Skip to main content
Log in

Loss and gains in ant–plant interactions mediated by extrafloral nectar: fidelity, cheats, and lies

  • Review Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

All mutualistic plant–animal interactions are mediated by costs and benefits in relationships where resources (from plants) are exchanged by services (from animals). The most common trading coin that plants offer to pay for animal services is nectar; the main servers are hymenopterans. Extrafloral nectar (EFN) is produced in almost all aboveground plant parts not directly related with pollination, and their true function has long been an issue of discussion among naturalists and will be our main subject. The protective function of extrafloral nectaries (EFNs) is reviewed and considered with an alternative hypothesis, presenting not only ants, but also spiders and wasps as potential and effective agents in these protective interactions. Despite their likely relevance, the phenological variation (mainly sequential flowering and resprouting) of host plants mediating these interactions have been generally ignored. We discuss how the outcomes of each ant–EFN bearing plant interaction vary depending on physical and biotic changes in interacting organisms (internal factors such as phenology and species identity) as well as in their environments (external factors such as climatic variation), all of which may modify the character of each interaction. We propose that ant–EFN bearing plant interactions serve an excellent and unique model to test the “Geographic Mosaic Theory” of coevolution providing us a more clear view of how evolution has structured these plant–animal ecological networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agrawal AA, Fishbein M (2006) Plant defense syndromes. Ecology 87:132–149. doi:10.1890/0012-9658(2006)87[132:PDS]2.0.CO;2

  • Agrawal AA, Fordyce JA (2000) Induced indirect defence in a lycaenid–ant association: the regulation of a resource in a mutualism. Proc R Soc London Ser B 267:1857–1861. doi:10.1098/rspb.2000.1221

    Article  CAS  Google Scholar 

  • Alves-Silva E, Del-Claro K (2013) Effect of post-fire resprouting on leaf fluctuating asymmetry, extrafloral nectar quality, and ant–plant–herbivore interactions. Naturwissenschaften 100:515–532. doi:10.1007/s00114-013-1048-z

    Article  CAS  Google Scholar 

  • Alves-Silva E, Del-Claro K (2015) On the inability of ants to protect their plant partners and the effect of herbivores on different stages of plant reproduction. Austral Ecol. doi:10.1111/aec.12307 (in press)

  • Alves-Silva E, Barônio GJ, Torezan-Silingardi HM, Del-Claro K (2013) Foraging behavior of Brachygastra lecheguana (Hymenoptera: Vespidae) on Banisteriopsis malifolia (Malpighiaceae): extrafloral nectar consumption and herbivore predation in a tending ant system. Entomol Sci 16:162–169. doi:10.1111/ens.12004

    Article  Google Scholar 

  • Alves-Silva E, Bachtold A, Barônio GJ, Torezan-Silingardi HM, Del-Claro K (2014) Ant–herbivore interactions in an extrafloral nectaried plant: are ants good plant guards against curculionid beetles? J Nat Hist. doi:10.1080/00222933.2014.954020

    Google Scholar 

  • Amsellem L, McKey DB (2006) Integrating phenological, chemical and biotic defenses in ant–plant protection mutualisms: a case study of two myrmecophyte lineages. Chemoecology 16:223–234. doi:10.1007/s00049-006-0356-6

    Article  CAS  Google Scholar 

  • Assunção MA, Torezan-Silingardi HM, Del-Claro K (2014) Do ant visitors to extrafloral nectaries of plants repel pollinators and cause an indirect cost of mutualism? Flora 2:244–249. doi:10.1016/j.flora.2014.03.003

    Article  Google Scholar 

  • Bach CE (1991) Direct and indirect interactions between ants (Pheidole megacephala), scales (Coccus viridis) and plants (Pluchea indica). Oecologia 87:233–239. doi:10.1007/BF00325261

    Article  Google Scholar 

  • Bächtold A, Alves-Silva E, Del-Claro K (2013) Lycaenidae larvae feeding on Peixotoa parviflora (Malpighiaceae) in a semideciduous forest in the southeastern Brazil. J Lepid Soc 67:65–67. doi:10.1590/S0085-56262014000300015

    Google Scholar 

  • Bächtold A, Alves-Silva E, Del-Claro K (2014) The role of tending ants in host plant selection and egg parasitism of two facultative myrmecophilous butterflies. Naturwissenschaften 101:913–919. doi:10.1007/s00114-014-1232-9

    Article  PubMed  CAS  Google Scholar 

  • Baker DA, Hall HJ, Thorpe JR (1978) A study of extrafloral nectaries of Ricinus communis. N Phytol 81:129–137. doi:10.1111/j.1469-8137.1978.tb01612.x

    Article  CAS  Google Scholar 

  • Baker-Méio B, Marquis RJ (2012) Context-dependent benefits from ant–plant mutualism in three sympatric varieties of Chamaecrista desvauxii. J Ecol 100:242–252. doi:10.1111/j.1365-2745.2011.01892.x

    Article  Google Scholar 

  • Bascompte J (2009) Disentangling the web of life. Science 325:416–419. doi:10.1126/science.1170749

    Article  CAS  PubMed  Google Scholar 

  • Bascompte J, Jordano P (2013) Mutualistic networks. Princeton University Press, London

    Book  Google Scholar 

  • Beattie AJ, Turnbull C, Knox RB, Williams EG (1984) Ant inhibition of pollen function: a possible reason why ant pollination is rare. Am J Bot 71:421–426. doi:10.2307/2443499

    Article  Google Scholar 

  • Becerra JX, Venable DL (1989) Extrafloral nectaries: a defense against ant-homoptera mutualism? Oikos 55:276–280. doi:10.2307/3565432

    Article  Google Scholar 

  • Belt T (1874) The naturalist in Nicaragua. Dent, London

    Google Scholar 

  • Bentley BL (1977a) Extrafloral nectaries and protection by pugnacious bodyguards. Annu Rev Ecol Syst 8:407–427. doi:10.1146/annurev.es.08.110177.002203

    Article  CAS  Google Scholar 

  • Bentley BL (1977b) The protective function of ants visiting the extrafloral nectaries of Bixa orellana (Bixaceae). J Ecol 65:27–38. doi:10.2307/2259060

    Article  Google Scholar 

  • Blüthgen N, Verhaagh M, Goitía W, Jaffé K, Morawetz W, Barhlott W (2000) How plants shape the ant community in the Amazonian rainforest canopy: the key role of extrafloral nectaries and homopteran honeydew. Oecologia 125:229–240. doi:10.1007/s004420000449

    Article  PubMed  Google Scholar 

  • Blüthgen N, Gebauer G, Fiedler K (2003) Disentangling a rainforest food web using stable isotopes: dietary diversity in a species-rich ant community. Oecologia 137:426–435. doi:10.1007/s00442-003-1347-8

    Article  PubMed  Google Scholar 

  • Blüthgen N, Stork NE, Fiedler K (2004) Bottom-up control and co-occurrence in complex communities: honeydew and nectar determine a rainforest ant mosaic. Oikos 106:344–358. doi:10.1111/j.0030-1299.2004.12687.x

    Article  Google Scholar 

  • Boecklen WJ (1984) The role of extrafloral nectaries in the herbivore defense of Cassia fasiculata. Ecol Entomol 9:245–249. doi:10.1111/j.1365-2311.1984.tb00848.x

    Article  Google Scholar 

  • Both C, Van-Asch M, Bijlsma RG, Van-den-Burg AB, Visser ME (2009) Climate change and unequal phenological changes across four trophic levels: constraints or adaptations? J Anim Ecol 78:73–83. doi:10.1111/j.1365-2656.2008.01458.x

    Article  PubMed  Google Scholar 

  • Bronstein JL (1998) The contribution of ant plant protection studies to our understanding of mutualism. Biotropica 30:150–161. doi:10.1111/j.1744-7429.1998.tb00050.x

    Article  Google Scholar 

  • Byk J, Del-Claro K (2010) Nectar- and pollen-gathering Cephalotes ants provide no protection against herbivory: a new manipulative experiment to test ant protective capabilities. Acta Ethol 13:33–38. doi:10.1007/s10211-010-0071-8

    Article  Google Scholar 

  • Byk J, Del-Claro K (2011) Ant–plant interaction in the neotropical savanna: direct beneficial effects of extrafloral nectar on ant colony fitness. Pop Ecol 53:327–332. doi:10.1007/S10144-010-0240-7

    Article  Google Scholar 

  • Calixto ES, Lange D, Del-Claro K (2015) Foliar anti-herbivore defenses in Qualea multiflora (Vochysiaceae): changing strategy according to leaf development. Flora 212:19–23. doi:10.1016/j.flora.2015.02.001

    Article  Google Scholar 

  • Campbell SA, Kessler A (2013) Plant mating system transitions drive the macroevolution of defense strategies. Proc Natl Acad Sci 110:3973–3978. doi:10.1073/pnas.1213867110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campos RI, Camacho GP (2014) Ant–plant interactions: the importance of extrafloral nectaries versus hemipteran honeydew on plant defense against herbivores. Arth Plant Int 8:507–512. doi:10.1007/s11829-014-9338-8

    Article  Google Scholar 

  • Chamberlain SA, Holland JN (2009) Body size predicts degree in ant–plant mutualistic networks. Funct Ecol 23:196–202. doi:10.1111/j.1365-2435.2008.01472.x

    Article  Google Scholar 

  • Chanam J, Kasinathan S, Pramanik GK, Jagdeesh A, Josh KA, Borges RM (2015) Foliar extrafloral nectar of Humboldtia brunonis (Fabaceae), a paleotropic ant–plant, is richer than phloem sap and more attractive than honeydew. Biotropica 47:1–5. doi:10.1111/btp.12185

    Article  Google Scholar 

  • Coley PD, Barone JA (1996) Herbivory and plant defenses in tropical forests. Annu Rev Ecol Syst 27:305–335. doi:10.1146/annurev.ecolsys.27.1.305

    Article  Google Scholar 

  • Cornelius ML, Grace JK, Yates JR (1996) Acceptability of different sugars and oils to three tropical ant species (Hymen., Formicidae). Anz Schädl kd Pflanzenschutz Umweltschutz 69:41–43. doi:10.1007/BF01907668

    Article  Google Scholar 

  • Costa CBN, Costa JAS, Ramalho M (2006) Biologia reprodutiva de espécies simpátricas de Malpighiaceae em dunas costeiras da Bahia, Brasil. Rev Bras Bot 29:103–114. doi:10.1590/S0100-84042006000100010

    Article  Google Scholar 

  • Cuautle M, Rico-Gray V (2003) The effect of wasps and ants on the reproductive success of the extrafloral nectaried plant Turnera ulmifolia (Turneraceae). Funct Ecol 17:417–423

    Article  Google Scholar 

  • Cuautle M, Rico-Gray V, Díaz-Castelazo C (2015) Effects of ant behaviour and presence of extrafloral nectaries on seed dispersal of the Neotropical myrmecochore Turnera ulmifolia L. (Turneraceae). Biol J Linnean Soc 86:67–77. doi:10.1111/j.1095-8312.2005.00525.x

    Article  Google Scholar 

  • Cushman JH, Addicott JF (1989) Intra- and interspecific competition for mutualists: ants as a limited and limiting resource for aphids. Oecologia 79:315–321. doi:10.1007/BF00384310

    Article  CAS  PubMed  Google Scholar 

  • Dáttilo W, Guimarães PR, Izzo T (2013a) Spatial structure of ant–plant mutualistic networks. Oikos 122:1643–1648. doi:10.1111/j.1600-0706.2013.00562.x

    Article  Google Scholar 

  • Dáttilo W, Rico-Gray V, Rodrigues DJ, Izzo T (2013b) Soil and vegetation features determine the nested pattern of ant–plant networks in a tropical rainforest. Ecol Entomol 38:374–380. doi:10.1111/een.12029

    Article  Google Scholar 

  • Dáttilo W, Díaz-Castelazo C, Rico-Gray V (2014a) Ant dominance hierarchy determines the nested pattern in ant–plant networks. Biol J Linn Soc 113:405–414. doi:10.1111/bij.12350

    Article  Google Scholar 

  • Dáttilo W, Fagundes R, Gurka CAQ, Silva MSA, Vieira MCL, Izzo TJ, Díaz-Castelazo C, Del-Claro K, Rico-Gray V (2014b) Individual-based ant–plant networks: diurnal–nocturnal structure and species-area relationship. PLoS One 9(6):e99838. doi:10.1371/journal.pone.0099838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dáttilo W, Aguirre A, Flores-Flores R, Fagundes R, Lange D, García-Chavez J, Del-Claro K, Rico-Gray V (2015) Secretory activity of extrafloral nectaries shaping multitrophic ant–plant–herbivore interactions in an arid environment. J Arid Environ 114:104–109. doi:10.1016/j.jaridenv.2014.12.001

    Article  Google Scholar 

  • Davidson DW, Cook SC, Snelling RR, Chua TH (2003) Explaining the abundance of ants in lowland tropical rainforest canopies. Science 300:969–972. doi:10.1126/science.1082074

    Article  CAS  PubMed  Google Scholar 

  • Delabie JHC (2001) Trophobiosis between formicidae and hemiptera (Sternorrhyncha and Auchenorrhyncha): an overview. Neotrop Entomol 30:501–516. doi:10.1590/S1519-566X2001000400001

    Article  Google Scholar 

  • Del-Claro K (2004) Multitrophic relationships, conditional mutualisms, and the study of interaction biodiversity in tropical savannas. Neotrop Entomol 33:665–672. doi:10.1590/S1519-566X2004000600002

    Article  Google Scholar 

  • Del-Claro K, Marquis RJ (2015) Ant species identity has a greater effect than fire on the outcome of an ant protection system in Brazilian Cerrado. Biotropica 47:459–467. doi:10.1111/btp.12227

    Article  Google Scholar 

  • Del-Claro K, Mound LA (1996) Phenology and description of a new species of Liothrips (Thysanoptera:Phlaeotripidae) from Didymopanax in Brazilian Cerrado. Rev Biol Trop 44:193–197

    Google Scholar 

  • Del-Claro K, Oliveira PS (1993) Ant–homoptera interaction: do alternative sugar source distract tending ants? Oikos 68:202–206. doi:10.2307/3544831

    Article  Google Scholar 

  • Del-Claro K, Oliveira PS (1996) Honeydew flicking by treehoppers provides cues to potential tending ants. Anim Behav 51:1071–1075. doi:10.1006/anbe.1996.0108

    Article  Google Scholar 

  • Del-Claro K, Oliveira PS (1999) Ant-homoptera interactions in a neotropical savanna: the honeydew-producing treehopper Guayaquila xiphias (Membracidae) and its associated ant fauna on Didymopanax vinosum (Araliaceae). Biotropica 31:135–144. doi:10.1111/j.1744-7429.1999.tb00124.x

    Google Scholar 

  • Del-Claro K, Oliveira PS (2000) Conditional outcomes in a neotropical treehopper-ant association: temporal and species-specific variation in ant protection and homopteran fecundity. Oecologia 124:156–165. doi:10.1007/s004420050002

    Article  Google Scholar 

  • Del-Claro K, Torezan-Silingardi HM (2009) Insect–plant interactions: new pathways to a better comprehension of ecological communities in neotropical savannas. Neotrop Entomol 38:159–164. doi:10.1590/S1519-566X2009000200001

    Article  PubMed  Google Scholar 

  • Del-Claro K, Torezan-Silingardi HM (2012) Ecologia das interações plantas-animais: Uma abordagem ecológico-evolutiva. Technical Books, Rio de Janeiro

    Google Scholar 

  • Del-Claro K, Marullo R, Mound LA (1997) A new Brazilian species of Heterothrips (Insecta: Thysanoptera) co-existing with ants in the flowers of Peixotoa tomentosa (Malpighiaceae) J. Nat Hist 31:1307–1312. doi:10.1080/00222939700770731

    Article  Google Scholar 

  • Del-Claro K, Byk J, Yugue GM, Morato MG (2006) Conservative benefits in an ant–hemipteran association in the Brazilian tropical savanna. Sociobiology 47:415–421

    Google Scholar 

  • Del-Claro K, Guillermo-Ferreira R, Almeida EM, Zardini H, Torezan-Silingardi HM (2013a) Ants visiting the post-floral secretions of pericarpial nectaries in Palicourea rigida (Rubiaceae) provide protection against leaf herbivores but not against seed parasites. Sociobiology 60:217–221. doi:10.13102/sociobiology.v60i3.217-221

    Article  Google Scholar 

  • Del-Claro K, Stefani V, Lange D, Vilela AA, Nahas L, Velasques M, Torezan-Silingardi HM (2013b) The importance of natural history studies for a better comprehension of animal–plant interactions networks. Biosc J 29:439–448. doi:10.1017/S0266467413000813

    Google Scholar 

  • DeVries PJ (1989) Detecting and recording the calls produced by butterfly caterpillars and ants. J Res Lepid 28:258–262

    Google Scholar 

  • Díaz-Castelazo C, Rico-Gray V, Ortega F, Ángeles G (2005) Morphological and secretory characterization of extrafloral nectaries in plants of coastal Veracruz, Mexico. Ann Bot 96:1175–1189. doi:10.1093/aob/mci270

    Article  PubMed  PubMed Central  Google Scholar 

  • Díaz-Castelazo C, Guimarães PR, Jordano P, Thompson JN, Marquis RJ, Rico-Gray V (2010) Changes of a mutualistic network over time: reanalysis over a 10-year period. Ecology 91:793–801. doi:10.1890/08-1883.1

    Article  PubMed  Google Scholar 

  • Díaz-Castelazo C, Sánchez-Galván IR, Guimarães PR Jr, Raimundo RLG, Rico-Gray V (2013) Long-term temporal variation in the organization of an ant–plant network. Ann Bot 111:1285–1293. doi:10.1093/aob/mct071

    Article  PubMed  PubMed Central  Google Scholar 

  • Dixon AFG (1971) The role of aphids in wood formation. I. The effect of the sycamore aphid Dreopanosiphum platanoides (Schr.) (Aphididae), on the growth of sycamore, Acer pseudoplatanus (L.). J Appl Ecol 8:165–179. doi:10.2307/2402135

    Article  Google Scholar 

  • Elias TS (1983) Extrafloral nectaries: their structure and distribution. In: Bentley B, Elias T (eds) The biology of nectaries. Columbia University Press, New York, pp 174–203

    Google Scholar 

  • Faegri K, Van der Pijl L (1976) The principles of pollination ecology. Pergamon Press, Oxford

    Google Scholar 

  • Fagundes R, Ribeiro SP, Del-Claro K (2013) Tending-ants increase survivorship and reproductive success of Calloconophora pugionata Dietrich (Hemiptera, Membracidae), trophobiont herbivore of Myrcia obovata O. Berg (Myrtales, Myrtaceae). Sociobiology 60:11–19. doi:10.13102/sociobiology.v60i1.11-19

    Article  Google Scholar 

  • Falcão JCF, Dáttilo W, Izzo TJ (2014) Temporal variation in extrafloral nectar secretion in different ontogenetic stages of the fruits of Alibertia verrucosa S. Moore (Rubiaceae) in a neotropical savanna. J Plant Interact 9:137–142. doi:10.1080/17429145.2013.782513

    Article  CAS  Google Scholar 

  • Ferreira CA, Torezan-Silingardi HM (2013) Implications of the floral herbivory on Malpighiaceae plant fitness: visual aspect of the flower affects the attractiveness to pollinators. Sociobiology 60:323–328. doi:10.13102/sociobiology.v60i3.323-328

    Article  Google Scholar 

  • Fiala B (1990) Extrafloral nectaries versus ant–homoptera mutualisms: a comment on Becerra and Venable. Oikos 59:281–282. doi:10.2307/3545545

    Article  Google Scholar 

  • Fiedler K, Kuhlmann F, Schlick-Steiner BC, Steiner FM, Gebauer G (2007) Stable N-isotope signatures of central European ants—assessing positions in a trophic gradient. Insectes Soc 54:393–402. doi:10.1007/s00040-007-0959-0

    Article  Google Scholar 

  • Gaume L, McKey D, Terrin S (1998) Ant–plant–homopteran mutualism: how the third partner affects the interaction between a plant specialist ant and its myrmecophyte host. Proc R Soc London Ser B 265:569–575. doi:10.1098/rspb.1998.0332

    Article  Google Scholar 

  • Gentry AH (1974) Flowering phenology and diversity in tropical Bignoniaceae. Biotropica 6:64–68. doi:10.2307/2989698

    Article  Google Scholar 

  • Gómez JM, Zamora R (1992) Pollination by ants: consequences of quantitative effects on a mutualistic system. Oecologia 91:410–418. doi:10.1007/bf00317631

    Article  Google Scholar 

  • González-Teuber M, Heil M (2009) Nectar chemistry is tailored for both attraction of mutualists and protection from exploiters. Plant Signal Behav 4:809–813. doi:10.4161/psb.4.9.9393

    Article  PubMed  PubMed Central  Google Scholar 

  • Grasso DA, Pandolfi C, Bazihizina N, Nocentini D, Nepi M, Mancuso S (2015) Extrafloral-nectar-based partner manipulation in plant–ant relationships. AoB Plants 7:plv002. doi:10.1093/aobpla/plv002

  • Guimarães PR Jr, Rico-Gray V, Furtado-dos-Reis R, Thompson LN (2006) Asymmetries in specialization in ant–plant mutualistic networks. Proc R Soc Lond B Biol Sci 273:2041–2047. doi:10.1098/rspb.2006.3548

    Article  Google Scholar 

  • Guimarães PR Jr, Rico-Gray V, Oliveira PS, Izzo TJ, dos-Reis SF, Thompson JN (2007) Interaction intimacy affects structure and coevolutionary dynamics in mutualistic networks. Curr Biol 17:1–7. doi:10.1016/j.cub.2007.09.059

    Article  CAS  Google Scholar 

  • Haber WA, Frankie GW, Baker HG, Baker I, Koptur S (1981) Ants like flower nectar. Biotropica 13:211–214. doi:10.2307/2388126

    Article  Google Scholar 

  • Hagen M et al (2012) Biodiversity, species interactions and ecological networks in a fragmented world. Adv Ecol Res 46:189–210. doi:10.1016/B978-0-12-396992-7.00002-27

    Google Scholar 

  • Hawkins CDB, Aston MJ, Whitecross MI (1987) Short-term effects of aphid feeding on photosynthetic CO2 exchange and dark respiration in legume leaves. Physiol Plantarum 71:379–383. doi:10.1111/j.1399-3054.1987.tb04359.x

    Article  CAS  Google Scholar 

  • Heil M (2015) Extrafloral nectar at the plant–insect interface: a spotlight on chemical ecology, phenotypic plasticity, and food webs. Annu Rev Entomol 60:213–232. doi:10.1146/annurev-ento-010814-020753

    Article  CAS  PubMed  Google Scholar 

  • Heil M, Fiala B, Baumann B, Linsenmair KE (2000) Temporal, spatial and biotic variations in extrafloral nectar secretion by Macaranga tanarius. Funct Ecol 14:749–757. doi:10.1046/j.1365-2435.2000.00480.x

    Article  Google Scholar 

  • Heil M, Koch T, Hilpert A, Fiala B, Boland W, Linsenmair KE (2001) Extrafloral nectar production of the ant-associated plant, Macaranga tanarius, is an induced, indirect, defensive response elicited by jasmonic acid. Proc Natl Acad Sci USA 98:1083–1088. doi:10.1073/pnas.98.3.1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holland JN, Chamberlain SA, Horn KC (2009) Optimal defence theory predicts investment in extrafloral nectar resources in an ant–plant mutualism. J Ecol 97:89–96. doi:10.1111/j.1365-2745.2008.01446.x

    Article  Google Scholar 

  • Horvitz CC, Schemske DW (1984) Effects of ants and an ant-tended herbivore on seed production of a neotropical herb. Ecology 65:1369–1378

    Article  Google Scholar 

  • Janzen DH (1980) When is it coevolution? Evolution 34:611–612. doi:10.2307/2408229

    Article  Google Scholar 

  • Jones IM, Koptur S (2015) Quantity over quality: light intensity, but not red/far-red ratio, affects extrafloral nectar production in Senna mexicana var chapmanii. Ecol Evolut. doi:10.1002/ece3.1644

    Google Scholar 

  • Junker RR, Blüthgen N (2008) Floral scents repel potentially nectar-thieving ants. Evol Ecol Res 10:295–308. doi:10.1093/aob/mcq045

    Google Scholar 

  • Junker R, Chung AYC, Blüthgen N (2007) Interaction between flowers, ants and pollinators: additional evidence for floral repellence against ants. Ecol Res 22:665–670. doi:10.1007/s11284-006-0306-3

    Article  Google Scholar 

  • Karban R, Baldwin IT (1997) Induced responses to herbivory. The University of Chicago Press, Chicago

    Book  Google Scholar 

  • Katayama N, Suzuki N (2011) Anti-herbivory defense of two Vicia species with and without extrafloral nectaries. Plant Ecol 212:743–752. doi:10.1007/s11258-010-9862-2

    Article  Google Scholar 

  • Katayama N, Hembry DH, Hojo MK, Suzuki N (2013) Why do ants shift their foraging from extrafloral nectar to aphid honeydew? Ecol Res 28:919–926. doi:10.1007/s11284-013-1074-5

    Article  Google Scholar 

  • Keeler KH (1977) The extrafloral nectaries of Ipomea carnea (Convolvulaceae). Am J Bot 64:1182–1188. doi:10.2307/2442480

    Article  Google Scholar 

  • Kerslake JE, Hartley SE (1997) Phenology of winter moth feeding on common heather effects of source population and experimental manipulation of hatch dates. J Anim Ecol 66:375–385. doi:10.2307/5983

    Article  Google Scholar 

  • Koptur S (1989) Is extrafloral nectar production an inducible defense? In: Bock J, Linhart Y (eds) Evolutionary ecology of plants. Westerview Press, Boulder, pp 323–339

    Google Scholar 

  • Koptur S (1992a) Plants with extrafloral nectaries and ants in everglades habitats. Fla Entomol 75:38–50. doi:10.2307/3495479

    Article  Google Scholar 

  • Koptur S (1992b) Extrafloral nectary-mediated interactions between insects and plants. In: Bernays E (ed) Insect–plant interactions. Boca Raton Press, Florida, pp 81–129

    Google Scholar 

  • Koptur S (1994) Floral and extrafloral nectars of neotropical Inga trees: a comparison of their constituents and composition. Biotropica 26:276–284. doi:10.2307/2388848

    Article  Google Scholar 

  • Koptur S (2005) Nectar as fuel for plant protectors. In: Wäckers FL, van-Rijn PCJ, Bruin (eds) Plant-provided food for carnivorous insects. Cambridge University Press, Cambridge, pp 75–108

    Chapter  Google Scholar 

  • Koptur S, Jones IM, Pena JE (2015) The influence of host plant extrafloral nectaries on multitrophic interactions: an experimental investigation. PLoS One 22:1–18. doi:10.1371/journal.pone.0138157

    Google Scholar 

  • Lach L, Hobbs ER, Majer EJD (2009) Herbivory-induced extrafloral nectar increases native and invasive ant worker survival. Popul Ecol 51:237–243

    Article  Google Scholar 

  • Lange D, Del-Claro K (2014) Ant–plant interaction in a tropical savanna: may the network structure vary over time and influence on the outcomes of associations? PLoS One 9:e105574. doi:10.1371/journal.pone.0105574

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lange D, Dáttilo W, Del-Claro K (2013) Influence of extrafloral nectary phenology on ant–plant mutualistic networks in a neotropical savanna. Ecol Entomol 38:463–469. doi:10.1111/een.12036

    Article  Google Scholar 

  • Marquis RJ, Lill JT (2010) Impact of plant architecture versus leaf quality on attack by leaf-tying caterpillars on five oak species. Oecologia 163:203–213. doi:10.1007/s00442-009-1519-2

    Article  PubMed  Google Scholar 

  • McKey D (1979) The distribution of secondary compounds within plants. In: Rosenthal GA, Janzen DH (eds) Herbivores: their interactions with secondary plant metabolites. Academic, New York, pp 55–133

    Google Scholar 

  • Memmott J, Craze PG, Waser NM, Price MV (2007) Global warming and the disruption of plant–pollinator interactions. Ecol Lett 10:710–717. doi:10.1111/j.1461-0248.2007.01061.x

    Article  PubMed  Google Scholar 

  • Messina FJ (1981) Plant protection as a consequence of an ant–membracid mutualism: interactions on goldenrod (Solidago sp.). Ecology 62:1433–1440. doi:10.2307/1941499

    Article  Google Scholar 

  • Moreira VSS, Del-Claro K (2005) The outcomes of an ant-threehopper association on Solanum lycocarpum St. Hil: increased membracid fecundity and reduced damage by chewing herbivores. Neotrop Entomol 34:881–887. doi:10.1590/s1519-566x2005000600002

    Article  Google Scholar 

  • Moya-Raygoza G, Larsen KJ (2001) Temporal resource switching by ants between honeydew produced by the fivespotted gama grass leafhopper (Dalbulus quinquenotatus) and nectar produced by plants with extrafloral nectaries. Am Midl Nat 146:311–320. doi:10.1674/0003-0031(2001)146[0311:trsbab]2.0.co;2

  • Muller CB, Godfray HC (1999) Indirect interactions in aphid–parasitoid communities. Res Popul Ecol 41:93–106. doi:10.1007/pl00011986

    Article  Google Scholar 

  • Nahas L, Gonzaga MO, Del-Claro K (2012) Emergent impacts of ant and spider interactions: herbivory reduction in a tropical savanna tree. Biotropica 44:498–505. doi:10.1111/j.1744-7429.2011.00850.x

    Article  Google Scholar 

  • Nascimento EA, Del-Claro K (2010) Ant visitation to extrafloral nectaries decreases herbivory and increases fruit set in Chamaecrista debilis (Fabaceae) in a neotropical savanna. Flora 205:754–756. doi:10.1016/j.flora.2009.12.040

    Article  Google Scholar 

  • Ness JH (2006) A mutualism’s indirect costs: the most aggressive plant bodyguards also deter pollinators. Oikos 113:506–514. doi:10.1111/j.2006.0030-1299.14143.x

    Article  Google Scholar 

  • Ness JH, Morris WF, Bronstein JL (2009) For ant-protected plants, the best defense is a hungry offense. Ecology 90:2823–2831

    Article  CAS  PubMed  Google Scholar 

  • Newstron LE, Frankie GW, Baker HG (1994) A new classification for plant phenology based on flower patterns in lowland tropical rain forest trees at La Selva, Costa Rica. Biotropica 26:141–159. doi:10.2307/2388804

    Article  Google Scholar 

  • Nogueira A, Rey PJ, Alcántara JM, Feitosa RM, Lohmann LG (2015) Geographic mosaic of plant evolution: extrafloral nectary variation mediated by ant and herbivore assemblages. PLoS One 10:e0123806. doi:10.1371/journal.pone.0123806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oliveira PS, Del-Claro K (2005) Multitrophic interactions in a neotropical savanna: ant–hemipteran systems, associated insect herbivores, and a host plant. In: Burslem DFRP, Pinard MA, Hartley SE (eds) Biotic interactions in the tropics. Cambridge University Press, Cambridge, pp 414–438

    Chapter  Google Scholar 

  • Oliveira PS, Freitas AVL (2004) Ant plant herbivore interactions in the neotropical cerrado savanna. Naturwissenschaften 91:557–570. doi:10.1007/s00114-004-0585-x

    Article  CAS  PubMed  Google Scholar 

  • Oliveira DC, Isaias RMS (2010) Redifferentiation of leaflet tissues during gall midrib gall development in Copaifera langsdorffii (Fabaceae). South Afr J Bot 76:239–248. doi:10.1016/j.sajb.2009.10.011

    Article  Google Scholar 

  • Pierce NE, Braby MF, Heath A, Lohman DJ, Mathew J, Rand DB, Travassos MA (2002) The ecology and evolution of ant association in the Lycaenidae (Lepidoptera). Ann Rev Entomol 47:733–771. doi:10.1146/annurev.ento.47.091201.145257

    Article  CAS  Google Scholar 

  • Price PW (2002) Species interactions and the evolution of biodiversity. In: Herrera CM, Pellmyr O (eds) Plant–animal interactions: an evolutionary approach. Blackwell Science, Oxford, pp 3–25

    Google Scholar 

  • Queiroz JM, Oliveira PS (2001) Tending ants protect honeydew-producing whiteflies (Homoptera: Aleyrodidae). Environ Entomol 30:295–297. doi:10.1603/0046-225X-30.2.295

    Article  Google Scholar 

  • Rashbrook VK, Compton SG, Lawton JH (1992) Ant herbivore interactions: reasons for the absence of benefits to a fern with foliar nectaries. Ecology 73:2167–2174. doi:10.2307/1941464

    Article  Google Scholar 

  • Rhoades DF (1979) Evolution of plant defense against herbivores. In: Rosenthal GA, Janzen DH (eds) Herbivores: their interaction with secondary metabolites. Academic, New York, pp 1–55

    Google Scholar 

  • Ricklefs RE (1984) The optimization of growth rate in altricial birds. Ecology 65:1602–1616. doi:10.2307/1939139

    Article  Google Scholar 

  • Rico-Gray V (1980) Ants and tropical flowers. Biotropica 12:223–224

    Article  Google Scholar 

  • Rico-Gray V (1989) The importance of floral and circum-floral nectar to ants inhabiting dry tropical lowlands. Biol J Linn Soc 38:173–181. doi:10.1111/j.1095-8312.1989.tb01572.x

    Article  Google Scholar 

  • Rico-Gray V (1993) Use of plant-derived food resources by ants in the dry tropical lowlands of coastal Veracruz, Mexico. Biotropica 301–315. doi:10.2307/2388788

  • Rico-Gray V, Castro G (1996) Effect of an ant–aphid–plant interaction on the reproductive fitness of Paullinia fuscecens (Sapindaceae). Southwest Nat 41:434–440

    Google Scholar 

  • Rico-Gray V, Oliveira PS (2007) The ecology and evolution of ant–plant interactions. The University of Chicago Press, Chicago

    Book  Google Scholar 

  • Rico-Gray V, Díaz-Castelazo C, Ramírez-Hernández A, Guimarães PR Jr, Holland JN (2012) Abiotic factors shape temporal variation in the structure of an ant–plant network. Arthropod Plant Int 6:289–295. doi:10.1007/s11829-011-9170-3

    Article  Google Scholar 

  • Room PM (1972) The fauna of the mistletoe Tapinanthus bangwensis (Engl. & K. Krause) growing on cocoa in Ghana: relationships between fauna and mistletoe. J Anim Ecol 41:61–621. doi:10.2307/3198

    Google Scholar 

  • Rosumek FB, Silveira FAO, Neves FS, Barbosa NP, Diniz L, Oki Y, Pezzini F, Fernandez WG, Cornelissen T (2009) Ants on plants: a meta-analysis of the role of ants as plant biotic defenses. Oecologia 160:537–549. doi:10.1007/s00442-009-1309-x

    Article  PubMed  Google Scholar 

  • Roughgarden J (1979) Theory of population genetics and evolutionary ecology: an introduction. Mac-Millan, New York

    Google Scholar 

  • Ruhren S, Handel SN (1999) Jumping spiders (Salticidae) enhance the seed production of a plant with extrafloral nectaries. Oecologia 119:227–230. doi:10.1007/s004420050780

    Article  Google Scholar 

  • Sánchez-Galván IR, Díaz-Castelazo C, Rico-Gray V (2012) Effect of hurricane Karl on a plant–ant network occurring in coastal Veracruz, Mexico. J Trop Ecol 28:603–609. doi:10.1017/S0266467412000582

    Article  Google Scholar 

  • Santos GMM, Dáttilo W, Presley SJ (2014) The seasonal dynamic of ant–flower networks in a semi-arid tropical environment. Ecol Entomol 39:674–683. doi:10.1111/een.12138

    Article  Google Scholar 

  • Sigrist MR, Sazima M (2004) Pollination and reproductive biology of twelve species of neotropical Malpighiaceae: stigma morphology and its implications for the breeding system. Ann Bot 94:33–41. doi:10.1093/aob/mch108

    Article  PubMed  PubMed Central  Google Scholar 

  • Singer MC, Parmesan C (2010) Phenological asynchrony between herbivorous insects and their hosts: signal for climate change or pre-existing adaptive strategy? Phil Trans R Soc B 365:3161–3176. doi:10.1098/rstb.2010.0144

    Article  PubMed  PubMed Central  Google Scholar 

  • Snow AA, Staton ML (1988) Aphids limit fecundity of a weedy annual (Raphanus sativus). Am J Bot 75:589–593. doi:10.2307/2444225

    Article  Google Scholar 

  • Stadler B, Dixon AFG (2005) Ecology and evolution of aphid–ant interactions. Annu Rev Ecol Evol Syst 36:345–372. doi:10.1146/annurev.ecolsys.36.091704.175531

    Article  Google Scholar 

  • Stadler B, Kindlmann P, Smilauer P, Fiedler K (2003) A comparative analysis of morphological and ecological characters of European aphids and lycaenids in relation to ant attendance. Oecologia 135:422–430. doi:10.1007/s00442-003-1193-8

    Article  PubMed  Google Scholar 

  • Stefani V, Pires TL, Torezan-Silingardi HM, Del-Claro K (2015) Beneficial effects of ants and spiders on the reproductive value of Eriotheca gracilipes (Malvaceae) in a tropical savanna. PLoS One 10:e0131843. doi:10.1371/journal.pone.0131843

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stephenson AG (1982) The role of the extrafloral nectaries of Catalpa speciose in limiting herbivory and increasing fruit production. Ecology 63:663–669. doi:10.2307/1936786

    Article  Google Scholar 

  • Styrsky JD, Eubanks MD (2007) Ecological consequences of interactions between ants and honeydew-producing insects. Proc R Soc Lond Ser B Biol Sci 274:151–164. doi:10.1098/rspb.2006.3701

    Article  Google Scholar 

  • Sugiura S (2010) Species interactions-area relationships: biological invasions and network structure in relation to island area. Proc Roy Soc 1–9. doi:10.1098/rspb.2009.2086

  • Thompson JN (1994) The coevolutionary process. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Thompson JN (1997) Evaluating the dynamics of coevolution among geographically structured populations. Ecology 78:1619–1623. doi:10.1890/0012-9658(1997)078

    Article  Google Scholar 

  • Thompson JN (1999) Specific hypotheses on the geographic mosaic of coevolution. Am Nat 153:1–14. doi:10.1086/303208

    Article  Google Scholar 

  • Thompson JN (2005) The geographic mosaic of coevolution. University of Chicago Press, Chicago

    Google Scholar 

  • Thompson JN (2013) Relentless evolution. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Tilman D (1978) Cherries, ants and tent caterpillar: timing of nectar production in relation to susceptibility of caterpillars to ant predation. Ecology 59:686–692

    Article  Google Scholar 

  • Torezan-Silingardi HM (2011) Predatory behavior of Pachodynerus brevithorax (Hymenoptera: Vespidae, Eumeninae) on endophytic herbivore beetles in the Brazilian tropical savanna. Sociobiology 57:181–189. doi:10.13102/sociobiology.v60i3.323-328

    Google Scholar 

  • Torezan-Silingardi HM (2012) Flores e animais, uma introdução à história natural da polinização. In: Del-Claro K, Torezan-Silingardi HM (eds) Ecologia das interações plantas-animais: uma abordagem ecológico-evolutiva. Technical Books, Rio de Janeiro, pp 111–142

    Google Scholar 

  • Vilela AA, Torezan-Silingardi HM, Del-Claro K (2014) Conditional outcomes in ant–plant–herbivore interactions influenced by sequential flowering. Flora 209:359–366. doi:10.1016/j.flora.2014.04.004

    Article  Google Scholar 

  • Wäckers FL, Zuber D, Wunderlin R, Keller F (2001) The effect of herbivory on temporal and spatial dynamics of foliar nectar production in cotton and castor. Ann Bot 87:365–370. doi:10.1006/anbo.2000.1342

    Article  CAS  Google Scholar 

  • Wagner D, Kay A (2002) Do extrafloral nectaries distract ants from visiting flowers? An experimental test of an overlooked hypothesis. Evol Ecol Res 4:293–305

    Google Scholar 

  • Way MJ (1963) Mutualism between ants and honeydew-producing Homoptera. Ann Rev Entomol 8:307–344. doi:10.1146/annurev.en.08.010163.001515

    Article  Google Scholar 

  • Weber MG, Keeler KH (2013) The phylogenetic distribution of extrafloral nectaries in plants. Ann Bot 111:1251–1261. doi:10.1093/aob/mcs225

    Article  PubMed  PubMed Central  Google Scholar 

  • Weeks JA (2003) Parasitism and ant protection alter the survival of the lycaenid Hemiargus isola. Ecol Entomol 28:228–232. doi:10.1046/j.1365-2311.2003.00489.x

    Article  Google Scholar 

  • Wilder SM, Holway DA, Suarez AV, Eubanks MD (2011) Macronutrient content of plant-based food affects growth of a carnivorous arthropod. Ecology 92:325–332

    Article  PubMed  Google Scholar 

  • Yang LH, Rudolf VHW (2010) Phenology, ontogeny and the effects of climate change on the timing of species interactions. Ecol Lett 13:1–10. doi:10.1111/j.1461-0248.2009.01402.x

    Article  CAS  PubMed  Google Scholar 

  • Yukawa J (2000) Synchronization of gallers with host plant phenology. Res Popul Ecol 42:105–113. doi:10.1007/PL00011989

    Article  Google Scholar 

  • Yumoto T, Maruhashi T (1999) Pruning behavior and intercolony competition of Tetraponera (Pachysima) aethiops (Pseudomyrmecinae, Hymenoptera) in Barteria fistulosa in a tropical forest, Democratic Republic of Congo. Ecol Res 14:393–404. doi:10.1046/j.1440-1703.1999.00307.x

    Article  Google Scholar 

  • Zhang S, Zhang Y, Keming MA (2012) The ecological effects of the ant–hemipteran mutualism: a meta-analysis. Basic Appl Ecol 13:116–124

    Article  Google Scholar 

  • Zhang S, Zhang Y, Keming MA (2015) The equal effectiveness of different defensive strategies. Sci Repo 5. Article number:13049. doi:10.1038/srep13049

  • Zimmermann JG (1932) Über die extrafloralen nektarien der angiospermen. Beihefte Botanisches Zentralblatt 49:99–196

    Google Scholar 

  • Zvereva E, Lanta V, Kozlov M (2010) Effects of sap-feeding insect herbivores on growth and reproduction of woody plants: a meta-analysis of experimental studies. Oecologia 163:949–960

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are thankful to Dr. Margaret J. Couvillon and Dr. Michael Breed who invited us to produce this review. KDC thanks to CNPq (PQ 301605/2013-0); HMTS and KDC thanks to CNPq (473055/2012-0). We also thank the ants, plants, and other arthropods who have made this review possible; beyond an excellent reviewer whose criticism and suggestions significantly improved the quality of our text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Del-Claro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Del-Claro, K., Rico-Gray, V., Torezan-Silingardi, H.M. et al. Loss and gains in ant–plant interactions mediated by extrafloral nectar: fidelity, cheats, and lies. Insect. Soc. 63, 207–221 (2016). https://doi.org/10.1007/s00040-016-0466-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-016-0466-2

Keywords

Navigation