0

    Article  Google Scholar 

  57. Hassani, S., Lusson, A., Tromson-Carli, A., & Triboulet, R. (2003). Seed-free growth of (1 1 1) oriented CdTe and CdZnTe crystals by solid-state recrystallization. Journal of Crystal Growth, 249, 121–127. https://doi.org/10.1016/S0022-0248(02)02114-0

    Article  Google Scholar 

  58. Ivanov, Y. M. (1998). The growth of single crystals by the self-seeding technique. Journal of Crystal Growth, 194, 309–316. https://doi.org/10.1016/S0022-0248(98)00620-4

    Article  Google Scholar 

  59. Mao, Y., Zhang, J., Min, J., Liang, X., Huang, J., Tang, K., Ling, L., Li, M., Zhang, Y., & Wang, L. (2018). Study of Te inclusion and related point defects in THM-growth CdMnTe crystal. Journal of Electronic Materials, 47, 4239–4248. https://doi.org/10.1007/s11664-018-6117-9

    Article  Google Scholar 

  60. Bolotnikov, A. E., Babalola, S., Camarda, G. S., Cui, Y., Gul, R., Egarievwe, S. U., Fochuk, P. M., Fuerstnau, M., Horace, J., Hossain, A., Jones, F., Kim, K. H., Kopach, O. V., McCall, B., Marchini, L., Raghothamachar, B., Taggart, R., Yang, G., Xu, L., & James, R. B. (2011). Correlations between crystal defects and performance of CdZnTe detectors. IEEE Transactions on Nuclear Science, 58, 1972–1980. https://doi.org/10.1109/TNS.2011.2160283

    Article  Google Scholar 

  61. Bolotnikov, A. E., Camarda, G. S., Carini, G. A., Cui, Y., Li, L., & James, R. B. (2007). Cumulative effects of Te precipitates in CdZnTe radiation detectors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 571, 687–698. https://doi.org/10.1016/j.nima.2006.11.023

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Ünal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ünal, M., Turan, R. (2023). A Path to Produce High-Performance CdZnTe Crystals for Radiation Detection Applications: Crystal Growth by THM, Surface Preparation, and Electrode Deposition. In: Abbene, L., Iniewski, K.(. (eds) High-Z Materials for X-ray Detection. Springer, Cham. https://doi.org/10.1007/978-3-031-20955-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20955-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20954-3

  • Online ISBN: 978-3-031-20955-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics