Skip to main content

Medicinal Plants Domestication, Cultivation, Improvement, and Alternative Technologies for the Production of High Value Therapeutics: An Overview

  • Chapter
  • First Online:
Medicinal Plants

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 28))

Abstract

Medicinal plants are source of several valuable drugs known as natural products or secondary metabolites. Only a handful of medicinal plants are cultivated while most of them are still collected from wild. Due to the high demand for these products, over-exploitation resulted in endangering the species, loss of biodiversity, adulteration of plant materials and products, and the effect on ecosystem. Plants and plant products are used in many traditional medicines for several centuries. To meet the demand of raw plant material for direct use or industrial use, agrotechnologies have been developed for several medicinal plants, alternative biotechnologies (micropropagation, production in cell cultures grown in shake flasks and bioreactor, transfer of gene/s in plant and microbes, modification of biosynthetic pathways, etc.) and microbial production system have been attempted. Understanding seed and floral biology, development of agrotechnologies and introduction into new habitat may improve the availability of raw medicinal plant material associated with the improved downstream process can affect high recovery. Similarly, the use of sophisticated detection methods, high throughput screening methods, genomics and proteomics can through light on genes involved, types of biomolecules, and new sources of known drugs. Biotechnological methods (elicitation, immobilization, cloning of selected strains, hairy root cultures, and gene manipulation) including gene editing can help in improvement in the production system. With ever-increasing population and reliability of herbal medicine, demand for medicinal plants continues to increase; hence, domestication of plants along with new technologies is a demand of time to meet the challenge of supply of uniform raw material. This brief overview presents state of research on medicinal plants and their products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmed RSI, Soave C, Edbauer TG et al (2019) Discovery of green tea polyphenol-based antitumor drugs: mechanisms of action and clinical implications. In: Joshee N, Dhekney S, Parajuli P (eds) Medicinal plants from farm to pharmacy. Springer, Cham, pp 313–332

    Chapter  Google Scholar 

  • Ajayi O, Aderogba M, Obuotor E et al (2019) Acetylcholinesterase inhibitor from Anthocleista vogelii leaf extracts. J Ethnopharmacol 231:503–506

    Article  CAS  PubMed  Google Scholar 

  • Alagoz Y, Gurkok T, Zhang B, Unver T (2016) Manipulating the biosynthesis of bioactive compound alkaloids for next-generation metabolic engineering in opium poppy using CRISPR-Cas 9 genome editing technology. Sci Rep 6:30910. https://doi.org/10.1038/srep30910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andre CM, Hausman JF, Guirriero G (2016) Cannabis sativa: the plant of the thousand and one molecules. Front Plant Sci 7:19. https://doi.org/10.3389/fpls.2016.00019

    Article  PubMed  PubMed Central  Google Scholar 

  • Anonymous (2007) The ayurvedic pharmacopoeia of India (formulations), 1st edn. Department of Indian Systems of Medicine and Homeopathy, Ministry of Health and Family Welfare, Government of India, New Delhi, India

    Google Scholar 

  • Anonymous (2020) https://dor.gov.in/narcoticdrugspsychotropic/licensed-cultivation-opium

  • Anwar N, Teo YK, Tan JBL (2019) The role of plant metabolites in drug discovery: current challenges and future perspectives. In: Swamy MK, Akhtar MS (eds) Natural bio-active compounds chemistry, pharmacology and health care practices, vol 2. Springer, Singapore, pp 25–51

    Google Scholar 

  • Arora J, Goyal S, Ramawat KG (2010) Enhanced stilbene production in cell cultures of Cayratia trifolia through co-treatment with abiotic and biotic elicitors and sucrose. In Vitro Cell Dev Biol Plant 46:430–436. https://doi.org/10.1007/s11627-010-9308-5

    Article  Google Scholar 

  • Aslam MS, Ahmed MS (2016) Worldwide importance of medicinal plants: current and historical perspectives. Recent Adv Biol Med 2(2016):88–93. https://doi.org/10.18639/RABM.2016.02.338811

  • Astutik S, Pretzsch J, Kimengsi N (2019) Asian medicinal plants’ production and utilization potentials: a review. Sustainability 11:5483. https://doi.org/10.3390/su11195483

    Article  Google Scholar 

  • Atanasov AG, Waltenberger B, Pferschy-Wenzig EM et al (2015) Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv 33:1582–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babar PS, Deshmukh AV, Salunkhe SS et al (2020) Micropropagation, polyphenol content and biological properties of Sweet Flag (Acorus calamus): a potent medicinal and aromatic herb. Vegetos. https://doi.org/10.1007/s42535-020-00107-8

    Article  Google Scholar 

  • Bahari Z, Sazegiri S, Niazi A, Afshrifar A (2020) The application of an Agrobacterium-mediated in planta transformation system in a Catharanthus roseus medicinal plant. Czech J Genet Plant Breed 56(1):34–41

    Article  CAS  Google Scholar 

  • Balunas MJ, Kinghorn AD (2005) Drug discovery from medicinal plants. Life Sci 78:431–441

    Article  CAS  PubMed  Google Scholar 

  • Barata AM, Rocha F, Lopes V, Bettencourt E, Figueiredo AC (2011) Medicinal and aromatic plants Portugal. In: Munir O, Ameenah B, Fakima G (eds) Medicinal and aromatic plants of the world, Encyclopaedia of Life-support Systems (EOLSS), developed under the auspices of the UNESCO. Eolss Publishers, Oxford, UK

    Google Scholar 

  • Bauer N, Vukovic R, Likic S et al (2015) Potential of different Coleus blumei tissues for rosmarinic acid production. Food Technol Biotechnol 53(1):3–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhat WW, Lattoo SK, Rana S et al (2012) Efficient plant regeneration via direct organogenesis and Agrobacterium tumefaciens-mediated genetic transformation of Picrorhiza kurroa: an endangered medicinal herb of the alpine Himalayas. Vitro Cell Dev Biol-Plant 48:295–303. https://doi.org/10.1007/s11627-012-9434-3

    Article  CAS  Google Scholar 

  • Carrillo-Galván G et al (2020) Domestication of aromatic medicinal plants in Mexico: Agastache (Lamiaceae)—an ethnobotanical, morpho-physiological, and phytochemical analysis. J Ethnobiol Ethnomed 16(1). Accessed 26 Nov 2020

    Google Scholar 

  • Chastang T, Pozzobon V, Taidi B et al (2018) Resveratrol production by grapevine cells in fed-batch bioreactor: experiments and modelling. Biochem Eng J 131:9–16

    Article  CAS  Google Scholar 

  • Chen SL, Yu H, Luo HM, Wu Q, Li CF, Steinmetz A (2016) Conservation and sustainable use of medicinal plants: problems, progress, and prospects. Chin Med 11:37. https://doi.org/10.1186/s13020-016-0108-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Chinthiya A, Bhavyasree RK (2019) Domestication in plants: a key to unexplored variability. Int J Curr Microbiol App Sci 8(1):133–138

    Article  CAS  Google Scholar 

  • Dass S, Ramawat KG (2009) Elicitation of guggulsterone production in cell cultures of Commiphora wightii by plant gums. Plant Cell Tiss Organ Cult 96:349–353. https://doi.org/10.1007/s11240-008-9493-7

    Article  Google Scholar 

  • Debnath SC, Goyali JC (2020) In vitro propagation and variation of antioxidant properties in micropropagated Vaccinium berry plants—a review. Molecules 25(4):788. https://doi.org/10.3390/molecules25040788

    Article  CAS  PubMed Central  Google Scholar 

  • Deepthi S, Satheeshkumar K (2016) Enhanced camptothecin production induced by elicitors in the cell suspension cultures of Ophiorrhiza mungos Linn. Plant Cell Tiss Org Cult 124:483–493. https://doi.org/10.1007/s11240-015-0908-y

    Article  CAS  Google Scholar 

  • Diamond J (2002) Evolution, consequences and future of plant and animal domestication. Nature 418:700–707

    Article  CAS  PubMed  Google Scholar 

  • Dudai (2012) Domestication and breeding of wild medicinal and aromatic plants-thirty years of experience in Israel. Acta Hortic 955(955):175–183

    Google Scholar 

  • Erb M, Kliebenstein DJ (2020) Plant secondary metabolites as defenses, regulators, and primary metabolites: the blurred functional trichotomy. Plant Physiol 184(1):39–52. https://doi.org/10.1104/pp.20.00433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espinosa-Leal CA, Puente-Garza CA, García-Lara S (2018) In vitro plant tissue culture: means for production of biological active compounds. Planta 248:1–18. https://doi.org/10.1007/s00425-018-2910-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng S, Song W, Fu R, Zhang H, Xu A, Li J (2018) Application of the CRISPR/Cas9 system in Dioscorea zingiberensis. Plant Cell Tissue Organ Cult. https://doi.org/10.1007/s11240-018-1450-5

    Article  Google Scholar 

  • Fuller DQ, Denham T, Arroyo-Kalin M et al (2014) Convergent evolution and parallelism in plant domestication revealed by an expanding archaeological record. Proc Nat Acad Sci USA 111:6147–6152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fulzele DP, Satdive R, Kamble S, Singh S, Singh S (2015) Improvement of anticancer drug camptothecin production by gamma irradiation on callus cultures of Nothapodytes foetida. Int J Pharl Res Allied Sci 4:19–27

    CAS  Google Scholar 

  • Gaj T, Gersbach CA, Barbas IIICF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405. https://doi.org/10.1016/j.tibtech.2013.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gandhi SG, Mahajan V, Bedi YS (2015) Changing trends in biotechnology of secondary metabolism in medicinal and aromatic plants. Planta 241:303–317. https://doi.org/10.1007/s00425-014-2232-x

    Article  CAS  PubMed  Google Scholar 

  • Gepts P (2014) Domestication of plants. In: Alfen NV (ed) Encyclopedia of agriculture and food systems, vol 2. Elsevier, San Diego, pp 474–486

    Chapter  Google Scholar 

  • Goyal S, Ramawat KG (2007) Effect of chemical factors on production of isoflavonoids in Pueraria tuberosa (Roxb.ex.Willd.) DC suspension culture. Indian J Exp Biol 45:1063–1067

    CAS  PubMed  Google Scholar 

  • Goyal S, Ramawat KG (2008) Synergistic effect of morphactin on cytokinin-induced production of isoflavonoids in cell cultures of Pueraria tuberosa (Roxb. ex. Willd.) DC. Plant Growth Regul 55:175–181. https://doi.org/10.1007/s10725-008-9271-x

    Article  CAS  Google Scholar 

  • Goyal S, Sharma V, Ramawat KG (2011) Marked effect of Cuscuta on puerarin accumulation in cell cultures of Pueraria tuberosa grown in shake flasks and a bioreactor. Plant Biotechnol Rep 5:121–126. https://doi.org/10.1007/s11816-011-0167-2

    Article  Google Scholar 

  • Goyal S, Arora J, Ramawat KG (2014) Biotechnological approaches to medicinal plants of Aravalli hills: conservation and scientific validation of biological activities. In: Ahuja MR, Ramawat KG (eds) Biotechnology and biodiversity. Sustainable development and biodiversity, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-09381-9_11

  • Goyal S, Sharma V, Ramawat KG (2015) A review of biotechnological approaches to conservation and sustainable utilization of medicinal lianas in India. In: Parthasarathy N (ed) Biodiversity of lianas, sustainable development and biodiversity. Springer, Switzerland, pp 179–210. https://doi.org/10.1007/978-3-319-14592-1_11

  • Halder M, Jha S (2020) Morphogenesis, genetic stability, and secondary metabolite production in untransformed and transformed cultures. In: Ramawat KG et al (eds) Plant cell and tissue differentiation and secondary metabolites, reference series in phytochemistry. Springer, Switzerland AG. https://doi.org/10.1007/978-3-030-30185-9_15

  • He K (2015) Traditional Chinese and Thai medicine in a comparative perspective. Complement Ther Med 23:821–826. https://doi.org/10.1002/elsc.200800114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua MJ, Zhu Q, Dong X et al (2018) Principles of medicinal plant introduction and domestication. Guangxi Zhiwu/guihaia 38(8):973–983

    Google Scholar 

  • Hussain SA, Ahmad N, Anis M (2018) Synergetic effect of TDZ and BA on minimizing the post-exposure effects on axillary shoot proliferation and assessment of genetic fidelity in Rauvolfia tetraphylla (L.). Rend Fis Acc Lincei 29:109–115. https://doi.org/10.1007/s12210-018-0667-x

    Article  Google Scholar 

  • https://economictimes.indiatimes.com/industry/cons-products/food/india-starts-cultivation-of-hing-which-it-imports-in-its-raw-form-for-usd-100-million/hing-cultivation/slideshow/78889714.cms (27 Oct 2020)

  • Jansing J, Sack M, Augustine SM, Fischer R, Bortesi L (2019) CRISPR/Cas9-mediated knockout of six glycosyltransferase genes in Nicotiana benthamiana for the production of recombinant proteins lacking β-1,2-xylose and core α-1,3-fucose. Plant Biotechnol J 17(2):350–361

    Article  CAS  PubMed  Google Scholar 

  • Karimi M, Ahmadi A, Hashemi J, Abbasi A et al (2019) Plant growth retardants (PGRs) affect growth and secondary metabolite biosynthesis in Stevia rebaudiana Bertoni under drought stress. South African J Bot 121:394–401

    Article  CAS  Google Scholar 

  • Katumba BM, Boffa JM, Abigaba G, Okorio J (2004) Domestication of medicinal tree species in the Victoria lakeshore region. Uganda J Agric Sci 9:84–88

    Google Scholar 

  • Kaushal C, Abdin MZ, Kumar S (2020) Chloroplast genome transformation of medicinal plant Artemisia annua. Plant Biotechnol J. https://doi.org/10.1111/pbi.13379

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan RA (2018) Natural products chemistry: the emerging trends and prospective goals. Saudi Pharm J 26(5):739–775

    Article  PubMed  PubMed Central  Google Scholar 

  • Klimek-Chodacka M, Oleszkiewicz T, Lowder L et al (2018) Efficient CRSPR/Cas9-based genome editing in carrot cells. Plant Cell Rep 37(4):575–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kodym A, Leeb CJ (2019) Back to the roots: protocol for the photoautotrophic micropropagation of medicinal Cannabis. Plant Cell Tiss Organ Cult 138:399–402. https://doi.org/10.1007/s11240-019-01635-1

    Article  Google Scholar 

  • Krishna A, Kumar V, Yadav RP (2014) Production and trade related issues of opium poppy cultivation with special reference to Barabanki district, UP, India. Acta Hort 1036:111–118 https://doi.org/10.17660/ActaHortic.2014.1036.12

  • Larson G, Piperno DR, Allaby RG et al (2014) Current perspectives and the future of domestication studies. Proc Natl Acad Sci USA 111(17):6139–6146. https://doi.org/10.1073/pnas.1323964111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau W, Sattely ES (2015) Six enzymes from may apple that complete the biosynthetic pathway to the etoposide aglycone. Science 349(6253):1224–1228. https://doi.org/10.1126/science.aac7202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li LF, Olsen KM (2016) To have and to hold: selection for seed and fruit retention during crop domestication. Curr Top Dev Biol 119:63–109

    Article  CAS  PubMed  Google Scholar 

  • Li B, Cui G, Shen G, Zhan Z, Huang L, Chen J, Qi X (2017) Targeted mutagenesis in the medicinal plant Salvia miltiorrhiza. Sci Rep 7:43320. https://doi.org/10.1038/srep43320

    Article  PubMed  PubMed Central  Google Scholar 

  • Li R, Li X, Fu D, Zhu B, Tian H et al (2018) Multiplexed CRISPR/Cas9-mediated metabolic engineering of γ-aminobutyric acid levels in Solanum lycopersicum. Plant Biotechnol J 16(2):415–427

    Article  CAS  PubMed  Google Scholar 

  • Li F, Wang Y, Li D, Chen Y, Dou QP (2019) Are we seeing a resurgence in the use of natural products for new drug discovery? Expert Opin Drug Discov 1–4. https://doi.org/10.1080/17460441.2019.1582639

  • Lijalem T (2020) Feyissa T (2020) In vitro propagation of Securidaca longipedunculata (Fresen) from shoot tip: an endangered medicinal plant. J Genet Eng Biotechnol 18:3. https://doi.org/10.1186/s43141-019-0017-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu W, Yuan JS, Stewart CN Jr (2013) Advanced genetic tools for plant biotechnology. Nat Rev Genet 14:781–793. https://doi.org/10.1038/nrg3583

    Article  CAS  PubMed  Google Scholar 

  • Lucho SR, do Amaral MN, López-Orenes A et al (2019) Plant growth regulators as potential elicitors to increase the contents of phenolic compounds and antioxidant capacity in Stevia Plants. Sugar Tech 21:696–702. https://doi.org/10.1007/s12355-018-0673-4

  • Ma R, Yu Z, Cai Q et al (2020) Agrobacterium-mediated genetic transformation of the medicinal plant Veratrum dahuricum. Plants 9:191. https://doi.org/10.3390/plants9020191

    Article  CAS  PubMed Central  Google Scholar 

  • Marchev AS, Zhenya PY, Milen IG (2020) Green (cell) factories for advanced production of plant secondary metabolites. Crit Rev Biotechnol 40(4):443–458. https://doi.org/10.1080/07388551.2020.1731414

    Article  CAS  PubMed  Google Scholar 

  • Mathur M, Ramawat KG (2008) Improved guggulsterone production from sugars, precursors, and morphactin in cell cultures of Commiphora wightii grown in shake flasks and a bioreactor. Plant Biotechnol Rep 2:133–136. https://doi.org/10.1007/s11816-008-0051-x

    Article  Google Scholar 

  • Mishra S, Bansal S, Sangwan RS et al (2016) Genotype independent and efficient agrobacterium-mediated genetic transformation of the medicinal plant Withania somnifera Dunal. J Plant Biochem Biotechnol 25:191–198. https://doi.org/10.1007/s13562-015-0324-8

    Article  CAS  Google Scholar 

  • Moola AK, Kumari BDR (2020) Rapid propagation of Celastrus paniculatus Willd.: an endangered medicinal plant through indirect organogenesis. Vegetos. https://doi.org/10.1007/s42535-020-00105-w

  • Newman DJ, Cragg JM (2020) Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod 83:770–803

    Article  CAS  PubMed  Google Scholar 

  • Niazian M (2019) (2019) Application of genetics and biotechnology for improving medicinal plants. Planta 249:953–973. https://doi.org/10.1007/s00425-019-03099-1

    Article  CAS  PubMed  Google Scholar 

  • Niazian M, Sadat-Noori SA, Galuszka P et al (2017) Genetic stability of regenerated plants via indirect somatic embryogenesis and indirect shoot regeneration of Carum copticum L. Ind Crops Prod 97:330–337

    Article  CAS  Google Scholar 

  • Niazian M, Sadat-Noori SA, Tohitfar M et al (2019) Agrobacterium-mediated genetic transformation of ajowan (Trachyspermum ammi (L.) Sprague): an important industrial medicinal plant. Ind Crops Prod 132:29–40

    Article  CAS  Google Scholar 

  • Oberlies NH, Flora S, Weaver AL (2009) Camptothecin and taxol. Chem Int 25(4). https://doi.org/10.1515/ci.2003.25.4.4

  • Ochoa-Villarreal M, Howat S, Hong S, Jang MO, Jin YW, Lee EK, Loake GJ (2016) Plant cell culture strategies for the production of natural products. BMB Rep 49(3):149–158. https://doi.org/10.5483/bmbrep.2016.49.3.264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey S, Bahadur AN, Kanungo V, Tewari U (2017) Rapid micropropagation of Androgrphis paniculata Nees, from nodal explants to study effect of various plant growth regulators. Indian J Sci Res 7(2):149–157

    Google Scholar 

  • Pandey P, Singh S, Banerjee S (2019) Ocimum basilicum suspension culture as resource for bioactive triterpenoids: yield enrichment by elicitation and bioreactor cultivation. Plant Cell Tiss Organ Cult 137(1):65–75

    Article  CAS  Google Scholar 

  • Patra N, Srivastava AK (2017) Mass production of artemisinin using hairy root cultivation of Artemisia annua in bioreactor. In: Pavlov A, Bley T (eds) Bioprocessing of plant in vitro systems. Reference series in phytochemistry. Springer, Cham, pp 343–359

    Google Scholar 

  • Pérez-Alonso N, Martin R, Capote A et al (2018) Efficient direct shoot organogenesis, genetic stability and secondary metabolite production of micropropagated Digitalis purpurea L. Ind Crops Prod 116:259–266

    Article  Google Scholar 

  • Petrovska BB (2012) Historical review of medicinal plants’ usage. Pharmacol Rev 6(11):1–5. https://doi.org/10.4103/0973-7847.95849

    Article  Google Scholar 

  • Purugganan MD (2019) Evolutionary insights into the nature of plant domestication. Curr Biol 29:R705–R714

    Article  CAS  PubMed  Google Scholar 

  • Raafat KM (2013) Exploration of the protective effects of some natural compounds against neurodegeneration exploiting glycine receptors in vivo model. Nat Prod Chem Res 1(3):1–6

    Google Scholar 

  • Ramawat KG (2019a) An introduction to biodiversity and chemotaxonomy. In: Ramawat KG (ed) Sustainable development and biodiversity. Springer, Switzerland, AG, pp 1–14. https://doi.org/10.1007/978-3-030-30746-2_1

  • Ramawat KG (2019b) An introduction to the process of cell, tissue, and organ differentiation, and production of secondary metabolites. In: Ramawat K, Ekiert H, Goyal S (eds) Plant cell and tissue differentiation and secondary metabolites. Reference series in phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-11253-0_35-1

  • Ramawat KG, Goyal S (2008) The Indian herbal drugs scenario in global perspectives. In: Ramawat KG, Merillon JM (eds) Bioactive molecules and medicinal plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74603-4_18

  • Ramawat KG, Goyal S (2019) Co-evolution of secondary metabolites during biological competition for survival and advantage: an overview. In: Merillon JM, Ramawat K (eds) Co-evolution of secondary metabolites. Reference series in phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-76887-8_45-1

  • Roat C, Ramawat KG (2009) Elicitor-induced accumulation of stilbenes in cell suspension cultures of Cayratia trifolia (L.) Domin. Plant Biotechnol Rep 3:135–138. https://doi.org/10.1007/s11816-009-0082-y

    Article  Google Scholar 

  • Runguphan W, Qu X, O’Connor SE (2010) Integrating carbon–halogen bond formation into medicinal plant metabolism. Nature 468:461–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar S, Ghosh I, Roychowdhury D, Jha S (2018) The effects of rol genes of Agrobacterium rhizogenes on morphogenesis and secondary metabolite accumulation in medicinal plants. In: Kumar N (ed) Biotechnological approaches for medicinal and aromatic plants. Springer, Singapore, pp 27–51

    Chapter  Google Scholar 

  • Schippmann U, Leaman DJ, Cunningham AB (2002) Impact of cultivation and gathering of medicinal plants on biodiversity: global trends and issues. Biodiversity and the ecosystem approach in agriculture, forestry and fisheries. In: Satellite event on the occasion of the ninth regular session of the commission on genetic resources for food and agriculture. Rome, 12–13 Oct 2002. Inter-Departmental Working Group on Biological Diversity for Food and Agriculture. Rome, pp 1–21

    Google Scholar 

  • Shanmugaraj B, Bulaon JC, Phoolcharoen W (2020) Plant molecular farming: a viable platform for recombinant biopharmaceutical production. Plants 9:842. https://doi.org/10.3390/plants9070842

    Article  CAS  PubMed Central  Google Scholar 

  • Sharafi A, Sohi HH, Mirzaee H et al (2014) In vitro regeneration and Agrobacterium mediated genetic transformation of Artemisia aucheri Boiss. Physiol Mol Biol Plants 20:487–494. https://doi.org/10.1007/s12298-014-0248-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma V, Goyal S, Ramawat KG (2009) Scale up production of isoflavonoids in cell suspension cultures of Pueraria tuberosa grown in shake flasks and bioreactor. Eng Life Sci 9(3):267–271

    Article  CAS  Google Scholar 

  • Sheehan HE, Hussain SJ (2002) Unani Tibb: history, theory, and contemporary practice in South Asia. Ann AAPSS 583:122–135

    Article  Google Scholar 

  • Shepherd AW (2007) A guide marketing cost and how to calculate them. Marketing extension guide. Food and Agricultural Organization, Rome

    Google Scholar 

  • Sher H, Alyemeni MN, Faridullah (2010) Cultivation and domestication study of high value medicinal plant species (its economic potential and linkages with commercialization). African J Agri Res 5(18):2462–2470

    Google Scholar 

  • Siatka T (2019) Effects of growth regulators on production of Anthocyanins in callus cultures of Angelica archangelica. Nat Prod Commun 14(6) https://doi.org/10.1177/1934578X19857344

  • Singh N, Singh VR, Lal RK, Verma RS, Mishra A, Yadav R (2019) Quantification of genotypic and chemotypic diversity for elite clone selection with high-quality essential oil traits in Vetiver [Chrysopogon zizanioides (L.) Roberty]. J Essent Oil-Bearing Plants 22(4):1150–1162

    Google Scholar 

  • Singhabahu S, Hefferon K, Makhzoum A (2016) Plant Molecular Pharming. In: Jha S (eds) Transgenesis and secondary metabolism. Reference series in phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-27490-4_21-1

  • Sinha S, Sandhu K, Bisht N, Naliwal T, Saini I, Kaushik P (2019) Ascertaining the paradigm of secondary metabolism enhancement through gene level modification in therapeutic plants. J Young Pharmacists 11(4):337–343

    Article  CAS  Google Scholar 

  • Subramani P (2018) Herbal drug discovery: challenges and perspectives. Curr Pharmacogenomics Personalized Med (Formerly Current Pharmacogenomics) 16(1):63–68(6). https://doi.org/10.2174/1875692116666180419153313

  • Sun D, Li C, Qin H et al (2016) Somatic embryos cultures of Vitis amurensis Rupr. in air-lift bioreactors for the production of biomass and resveratrol. J Plant Biol 59(5):427–434

    Google Scholar 

  • Suntar I (2019) Importance of ethnopharmacological studies in drug discovery: role of medicinal plants. Phytochem Rev. https://doi.org/10.1007/s11101-019-09629-9

    Article  Google Scholar 

  • Suthar S, Ramawat KG (2010) Growth retardants stimulate guggulsterone production in the presence of fungal elicitor in fed-batch cultures of Commiphora wightii. Plant Biotechnol Rep 4:9–13. https://doi.org/10.1007/s11816-009-0110-y

    Article  Google Scholar 

  • Swain D, Lenka S, Hota T et al (2016) Micro-propagation of Hypericum gaitii Haines, an endangered medicinal plants: assessment of genetic fidelity. Nucleus 59:7–13. https://doi.org/10.1007/s13237-015-0146-z

    Article  Google Scholar 

  • Tanga M, Lewu FB, Oyedeji OA, Oyedeji OO (2018) Cultivation of medicinal plants in South Africa: a solution to quality assurance and consistent availability of medicinal plant materials for commercialization. Acad J Med Plants 6(7):168–177. https://doi.org/10.15413/ajmp.2018.0133

    Article  Google Scholar 

  • Vaidya BN, Jackson CL, Perry ZD et al (2016) Agrobacterium-mediated transformation of thin cell layer explants of Scutellaria ocmulgee small: a rare plant with anti-tumor properties. Plant Cell Tiss Organ Cult 127:57–69. https://doi.org/10.1007/s11240-016-1029-y

    Article  CAS  Google Scholar 

  • Vasisht K, Sharma N, Karan M (2016) Current perspective in the international trade of medicinal plants material: an update. Curr Pharm Des 22:4288–4336

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Li J, Li J et al (2017) Production of active compounds in medicinal plants: from plant tissue culture to biosynthesis. Chin Herbal Med 9(2):115–125

    Article  Google Scholar 

  • Weaver BA (2014) How taxol/paclitaxel kills cancer cells. Mol Biol Cell, Perspect Cell Biol Hum Health 25(12):2677–2681. https://doi.org/10.1091/mbc.E14-04-0916

  • WÄ™glarz Z, PrzybyÅ‚ J, Geszprych A (2008) Roseroot (Rhodiola rosea L.): effect of internal and external factors on accumulation of biologically active compounds. In: Ramawat K, Merillon J (eds) Bioactive molecules and medicinal plants. Springer, Berlin, Heidelberg, pp 297–315

    Google Scholar 

  • Weremczuk-Jezyna I, Kochan E, Szymczyk P et al (2019) The antioxidant and antimicrobial properties of phenolrich extracts of Dracocephalum forrestii W. W. Smith shoot cultures grown in the nutrient sprinkle bioreactor. Phytochem Lett 30:254–260

    Article  CAS  Google Scholar 

  • World Health Organization (2015) Connecting global priorities: biodiversity and human health: a state of knowledge review. ISBN 97892 4 150853 7

    Google Scholar 

  • Xu T, Li Y, Van Nostrand JD, He Z, Zhou J (2014) Cas9-based tools for targeted genome editing and transcriptional control. Appl Environ Microbiol 80:1544–1552. https://doi.org/10.1128/AEM.03786-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav S, Sharma P, Srivastava A et al (2014) Strain specific Agrobacterium-mediated genetic transformation of Bacopa monnieri. J Genet Eng Biotechnol 12(2):89–94

    Article  Google Scholar 

  • Yuan QJ, Zhang ZY, Hu J et al (2010) Impacts of recent cultivation on genetic diversity pattern of a medicinal plant, Scutellaria baicalensis (Lamiaceae). BMC Genet 11:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Tan H, Li Q, Chen J, Gao S, Wang Y, Chen W, Zhang L (2018) CRISPR/Cas9-mediated efficient targeted mutagenesis of RAS in Salvia miltiorrhiza. Phytochemistry 148:63–70. https://doi.org/10.1016/j.phytochem.2018.01.015

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramawat, K.G., Arora, J. (2021). Medicinal Plants Domestication, Cultivation, Improvement, and Alternative Technologies for the Production of High Value Therapeutics: An Overview. In: Ekiert, H.M., Ramawat, K.G., Arora, J. (eds) Medicinal Plants. Sustainable Development and Biodiversity, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-030-74779-4_1

Download citation

Publish with us

Policies and ethics