Skip to main content

Biotic Defenses Against Herbivory

  • Chapter
  • First Online:
Plant-Animal Interactions

Abstract

Biotic defenses, often called indirect defenses, are relationships in which one organism attracts predators of its own enemies. A classic example of biotic defense is the ant-plant mutualism in which ants protect EFN-bearing plants from herbivores, but other interspecific interactions also qualify as biotic defense, including spider-plant, ant-aphid, and ant-butterfly defense relationships. Animal-animal relationships can also be a form of biotic defense, although host plants can still indirectly benefit from the defense in some cases. Overall, the costs and benefits to the organisms involved in biotic defense depend upon multiple factors, and the overall outcomes and implications for the stability of the relationship will thus also vary. Further consideration of this variation will lead to a deeper understanding of the evolutionary pressures behind these relationships and their contributions to the maintenance of biodiversity, and will also help us predict how they will change in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addicott JF (1978) Competition for mutualists: aphids and ants. Can J Zool 56:2093–2096

    Article  Google Scholar 

  • Agarwal VM, Rastogi N (2010) Ants as dominant insect visitors of the extrafloral nectaries of sponge gourd plant, Luffa cylindrica (L.)(Cucurbitaceae). Asian Myrmecol 3:45–54

    Google Scholar 

  • Agrawal AA, Fordyce JA (2000) Induced indirect defence in a lycaenid-ant association: the regulation of a resource in a mutualism. Proc R Soc London Ser B Biol Sci 267:1857–1861

    Article  Google Scholar 

  • Agrawal AA, Sherriffs MF (2001) Induced plant resistance and susceptibility to late-season herbivores of wild radish. Ann Entomol Soc Am 94:71–75

    Article  Google Scholar 

  • Álvarez M, Munguira ML, Martínez-Ibáñez MD (2014) Comparative study of the morphology of stridulatory organs of the Iberian lycaenid butterfly pupae (Lepidoptera). J Morphol 275:414–430

    Article  Google Scholar 

  • Alves-Silva E, Del-Claro K (2013) Effect of post-fire resprouting on leaf fluctuating asymmetry, extrafloral nectar quality, and ant–plant–herbivore interactions. Naturwissenschaften 100:525–532

    Article  Google Scholar 

  • Arnyas E, Bereczki J, Toth A et al (2009) Oviposition preferences of Maculinea alcon as influenced by aphid (Aphis gentianae) and fungal (Puccinia gentianae) infestation of larval host plants. Ecol Entomol 34:90–97

    Article  Google Scholar 

  • Assunção MA, Torezan-Silingardi HM, Del-Claro K (2014) Do ant visitors to extrafloral nectaries of plants repel pollinators and cause an indirect cost of mutualism? Flora-Morphology, Distrib Funct Ecol Plants 209:244–249

    Article  Google Scholar 

  • Atsatt PR (1981) Lycaenid butterflies and ants: selection for enemy-free space. Am Nat 118:638–654

    Article  Google Scholar 

  • Axén AH, Leimar O, Hoffman V (1996) Signalling in a mutualistic interaction. Anim Behav 52:321–333

    Article  Google Scholar 

  • Bächtold A, Alves-Silva E, Del-Claro K (2013) Lycaenidae larvae feeding on Peixotoa parviflora (Malpighiaceae) in a semi-deciduous forest in Southeastern Brazil. J Lepid Soc 67:65–67

    Google Scholar 

  • Bächtold A, Alves-Silva E, Kaminski LA, Del-Claro K (2014) The role of tending ants in host plant selection and egg parasitism of two facultative myrmecophilous butterflies. Naturwissenschaften 101:913–919

    Article  Google Scholar 

  • Bächtold A, Silva EA, Del-Claro K (2016) Ants, plant characteristics and habitat conservation status affect the occurrence of myrmecophilous butterflies on an extrafloral nectaried Malpighiaceae. Stud Neotrop Fauna Environ 51:112–120

    Google Scholar 

  • Baker-Méio B, Marquis RJ (2012) Context dependent benefits from ant–plant mutualism in three sympatric varieties of Chamaecrista desvauxii. J Ecol 100:242–252

    Article  Google Scholar 

  • Barbero F (2016) Cuticular lipids as a cross-talk among ants, plants and butterflies. Int J Mol Sci 17:1966

    Article  Google Scholar 

  • Barnes JA, Harary F (1983) Graph theory in network analysis. Soc Networks 5:235–244

    Article  Google Scholar 

  • Bascompte J (2010) Structure and dynamics of ecological networks. Science 329:765–766

    Article  Google Scholar 

  • Bascompte J, Jordano P (2007) Plant-animal mutualistic networks: the architecture of biodiversity. Annu Rev Ecol Evol Syst 38:567–593

    Article  Google Scholar 

  • Bascompte J, Jordano P, Melián CJ, Olesen JM (2003) The nested assembly of plant–animal mutualistic networks. Proc Natl Acad Sci 100:9383–9387

    Article  Google Scholar 

  • Baylis M, Pierce NE (1991) The effect of host-plant quality on the survival of larvae and oviposition by adults of an ant-tended lycaenid butterfly, Jalmenus evagoras. Ecol Entomol 16:1–9

    Article  Google Scholar 

  • Beattie A, Hughes L (2002) Ant-plant interactions. In: Herrera CM, Pellmyr O (eds) Plant animal interactions: an evolutionary approach. Blackwell Science, Malden, pp 211–236

    Google Scholar 

  • Biggs N, Lloyd EK, Wilson RJ (1986) Graph theory, 1736–1936. Oxford University Press, New York

    Google Scholar 

  • Billick I, Hammer S, Reithel JS, Abbot P (2007) Ant-aphid interactions: are ants friends, enemies, or both? Ann Entomol Soc Am 100:887–892

    Article  Google Scholar 

  • Bixenmann RJ, Coley PD, Kursar TA (2011) Is extrafloral nectar production induced by herbivores or ants in a tropical facultative ant–plant mutualism? Oecologia 165:417–425

    Article  Google Scholar 

  • Blüthgen N, E Stork N, Fiedler K (2004) Bottom-up control and co-occurrence in complex communities: honeydew and nectar determine a rainforest ant mosaic. Oikos 106:344–358

    Article  Google Scholar 

  • Boege K, Marquis RJ (2005) Facing herbivory as you grow up: the ontogeny of resistance in plants. Trends Ecol Evol 20:441–448

    Article  Google Scholar 

  • Breedlove DE, Ehrlich PR (1968) Plant-herbivore coevolution: lupines and lycaenids. Science 162:671–672

    Article  Google Scholar 

  • Buckley RC (1982) Ant-plant interactions: a world review. In: Ant-plant interactions in Australia. Springer, Dordrecht, pp 111–141

    Chapter  Google Scholar 

  • Budenberg WJ (1990) Honeydew as a contact kairomone for aphid parasitoids. Entomol Exp Appl 55:139–148

    Article  Google Scholar 

  • Byk J, Del-Claro K (2011) Ant–plant interaction in the Neotropical savanna: direct beneficial effects of extrafloral nectar on ant colony fitness. Popul Ecol 53:327–332

    Article  Google Scholar 

  • Cagnolo L (2018) The future of ecological networks in the tropics. In: Ecological networks in the tropics. Springer, Cham, pp 171–183

    Chapter  Google Scholar 

  • Cagnolo L, Tavella J (2015) The network structure of myrmecophilic interactions. Ecol Entomol 40:553–561

    Article  Google Scholar 

  • Calixto ES, Lange D, Del-Claro K (2018) Protection mutualism: an overview of ant-plant interactions mediated by extrafloral nectaries. Oecologia Aust 22:410

    Article  Google Scholar 

  • Calixto ES, Lange D, Bronstein J et al (2020) Optimal Defense Theory in an ant–plant mutualism: extrafloral nectar as an induced defence is maximized in the most valuable plant structures. J Ecol 109:167–178

    Article  Google Scholar 

  • Casacci LP, Bonelli S, Balletto E, Barbero F (2019) Multimodal signaling in myrmecophilous butterflies. Front Ecol Evol 7:454

    Article  Google Scholar 

  • Chamberlain SA, Holland JN (2009) Quantitative synthesis of context dependency in ant–plant protection mutualisms. Ecology 90:2384–2392

    Article  Google Scholar 

  • Chamberlain SA, Kilpatrick JR, Holland JN (2010) Do extrafloral nectar resources, species abundances, and body sizes contribute to the structure of ant–plant mutualistic networks? Oecologia 164:741–750

    Article  Google Scholar 

  • Cipollini ML, Stiles EW (1993) Fungi as biotic defense agents of fleshy fruits: alternative hypotheses, predictions, and evidence. Am Nat 141:663–673

    Article  Google Scholar 

  • Cohen JM, Lajeunesse MJ, Rohr JR (2018) A global synthesis of animal phenological responses to climate change. Nat Clim Change 8:224–228

    Article  Google Scholar 

  • Costa FV, Mello MAR, Bronstein JL et al (2016) Few ant species play a central role linking different plant resources in a network in rupestrian grasslands. PLoS One 11:e0167161

    Article  Google Scholar 

  • Costa FV, Blüthgen N, Viana-Junior AB et al (2018) Resilience to fire and climate seasonality drive the temporal dynamics of ant-plant interactions in a fire-prone ecosystem. Ecol Indic 93:247–255

    Article  Google Scholar 

  • Cross FR, Jackson RR (2009) Odour mediated response to plants by evarcha culicivora, a blood-feeding jumping spider from East Africa. New Zeal J Zool 36:75–80

    Article  Google Scholar 

  • Cuautle M, Rico-Gray V (2003) The effect of wasps and ants on the reproductive success of the extrafloral nectaried plant Turnera ulmifolia (Turneraceae). Funct Ecol 17:417–423

    Article  Google Scholar 

  • Cuautle M, Rico Gray V, Díaz Castelazo C (2005) Effects of ant behaviour and presence of extrafloral nectaries on seed dispersal of the Neotropical myrmecochore Turnera ulmifolia L.(Turneraceae). Biol J Linn Soc 86:67–77

    Article  Google Scholar 

  • Cushman JH, Addicott JF (1989) Intra-and interspecific competition for mutualists: ants as a limited and limiting resource for aphids. Oecologia 79:315–321

    Article  Google Scholar 

  • Cushman JH, Rashbrook VK, Beattie AJ (1994) Assessing benefits to both participants in a lycaenid ant association. Ecology 75:1031–1041

    Article  Google Scholar 

  • Dale MRT (2017) Applying graph theory in ecological research. Cambridge University Press, Cham

    Book  Google Scholar 

  • Daniels H, Gottsberger G, Fiedler K (2005) Nutrient composition of larval nectar secretions from three species of myrmecophilous butterflies. J Chem Ecol 31:2805–2821

    Article  Google Scholar 

  • Dáttilo W (2012) Different tolerances of symbiotic and nonsymbiotic ant-plant networks to species extinctions. Netw Biol 2:127

    Google Scholar 

  • Dáttilo W, Rico-Gray V (2018) Ecological networks in the tropics. Cham, Springer

    Book  Google Scholar 

  • Dáttilo W, Guimarães PR Jr, Izzo TJ (2013) Spatial structure of ant–plant mutualistic networks. Oikos 122:1643–1648

    Article  Google Scholar 

  • Dáttilo W, Marquitti FMD, Guimarães PR Jr, Izzo TJ (2014) The structure of ant–plant ecological networks: Is abundance enough? Ecology 95:475–485

    Article  Google Scholar 

  • Davidson DW (1997) The role of resource imbalances in the evolutionary ecology of tropical arboreal ants. Biol J Linn Soc 61:153–181

    Article  Google Scholar 

  • Dehling DM (2018) The structure of ecological networks. In: Ecological networks in the tropics. Springer, Cham, pp 29–42

    Chapter  Google Scholar 

  • Del-Claro K, Marquis RJ (2015) Ant species identity has a greater effect than fire on the outcome of an ant protection system in Brazilian Cerrado. Biotropica 47:459–467

    Article  Google Scholar 

  • Del-Claro K, Stefani V, Lange D et al (2013) The importance of natural history studies for a better comprehension of animal-plant interaction networks. Biosci J 29:439–448

    Article  Google Scholar 

  • Del-Claro K, Rico-Gray V, Torezan-Silingardi HM et al (2016) Loss and gains in ant–plant interactions mediated by extrafloral nectar: fidelity, cheats, and lies. Insectes Soc 63:207–221

    Article  Google Scholar 

  • Del-Claro K, Stefani V, Nahas L, Torezan-Silingardi HM (2017) Spiders as plant partners: complementing ant services to plants with extrafloral nectaries. In: Behaviour and ecology of spiders. Springer, Cham, pp 215–226

    Chapter  Google Scholar 

  • Del-Claro K, Lange D, Torezan-Silingardi HM et al (2018) The complex ant–plant relationship within tropical ecological networks. In: Ecological networks in the tropics. Springer, Cham, pp 59–71

    Chapter  Google Scholar 

  • Dennis P, Young MR, Gordon IJ (1998) Distribution and abundance of small insects and arachnids in relation to structural heterogeneity of grazed, indigenous grasslands. Ecol Entomol 23:253–264

    Article  Google Scholar 

  • DeVries PJ (1988) The larval ant-organs of Thisbe irenea (Lepidoptera: Riodinidae) and their effects upon attending ants. Zool J Linn Soc 94:379–393

    Article  Google Scholar 

  • DeVries PJ (1989) Detecting and recording the calls produced by butterfly caterpillars and ants. J Res Lepid 28:258–262

    Article  Google Scholar 

  • DeVries PJ (1990) Enhancement of symbioses between butterfly caterpillars and ants by vibrational communication. Science 248:1104–1106

    Article  Google Scholar 

  • DeVries PJ (1991) Evolutionary and ecological patterns in myrmecophilous riodinid butterflies. In: Ant-plant interactions. Oxford University Press, Oxford, pp 143–156

    Google Scholar 

  • Díaz-Castelazo C, Guimaraes PR Jr, Jordano P et al (2010) Changes of a mutualistic network over time: reanalysis over a 10-year period. Ecology 91:793–801

    Article  Google Scholar 

  • Díaz-Castelazo C, Sánchez-Galván IR, Guimarães PR Jr et al (2013) Long-term temporal variation in the organization of an ant–plant network. Ann Bot 111:1285–1293

    Article  Google Scholar 

  • Dicke M, Sabelis MW (1988) How plants obtain predatory mites as bodyguards. Netherlands J Zool 38:148–165

    Article  Google Scholar 

  • Duffey SS (1986) Plant glandular trichomes: their partial role in defence against insects. Insects and the plant surface. Edward Arnold, London, pp 151–172

    Google Scholar 

  • Dutra HP, Freitas AVL, Oliveira PS (2006) Dual ant attraction in the Neotropical shrub Urera baccifera (Urticaceae): the role of ant visitation to pearl bodies and fruits in herbivore deterrence and leaf longevity. Funct Ecol 20:252–260

    Article  Google Scholar 

  • Elgar MA, Nash DR, Pierce NE (2016) Eavesdropping on cooperative communication within an ant-butterfly mutualism. Sci Nat 103:84

    Article  Google Scholar 

  • Engel V, Fischer MK, Wäckers FL, Völkl W (2001) Interactions between extrafloral nectaries, aphids and ants: are there competition effects between plant and homopteran sugar sources? Oecologia 129:577–584

    Article  Google Scholar 

  • Fagundes R, Dáttilo W, Ribeiro SP et al (2016) Food source availability and interspecific dominance as structural mechanisms of ant-plant-hemipteran multitrophic networks. Arthropod Plant Interact 10:207–220

    Article  Google Scholar 

  • Fagundes R, Dáttilo W, Ribeiro SP et al (2017) Differences among ant species in plant protection are related to production of extrafloral nectar and degree of leaf herbivory. Biol J Linn Soc 122:71–83

    Article  Google Scholar 

  • Fagundes R, Lange D, Anjos DV et al (2018) Limited effects of fire disturbances on the species diversity and structure of ant-plant interaction networks in Brazilian Cerrado. Acta Oecologica 93:65–73

    Article  Google Scholar 

  • Falcão JCF, Dáttilo W, Izzo TJ (2014) Temporal variation in extrafloral nectar secretion in different ontogenic stages of the fruits of Alibertia verrucosa S. Moore (Rubiaceae) in a Neotropical savanna. J Plant Interact 9:137–142

    Article  Google Scholar 

  • Fiala B, Maschwitz U (1991) Extrafloral nectaries in the genus Macaranga (Euphorbiaceae) in Malaysia: comparative studies of their possible significance as predispositions for myrmecophytism. Biol J Linn Soc 44:287–305

    Article  Google Scholar 

  • Fiala B, Maschwitz U (1992) Food bodies and their significance for obligate ant-association in the tree genus Macaranga (Euphorbiaceae). Bot J Linn Soc 110:61–75

    Article  Google Scholar 

  • Fiala B, Maschwitz U, Pong TY, Helbig AJ (1989) Studies of a South East Asian ant-plant association: protection of Macaranga trees by Crematogaster borneensis. Oecologia 79:463–470

    Article  Google Scholar 

  • Fiedler K, Hölldobler B (1992) Ants and Polyommatus icarus immatures (Lycaenidae)—sex-related developmental benefits and costs of ant attendance. Oecologia 91:468–473

    Article  Google Scholar 

  • Fischer MK, Shingleton AW (2001) Host plant and ants influence the honeydew sugar composition of aphids. Funct Ecol 15:544–550

    Article  Google Scholar 

  • Flatt T, Weisser WW (2000) The effects of mutualistic ants on aphid life history traits. Ecology 81:3522–3529

    Article  Google Scholar 

  • Foelix R (2011) Biology of spiders. Oxford University Press, Oxford

    Google Scholar 

  • Fortuna MA, Stouffer DB, Olesen JM et al (2010) Nestedness versus modularity in ecological networks: two sides of the same coin? J Anim Ecol 79(4):811–817

    Google Scholar 

  • Forup ML, Henson KSE, Craze PG, Memmott J (2008) The restoration of ecological interactions: plant–pollinator networks on ancient and restored heathlands. J Appl Ecol 45:742–752

    Article  Google Scholar 

  • Fraser AM, Tregenza T, Wedell N et al (2002) Oviposition tests of ant preference in a myrmecophilous butterfly. J Evol Biol 15:861–870

    Article  Google Scholar 

  • Frederickson ME, Greene MJ, Gordon DM (2005) ‘Devil’s gardens’ bedevilled by ants. Nature 437:495–496

    Article  Google Scholar 

  • Giordanengo P, Brunissen L, Rusterucci C et al (2010) Compatible plant-aphid interactions: how aphids manipulate plant responses. C R Biol 333:516–523

    Article  Google Scholar 

  • González-Megías A, Gómez JM (2003) Consequences of removing a keystone herbivore for the abundance and diversity of arthropods associated with a cruciferous shrub. Ecol Entomol 28:299–308

    Article  Google Scholar 

  • González-Teuber M, Heil M (2009) Nectar chemistry is tailored for both attraction of mutualists and protection from exploiters. Plant Signal Behav 4:809–813

    Article  Google Scholar 

  • Greenstone MH (1984) Determinants of web spider species diversity: vegetation structural diversity vs. prey availability. Oecologia 62:299–304

    Article  Google Scholar 

  • Grilli J, Rogers T, Allesina S (2016) Modularity and stability in ecological communities. Nat Commun 7:1–10

    Article  Google Scholar 

  • Guimarães PR Jr, Rico-Gray V, Furtado dos Reis S, Thompson JN (2006) Asymmetries in specialization in ant–plant mutualistic networks. Proc R Soc B Biol Sci 273:2041–2047

    Article  Google Scholar 

  • Halaj J, Ross DW, Moldenke AR (1997) Negative effects of ant foraging on spiders in Douglas-fir canopies. Oecologia 109:313–322

    Article  Google Scholar 

  • Hatano E, Kunert G, Michaud JP, Weisser WW (2008) Chemical cues mediating aphid location by natural enemies. Eur J Entomol 105:797–806

    Article  Google Scholar 

  • Heil M (2014) Herbivore induced plant volatiles: targets, perception and unanswered questions. New Phytol 204:297–306

    Article  Google Scholar 

  • Heil M (2015) Extrafloral nectar at the plant-insect interface: a spotlight on chemical ecology, phenotypic plasticity, and food webs. Annu Rev Entomol 60:213–232

    Article  Google Scholar 

  • Hojo MK, Wada-Katsumata A, Akino T et al (2009) Chemical disguise as particular caste of host ants in the ant inquiline parasite Niphanda fusca (Lepidoptera: Lycaenidae). Proc R Soc B Biol Sci 276:551–558

    Article  Google Scholar 

  • Hojo MK, Pierce NE, Tsuji K (2015) Lycaenid caterpillar secretions manipulate attendant ant behavior. Curr Biol 25:2260–2264

    Article  Google Scholar 

  • Huxley CR, Cutler DF (1991) Ant-plant interactions. Oxford University Press, Oxford

    Google Scholar 

  • Ings TC, Hawes JE (2018) The history of ecological networks. In: Ecological networks in the tropics. Springer, Cham, pp 15–28

    Chapter  Google Scholar 

  • Janzen DH (1966) Coevolution of mutualism between ants and acacias in Central America. Evolution 20:249–275

    Article  Google Scholar 

  • Jaouannet M, Rodriguez PA, Thorpe P et al (2014) Plant immunity in plant–aphid interactions. Front Plant Sci 5:663

    Article  Google Scholar 

  • Kaminski LA, Mota LL, Freitas AVL, Moreira GRP (2013) Two ways to be a myrmecophilous butterfly: natural history and comparative immature-stage morphology of two species of Theope (Lepidoptera: Riodinidae). Biol J Linn Soc 108:844–870

    Article  Google Scholar 

  • Katayama N, Suzuki N (2003) Changes in the use of extrafloral nectaries of Vicia faba (Leguminosae) and honeydew of aphids by ants with increasing aphid density. Ann Entomol Soc Am 96:579–584

    Article  Google Scholar 

  • Kessler A, Heil M (2011) The multiple faces of indirect defences and their agents of natural selection. Funct Ecol 25:348–357

    Article  Google Scholar 

  • Koptur S (1994) Floral and extrafloral nectars of Costa Rican Inga trees: a comparison of their constituents and composition. Biotropica 26(3):276–284

    Article  Google Scholar 

  • Krimmel BA, Pearse IS (2013) Sticky plant traps insects to enhance indirect defence. Ecol Lett 16:219–224

    Article  Google Scholar 

  • Lange D, Del-Claro K (2014) Ant-plant interaction in a tropical savanna: may the network structure vary over time and influence on the outcomes of associations? PLoS One 9:e105574

    Article  Google Scholar 

  • Lange D, Dattilo W, Del Claro K (2013) Influence of extrafloral nectary phenology on ant–plant mutualistic networks in a neotropical savanna. Ecol Entomol 38:463–469

    Article  Google Scholar 

  • Lee JC, Heimpel GE, Leibee GL (2004) Comparing floral nectar and aphid honeydew diets on the longevity and nutrient levels of a parasitoid wasp. Entomol Exp Appl 111:189–199

    Article  Google Scholar 

  • Leroy PD, Sabri A, Heuskin S et al (2011a) Microorganisms from aphid honeydew attract and enhance the efficacy of natural enemies. Nat Commun 2:1–7

    Article  Google Scholar 

  • Leroy PD, Wathelet B, Sabri A et al (2011b) Aphid-host plant interactions: does aphid honeydew exactly reflect the host plant amino acid composition? Arthropod Plant Interact 5:193–199

    Article  Google Scholar 

  • Letourneau DK (1983) Passive aggression: an alternative hypothesis for the Piper-Pheidole association. Oecologia 60:122–126

    Article  Google Scholar 

  • Limburg DD, Rosenheim JA (2001) Extrafloral nectar consumption and its influence on survival and development of an omnivorous predator, larval Chrysoperla plorabunda (Neuroptera: Chrysopidae). Environ Entomol 30:595–604

    Article  Google Scholar 

  • Lin Y-H, Liao Y-C, C-CS Y et al (2019) Vibrational communication between a myrmecophilous butterfly Spindasis lohita (Lepidoptera: Lycaenidae) and its host ant Crematogaster rogenhoferi (Hymenoptera: Formicidae). Sci Rep 9:1–10

    Article  Google Scholar 

  • Lohman DJ, Liao Q, Pierce NE (2006) Convergence of chemical mimicry in a guild of aphid predators. Ecol Entomol 31:41–51

    Article  Google Scholar 

  • Machado SR, Morellato LPC, Sajo MG, Oliveira PS (2008) Morphological patterns of extrafloral nectaries in woody plant species of the Brazilian cerrado. Plant Biol 10:660–673

    Article  Google Scholar 

  • Malicky H (1970) New aspects of the association between lycaenid larvae (Lycaenidae) and ants (Formicidae, Hymenoptera). J Lepid Soc 24:190–202

    Google Scholar 

  • Mannino G, Abdi G, Maffei ME, Barbero F (2018) Origanum vulgare terpenoids modulate Myrmica scabrinodis brain biogenic amines and ant behaviour. PLoS One 13:e0209047

    Article  Google Scholar 

  • Marazzi B, Bronstein JL, Koptur S (2013) The diversity, ecology and evolution of extrafloral nectaries: current perspectives and future challenges. Ann Bot 111:1243–1250

    Article  Google Scholar 

  • Marquis RJ, Braker HE (1994) Plant-herbivore interactions: diversity, specificity and impact. In: La Selva: ecology and natural history of a neotropical rain forest. University of Chicago Press, Chicago, pp 261–281

    Google Scholar 

  • Mathew J, Travassos MA, Canfield MR et al (2008) The singing reaper: diet, morphology and vibrational signaling in the nearctic species Feniseca tarquinius (Lepidoptera: Lycaenidae, Miletinae). Trop Lepid Res 18(1):24–29

    Google Scholar 

  • Matsuura K, Yashiro T (2006) Aphid egg protection by ants: a novel aspect of the mutualism between the tree-feeding aphid Stomaphis hirukawai and its attendant ant Lasius productus. Naturwissenschaften 93:506–510

    Article  Google Scholar 

  • Melati BG, Leal LC (2018) Aggressive bodyguards are not always the best: preferential interaction with more aggressive ant species reduces reproductive success of plant bearing extrafloral nectaries. PLoS One 13:e0199764

    Article  Google Scholar 

  • Messeder JVS, Guerra TJ, Dáttilo W, Silveira FAO (2020) Searching for keystone plant resources in fruit-frugivore interaction networks across the Neotropics. Biotropica 52:857–870

    Article  Google Scholar 

  • Mizuno T, Hagiwara Y, Akino T (2019) Varied effects of tending ant species on the development of facultatively myrmecophilous lycaenid butterfly larvae. Insects 10:234

    Article  Google Scholar 

  • Moreau CS, Bell CD, Vila R et al (2006) Phylogeny of the ants: diversification in the age of angiosperms. Science (80) 312:101–104

    Article  Google Scholar 

  • Munson SM, Long AL (2017) Climate drives shifts in grass reproductive phenology across the western USA. New Phytol 213:1945–1955

    Article  Google Scholar 

  • Nahas L, Gonzaga MO, Del Claro K (2012) Emergent impacts of ant and spider interactions: herbivory reduction in a tropical savanna tree. Biotropica 44:498–505

    Article  Google Scholar 

  • Nahas L, Gonzaga MO, Del-Claro K (2017) Wandering and web spiders feeding on the nectar from extrafloral nectaries in neotropical savanna. J Zool 301:125–132

    Article  Google Scholar 

  • Nakabayashi Y, Mochioka Y, Tokuda M, Ohshima I (2020) Mutualistic ants and parasitoid communities associated with a facultative myrmecophilous lycaenid, Arhopala japonica, and the effects of ant attendance on the avoidance of parasitism. Entomol Sci 23:233–244

    Article  Google Scholar 

  • Nelsen MP, Ree RH, Moreau CS (2018) Ant–plant interactions evolved through increasing interdependence. Proc Natl Acad Sci 115:12253–12258

    Article  Google Scholar 

  • Nelson XJ, Jackson RR (2013) Hunger-driven response by a nectar-eating jumping spider to specific phytochemicals. Chemoecology 23:149–153

    Article  Google Scholar 

  • Newcomer EJ (1912) Some observations on the relations of ants and lycaenid caterpillars, and a description of the relational organs of the latter. J New York Entomol Soc 20:31–36

    Google Scholar 

  • Nielsen A, Bascompte J (2007) Ecological networks, nestedness and sampling effort. J Ecol 95(5):1134–1141

    Article  Google Scholar 

  • Norder SJ (2019) Alexander von Humboldt (1769–1859): connecting geodiversity, biodiversity and society. J Biogeogr 46:1627–1630

    Article  Google Scholar 

  • Nyffeler M, Olson EJ, Symondson WOC (2016) Plant-eating by spiders. J Arachnol 44:15–27

    Article  Google Scholar 

  • Ohgushi T (2005) Indirect interaction webs: herbivore-induced effects through trait change in plants. Annu Rev Ecol Evol Syst 36:81–105

    Article  Google Scholar 

  • Ohm JR, Miller TEX (2014) Balancing anti herbivore benefits and anti-pollinator costs of defensive mutualists. Ecology 95:2924–2935

    Article  Google Scholar 

  • Oliveira PS (1997) The ecological function of extrafloral nectaries: herbivore deterrence by visiting ants and reproductive output in Caryocar brasiliense (Caryocaraceae). Funct Ecol 11:323–330

    Article  Google Scholar 

  • Pacelhe FT, Costa FV, Neves FS et al (2019) Nectar quality affects ant aggressiveness and biotic defense provided to plants. Biotropica 51:196–204

    Article  Google Scholar 

  • Paine RT (1966) Food web complexity and species diversity. Am Nat 100:65–75

    Article  Google Scholar 

  • Pascual M, Dunne JA (2006) Ecological networks: linking structure to dynamics in food webs. Oxford University Press, Oxford

    Google Scholar 

  • Passmore HA, Bruna EM, Heredia SM, Vasconcelos HL (2012) Resilient networks of ant-plant mutualists in Amazonian forest fragments. PLoS One 7:e40803

    Article  Google Scholar 

  • Patt JM, Pfannenstiel RS, Meikle WG, Adamczyk JJ (2012) Supplemental diets containing yeast, sucrose, and soy powder enhance the survivorship, growth, and development of prey-limited cursorial spiders. Biol Control 63:237–245

    Article  Google Scholar 

  • Pearse IS, LoPresti E, Schaeffer RN et al (2020) Generalising indirect defence and resistance of plants. Ecol Lett 23:1137–1152

    Article  Google Scholar 

  • Pierce NE, Kitching RL, Buckley RC et al (1987) The costs and benefits of cooperation between the Australian lycaenid butterfly, Jalmenus evagoras, and its attendant ants. Behav Ecol Sociobiol 21:237–248

    Article  Google Scholar 

  • Pierce NE, Braby MF, Heath A et al (2002) The ecology and evolution of ant association in the Lycaenidae (Lepidoptera). Annu Rev Entomol 47:733–771

    Article  Google Scholar 

  • Piovia-Scott J (2011) The effect of disturbance on an ant–plant mutualism. Oecologia 166:411–420

    Article  Google Scholar 

  • Plowman NS, Hood ASC, Moses J et al (2017) Network reorganization and breakdown of an ant–plant protection mutualism with elevation. Proc R Soc B Biol Sci 284:20162564

    Article  Google Scholar 

  • Price PW, Bouton CE, Gross P et al (1980) Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Annu Rev Ecol Syst 11:41–65

    Article  Google Scholar 

  • Ragsdale DW, Landis DA, Brodeur J et al (2011) Ecology and management of the soybean aphid in North America. Annu Rev Entomol 56:375–399

    Article  Google Scholar 

  • Renault CK, Buffa LM, Delfino MA (2005) An aphid-ant interaction: effects on different trophic levels. Ecol Res 20:71–74

    Article  Google Scholar 

  • Rico-Gray V, Castro G (1996) Effect of an ant-aphid interaction on the reproductive fitness of Paullinia fuscecens (Sapindaceae). Southwest Nat 41:434–440

    Google Scholar 

  • Rico-Gray V, Oliveira PS (2007) The ecology and evolution of ant-plant interactions. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Rico-Gray V, Díaz-Castelazo C, Ramírez-Hernández A et al (2012) Abiotic factors shape temporal variation in the structure of an ant–plant network. Arthropod Plant Interact 6:289–295

    Article  Google Scholar 

  • Rodrigues D, Kaminski LA, Freitas AVL, Oliveira PS (2010) Trade-offs underlying polyphagy in a facultative ant-tended florivorous butterfly: the role of host plant quality and enemy-free space. Oecologia 163:719–728

    Article  Google Scholar 

  • Romero GQ, Koricheva J (2011) Contrasting cascade effects of carnivores on plant fitness: a meta-analysis. J Anim Ecol 80:696–704

    Article  Google Scholar 

  • Romero GQ, Souza JC, Vasconcellos-Neto J (2008) Anti-herbivore protection by mutualistic spiders and the role of plant glandular trichomes. Ecology 89:3105–3115

    Article  Google Scholar 

  • Rosumek FB, Silveira FAO, Neves F de S et al (2009) Ants on plants: a meta-analysis of the role of ants as plant biotic defenses. Oecologia 160:537–549

    Article  Google Scholar 

  • Ruhren S, Handel SN (1999) Jumping spiders (Salticidae) enhance the seed production of a plant with extrafloral nectaries. Oecologia 119:227–230

    Article  Google Scholar 

  • Sabatino M, Maceira N, Aizen MA (2010) Direct effects of habitat area on interaction diversity in pollination webs. Ecol Appl 20:1491–1497

    Article  Google Scholar 

  • Sabri A, Vandermoten S, Leroy PD et al (2013) Proteomic investigation of aphid honeydew reveals an unexpected diversity of proteins. PLoS One 8:e74656

    Article  Google Scholar 

  • Sakata H, Hashimoto Y (2000) Should aphids attract or repel ants? Effect of rival aphids and extrafloral nectaries on ant–aphid interactions. Popul Ecol 42:171–178

    Article  Google Scholar 

  • Santos GMM, Dattilo W, Presley SJ (2014) The seasonal dynamic of ant-flower networks in a semi-arid tropical environment. Ecol Entomol 39:674–683

    Article  Google Scholar 

  • Schoereder JH, Sobrinho TG, Madureira MS et al (2010) The arboreal ant community visiting extrafloral nectaries in the Neotropical cerrado savanna. Terr Arthropod Rev 3:3–27

    Article  Google Scholar 

  • Schupp EW (1986) Azteca protection of Cecropia: ant occupation benefits juvenile trees. Oecologia 70:379–385

    Article  Google Scholar 

  • Schwartzberg EG, Tumlinson JH (2014) Aphid honeydew alters plant defence responses. Funct Ecol 28:386–394

    Article  Google Scholar 

  • Sendoya SF, Blüthgen N, Tamashiro JY et al (2016) Foliage-dwelling ants in a neotropical savanna: effects of plant and insect exudates on ant communities. Arthropod Plant Interact 10:183–195

    Article  Google Scholar 

  • Shields O (1989) World numbers of butterflies. J Lepid Soc 43:178–183

    Google Scholar 

  • Shingleton AW, Stern DL, Foster WA (2005) The origin of a mutualism: a morphological trait promoting the evolution of ant aphid mutualisms. Evolution 59:921–926

    Google Scholar 

  • Silva LA, Vasconcellos-Neto J, Del-Claro K, Stefani V (2020) Seasonally variable effects of spiders on herbivory and seed production of Chamaecrista neesiana (Leguminosae Caesalpinioideae). Ethol Ecol Evol 32(5):1–15

    Article  Google Scholar 

  • Stadler B, Dixon AFG (1999) Ant attendance in aphids: why different degrees of myrmecophily? Ecol Entomol 24:363–369

    Article  Google Scholar 

  • Stadler B, Dixon AFG (2005) Ecology and evolution of aphid-ant interactions. Annu Rev Ecol Evol Syst 36:345–372

    Article  Google Scholar 

  • Stadler B, Müller T (1996) Aphid honeydew and its effect on the phyllosphere microflora of Picea abies (L.) Karst. Oecologia 108:771–776

    Article  Google Scholar 

  • Stadler B, Fiedler K, Kawecki TJ, Weisser WW (2001) Costs and benefits for phytophagous myrmecophiles: when ants are not always available. Oikos 92:467–478

    Article  Google Scholar 

  • Stadler B, Dixon AFG, Kindlmann P (2002) Relative fitness of aphids: effects of plant quality and ants. Ecol Lett 5:216–222

    Article  Google Scholar 

  • Stadler B, Kindlmann P, Šmilauer P, Fiedler K (2003) A comparative analysis of morphological and ecological characters of European aphids and lycaenids in relation to ant attendance. Oecologia 135:422–430

    Article  Google Scholar 

  • Stefani V, Pires TL, Torezan-Silingardi HM, Del-Claro K (2015) Beneficial effects of ants and spiders on the reproductive value of Eriotheca gracilipes (Malvaceae) in a tropical savanna. PLoS One 10:e0131843

    Article  Google Scholar 

  • Styrsky JD, Eubanks MD (2007) Ecological consequences of interactions between ants and honeydew-producing insects. Proc R Soc B Biol Sci 274:151–164

    Article  Google Scholar 

  • Suzuki N, Ide T (2008) The foraging behaviors of larvae of the ladybird beetle, Coccinella septempunctata L.,(Coleoptera: Coccinellidae) towards ant-tended and non-ant-tended aphids. Ecol Res 23:371

    Article  Google Scholar 

  • Suzuki N, Ogura K, Katayama N (2004) Efficiency of herbivore exclusion by ants attracted to aphids on the vetch Vicia angustifolia L.(Leguminosae). Ecol Res 19:275–282

    Article  Google Scholar 

  • Taylor RM, Bradley RA (2009) Plant nectar increases survival, molting, and foraging in two foliage wandering spiders. J Arachnol 37:232–237

    Article  Google Scholar 

  • Taylor RM, Foster WA (1996) Spider nectarivory. Am Entomol 42:82–86

    Article  Google Scholar 

  • Thorp RW, Sugden EA (1990) Extrafloral nectaries producing rewards for pollinator attraction in Acacia longifolia (Andr.) Willd. Isr J Bot 39:177–186

    Google Scholar 

  • Trager MD, Bhotika S, Hostetler JA et al (2010) Benefits for plants in ant-plant protective mutualisms: a meta-analysis. PLoS One 5:e14308

    Article  Google Scholar 

  • Travassos MA, Pierce NE (2000) Acoustics, context and function of vibrational signalling in a lycaenid butterfly–ant mutualism. Anim Behav 60:13–26

    Article  Google Scholar 

  • Uetz GW (1991) Habitat structure and spider foraging. In: Habitat structure. Springer, Cham, pp 325–348

    Chapter  Google Scholar 

  • Vasconcellos-Neto J, Messas YF, da Silva Souza H et al (2017) Spider–plant interactions: an ecological approach. In: Behaviour and ecology of spiders. Springer, Cham, pp 165–214

    Chapter  Google Scholar 

  • Vázquez DP, Blüthgen N, Cagnolo L, Chacoff NP (2009) Uniting pattern and process in plant–animal mutualistic networks: a review. Ann Bot 103:1445–1457

    Article  Google Scholar 

  • Vilela AA, Del-Claro K (2018) Effects of different ant species on the attendance of neighbouring hemipteran colonies and the outcomes for the host plant. J Nat Hist 52:415–428

    Article  Google Scholar 

  • Vilela AA, Del-Claro VTS, Torezan-Silingardi HM, Del-Claro K (2018) Climate changes affecting biotic interactions, phenology, and reproductive success in a savanna community over a 10-year period. Arthropod Plant Interact 12:215–227

    Article  Google Scholar 

  • Völkl W (1992) Aphids or their parasitoids: who actually benefits from ant-attendance? J Anim Ecol 61(2):273–281

    Article  Google Scholar 

  • Völkl W, Woodring J, Fischer M et al (1999) Ant-aphid mutualisms: the impact of honeydew production and honeydew sugar composition on ant preferences. Oecologia 118:483–491

    Article  Google Scholar 

  • Wada A, Isobe Y, Yamaguchi S et al (2001) Taste-enhancing effects of glycine on the sweetness of glucose: a gustatory aspect of symbiosis between the ant, Camponotus japonicus, and the larvae of the lycaenid butterfly, Niphanda fusca. Chem Senses 26:983–992

    Article  Google Scholar 

  • Waltz AM, Whitham TG (1997) Plant development affects arthropod communities: opposing impacts of species removal. Ecology 78:2133–2144

    Article  Google Scholar 

  • Way MJ (1963) Mutualism between ants and honeydew-producing Homoptera. Annu Rev Entomol 8:307–344

    Article  Google Scholar 

  • Weber MG, Keeler KH (2013) The phylogenetic distribution of extrafloral nectaries in plants. Ann Bot 111:1251–1261

    Article  Google Scholar 

  • Wise DH (1993) Spiders in ecological webs. Cambridge University Press, New York. ISBN-13, pp 521–978

    Book  Google Scholar 

  • Yao I (2014) Costs and constraints in aphid-ant mutualism. Ecol Res 29:383–391

    Article  Google Scholar 

  • Yao I, Akimoto S (2002) Flexibility in the composition and concentration of amino acids in honeydew of the drepanosiphid aphid Tuberculatus quercicola. Ecol Entomol 27:745–752

    Article  Google Scholar 

  • Yoshida T, Kakuta H, Choh Y (2018) Pea aphids (Acyrthosiphon pisum Harris) reduce secretion of extrafloral nectar in broad bean (Vicia faba). Ecol Entomol 43:134–136

    Article  Google Scholar 

  • Young TP, Stubblefield CH, Isbell LA (1996) Ants on swollen-thorn acacias: species coexistence in a simple system. Oecologia 109:98–107

    Article  Google Scholar 

  • Yu DW, Davidson DW (1997) Experimental studies of species-specificity in Cecropia–ant relationships. Ecol Monogr 67:273–294

    Google Scholar 

  • Zangerl AR, Rutledge CE (1996) The probability of attack and patterns of constitutive and induced defense: a test of optimal defense theory. Am Nat 147:599–608

    Article  Google Scholar 

  • Zhang S, Zhang Y, Ma K (2012) The ecological effects of the ant–hemipteran mutualism: a meta-analysis. Basic Appl Ecol 13:116–124

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moura, R.F. et al. (2021). Biotic Defenses Against Herbivory. In: Del-Claro, K., Torezan-Silingardi, H.M. (eds) Plant-Animal Interactions. Springer, Cham. https://doi.org/10.1007/978-3-030-66877-8_5

Download citation

Publish with us

Policies and ethics