Skip to main content

Extremophilic Fungi and Their Role in Control of Pathogenic Microbes

  • Chapter
  • First Online:
Recent Trends in Mycological Research

Abstract

Extremophilic fungi are a group of fungi with distinct and well-developed uniqueness to strive in the extremes of pressure, temperature, salinity, desiccation, and pH. They produce and biosynthesize active compounds with protective and antimicrobial activities. Fungi extremophiles have been harnessed for a number of biotechnological, medical, industrial, and environmental applications. Here, we succinctly illustrate their exploration as biocontrol agents through strategies such as “antibiosis, induced systemic resistance, preemptive colonization and siderophore production.” Enzymes and proteins produced from these fungi are used in pharmaceutical industries owing to their ability to withstand extreme conditions. Extremophilic fungi have shown great prospects in diverse applications; hence, exploring their use in the control of pathogenic microbes presents a solution to the rising and associated agricultural challenges (antimicrobial resistance) and with a promising outlook in the control of phytopathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akpi UK, Odoh CK (2017) Antimicrobial activities of Pleurotus squarrosulus on clinical pathogenic bacteria and fungi. J Adv Microbiol 4(3):1–9. https://doi.org/10.9734/JAMB/2017/34644

    Article  Google Scholar 

  • Akpi UK, Nwankwo EO, Odoh CK (2017a) In Vitroantimicrobial activity of Polyporus Alveolaris on clinical pathogens. J Curr Biomed Res 1:47–54

    Google Scholar 

  • Akpi UK, Odoh CK, Ideh EE, Adobu US (2017b) Antimicrobial activity of lycoperdonperlatum whole fruit body on common pathogenic bacteria and fungi. Afr J Clin Exp Microbiol 18(2):79–85. https://doi.org/10.4314/ajcem.v18i2.4

    Article  Google Scholar 

  • Ali I, Siwarungson N, Punnapayak H, Pongtharin L, Prasongsuk S, Bankeeree W, Rakshit KS (2014) Screening of potential biotechnological applications from obligate Halophilic fungi, isolated from a man-made solar saltern located in Phetchaburi province, Thailand. Pak J Bot 46(3):983–988

    Google Scholar 

  • Annapurna M, Bhagawati B, Uday K (2018) Biochemical mechanism of native fungal bioagents in the management of root-knot nematode Meloidogyne incognita on tomato. Int J Curr Microbiol Appl Sci 7(11):380–395

    Article  CAS  Google Scholar 

  • Anupama PD, Praveen KD, Singh RK, Kumar S, Srivastava AK, Arora DK (2011) A psychrophilic and halotolerant strain of Thelebolus microsporus from Pangong Lake, Himalaya. Mycosphere 2:601–609

    Article  Google Scholar 

  • Appoloni S, Lekberg Y, Tercek MT, Zabinski CA, Redecker D (2008) Molecular community analysis of arbuscular mycorrhizal fungi in roots of geothermal soils in Yellowstone National Park (USA). Microbiol Ecol 56:649–659

    Article  Google Scholar 

  • Arya A, Sharma R, Sharma G, Kabdwal BC (2017) Evaluation of fungal and bacterial antagonists for managing phytopathogen Fusarium moniliforme var. subglutinans Sheldon, causing PokkahBoeng disease of sugarcane. J Biol Cont 31(4):217–222

    Article  Google Scholar 

  • Askolin S, Nakari-setálá T, Tenkanen M (2001) Overproduction, purification andcharacterization of the Trichoderma reesei hydrophobin HFB1. Appl Microbiol Biotechnol 57(1–2):124–130

    CAS  PubMed  Google Scholar 

  • Bajaj BK, Sharma M, Rao RS (2014) Agricultural residues for production of cellulase from Sporotrichum thermophile LAR5 and its application for saccharification of rice straw. J Mater Environ Sci 5(5):1454–1460

    Google Scholar 

  • Baker KF, Cook RJ (1974) Biologial control of plant pathogens. American Phytopatholog Society, St. Paul, p 433

    Google Scholar 

  • Bari KP, Padalia U (2015) In-vitro antimicrobial activity of fungi from extreme environment. Int J Life Sci Special Issue A5:92–94

    Google Scholar 

  • Benbow JM, Sugar D (1999) Fruit surface colonization and biological control of postharvest diseases of pear by preharvest yeast applications. Plant Dis 83:839–844

    Article  PubMed  Google Scholar 

  • Bendia AG, Araujo GG, Pulschen AA, Contro B, Duarte RTD, Rodrigues F et al (2018) Surviving in hot and cold: psychrophiles and thermophiles from Deception Island volcano, Antarctica. Extremophiles 22(6):917–929

    Article  CAS  PubMed  Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LM (2012) Plant Growth-Promoting Rhizobacteria(PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35:1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertrand JC, Brochier-Armanet C, Gouy M, Westall F (2015) For three billion years, microorganisms were the only inhabitants of the earth. In: Bertrand J, Caumette P, Lebaron P, Matheron R, Normand P, Sime Ngando T (eds) Environmental microbiology: fundamentals and applications. Springer, Dordrecht, pp 25–71. https://doi.org/10.1007/978-94-017-9118-2_4

    Chapter  Google Scholar 

  • Bhattacharjee R, Dey U (2014) An overview of fungal and bacterial biopesticides to control plant pathogens/diseases. Afr J Microbiol Res 8(17):1749–1762

    Article  Google Scholar 

  • Bi F, Barad S, Ment D, Luria N, Dubey A, Casado V et al (2016) Carbon regulation of environmental pH by secreted small molecules that modulate pathogenicity in phytopathogenic fungi. Mol Plant Pathol 17(8):1178–95. pmid:26666972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blachowicz A, Chiang AJ, Elsaesser A, Kalkum M, Ehrenfreund P, Stajich JE et al (2019) Proteomic and metabolomic characteristics of extremophilic fungi under simulated mars conditions. Front Microbiol 10:1013

    Article  PubMed  PubMed Central  Google Scholar 

  • Blanchette RA, Held BW, Arenz BE, Jurgens JA, Baltes NJ, Duncan SM et al (2010) An Antarctic hot spot for fungi at Shackleton’s historic hut on Cape Royds. Microbial Ecol 60:29–38

    Article  Google Scholar 

  • Canganella F, Wiegel J (2011) Extremophiles: from abyssal to terrestrial ecosystems and possibly beyond. Naturwissenschaften 98:253–279

    Article  CAS  PubMed  Google Scholar 

  • Cantrell SA, Baez-Félix C (2010) Fungal molecular diversity of a Puerto Rican subtropical hypersaline microbial mat. Fungal Ecol 3:402–405

    Article  Google Scholar 

  • Carex (2011) Roadmap for research on life in extreme environments. Carex Project Office, StrasbourgCedex

    Google Scholar 

  • Carreras-Villasenor N, Jose’Alejandro SA, Alfredo H (2019) Trichoderma: sensing the environment for survival and dispersal. Microbiology 158(2012):3–16

    Google Scholar 

  • Casanueva A, Tuffin M, Cary C, Cowan DA (2010) Molecular adaptations to psychrophily: the impact of ‘omic’ technologies. Trends Microbiol 18:374–381

    Article  CAS  PubMed  Google Scholar 

  • Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR (2002) Low-temperature extremophiles and their applications. Curr Opin Biotechnol 13:253–261

    Article  CAS  PubMed  Google Scholar 

  • Cavicchioli R, Charlton T, Ertan H, Mohd Omar S, Siddiqui KS et al (2011) Biotechnological uses of enzymes from psychrophiles. Microbial Biotechnol 4(4):449–460

    Article  CAS  Google Scholar 

  • Cavka M, Glasnović A, Janković I, Sikanjić P, Perić B, Brkljacić B et al (2010) Microbiological analysis of a mummy from the archeological museum in Zagreb. Coll Antropol 34:803–805

    PubMed  Google Scholar 

  • Chamekh R, Deniel F, Donot C, Jany J, Nodet P, Belabid L (2019) Isolation, identification and enzymatic activity of halotolerant and Halophilic fungi from the great Sebkha of Oran in Northwestern of Algeria. J Mycobiol 47(2):230–241

    Article  Google Scholar 

  • Charlesworth J, Burns BP (2016) Extremophilic adaptations and biotechnological applications in diverse environments. AIMS Microbiol 2(3):251–261

    Article  CAS  Google Scholar 

  • Chen P-H, Chen R-Y, Chou J-Y (2018) Screening and evaluation of yeast antagonists for biological control of Botrytis cinerea on strawberry fruits. Mycobiology 46(1):33–46

    Article  PubMed  PubMed Central  Google Scholar 

  • Choudhary DK, Prakash A, Johri BN (2007) Induced systemic resistance (ISR) in plants: mechanism of action. Indian J Microbiol 47(4):289–297

    Article  CAS  PubMed  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, del-Val E, Larsen J (2016) Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiol Ecol 92(4):fiw036

    Article  PubMed  CAS  Google Scholar 

  • Cowan DA, Ramond JB, Makhalanyane TP, DeMaayer P (2015) Metagenomics of extreme environments. Curr Opin Microbiol 25:97–102

    Article  CAS  PubMed  Google Scholar 

  • Czikkely M, Bálint Á (2016) Study of the degradation patterns of thermophilic fungi from special digested wastewater sludge samples. Columella-J Agric Environ Sci 3(2):47–51

    Google Scholar 

  • Dalsgaard PW, Larsen TO, Christophersen C (2005) Bioactive cyclic peptides from the psychrotolerant fungus Penicillium algidum. J Antibiot 58:141–144

    Article  CAS  Google Scholar 

  • Das BK, Roy A, Singh S, Bhattacharya J (2009) Eukaryotes in acidic mine drainage environments: potential applications in bioremediation. Rev Environ Sci Biotechnol 8:257–274

    Article  CAS  Google Scholar 

  • Deshmukh MA, Gade RM, Belkar YK, Koche MD (2016) Efficacy of bioagents, biofertilizers and soil amendments to manage root rot in greengram. Legume Res 39(1):140–144

    Google Scholar 

  • Dimarogona M, Topakas E, Olsson L, Christakopoulos P (2012) Lignin boosts the cellulase performance of a GH-61 enzyme from Sporotrichum thermophile. Bioresour Technol 110:480–487

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, Merten D, Svatos A, Büchel G, Kothe E (2009) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol 107:1687–1696

    Article  CAS  PubMed  Google Scholar 

  • Durán P, Barra PJ, Jorquera MA, Viscardi S, Fernandez C, Paz C et al (2019) Occurrence of soil fungi in Antarctic pristine environments. Front Bioeng Biotechnol 7:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Dutta A, Peoples LM, Gupta A, Bartlett DH, Sar P (2019) Exploring the piezotolerant/piezophilic microbial community and genomic basis of piezotolerance within the deep subsurface Deccan traps. Extremophiles 23(4):421–433

    Article  CAS  PubMed  Google Scholar 

  • Enami I, Adachi H, Shen JR (2010) Mechanisms of acido-tolerance and characteristics of photosystems in an acidophilic and thermophilic red alga, Cyanidium caldarium. In: Seckbach J, Chapman DJ (eds) Red algae in the genomic age. Springer, Dordrecht, pp 373–389

    Chapter  Google Scholar 

  • Eze CN, Odoh CK, Eze EA, Enemuor SC, Orjiakor IP, Okobo UJ (2018) Chromium (III) and its effects on soil microbial activities and phytoremediation potentials of Arachis hypogea and Vigna unguiculata. Afr J Biotechnol 17(38):1207–1214. https://doi.org/10.5897/AJB2018.16566

    Article  CAS  Google Scholar 

  • Flannigan B, Miller JD (2011) Microbial growth in indoor environments. In: Flannigan B, Samson RA, Miller JD (eds) Microorganisms in home and indoor work environments: diversity, health impacts, investigation and control. CRC Press, London, pp 57–108

    Google Scholar 

  • Fredimoses M, Zhou X, Lin X, Tian X, Ai W, Wang J et al (2014) New prenylxanthones from the deep-sea derived fungus Emericella sp. SCSIO 05240. Mar Drugs 12:3190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao XW, Liu HX, Sun ZH, Chen YC, Tan YZ, Zhang WM (2016) Secondary metabolites from the deep-sea derived fungus Acaromyces ingoldii FS121. Molecules 2016:21

    Google Scholar 

  • Ghosh S, Banerjee S, Sengupta C (2017) Bioassay, characterization and estimation of siderophores from some important antagonistic fungi. J Biopest 10(2):105–112

    Article  CAS  Google Scholar 

  • Gilichinsky DA, Wilson GS, Friedmann EI, Mckay CP, Sletten RS, Rivkina EM et al (2007) Microbial populations in Antarctic permafrost: biodiversity, state, age, and implication for astrobiology. Astrobiology 7(2):275–311

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Penrose DM, Li JP (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    Article  CAS  PubMed  Google Scholar 

  • Gomes NM, Dethoup T, Singburaudom N, Gales L, Silva AMS, Kijjoa A (2012) Eurocristatine, a new diketopiperazine dimer from the marine sponge-associated fungus Eurotiumcristatus. Phytochem Lett 5:717–720

    Article  CAS  Google Scholar 

  • Gomez E, de Souza AR, Orjuela GL, Silva D, de Oliveira TB, Rodrigues A (2016) Applications and benefits of thermophilic microorganisms and their enzymes for industrial biotechnology. In: Schmoll M, Dattenböch C (eds) Gene expression system in fungi advancements and applications, fungi biology. Springer International Publishing, Cham, pp 459–499

    Chapter  Google Scholar 

  • Gostinčar C, Grube M, De Hoog S, Zalar P, Gunde-Cimerman N (2010) Extremotolerance in fungi: evolution on the edge. FEMS Microbiol Ecol 71(1):2–11

    Article  PubMed  CAS  Google Scholar 

  • Gostinčar C, Lenassi M, Gunde-Cimerman N, Plemenitaš A (2011) Fungal adaptation to extremely high salt concentrations. Adv Appl Microbiol 77:71–96

    Article  PubMed  CAS  Google Scholar 

  • Goswami S, Das M (2016) Extremophiles- a clue to origin of life and biology of other planets. Everymans Sci 51(1):17–25

    Google Scholar 

  • Gray KM, Garey JR (2001) The evolution of bacterial LuxI and LuxR quorum sensing regulators. Microbiology 147:2379–2387

    Article  CAS  PubMed  Google Scholar 

  • Greco M, Kemppainen M, Pose G, Pardo A (2015) Taxonomic characterization and secondary metabolite profiling of Aspergillus section Aspergillus contaminating feeds and feedstuffs. Toxins 7:3512–3537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grum-Grzhimaylo Alexey A, Georgieva ML, Bondarenko SA, Debets AJM, Bilanenko EN (2016) On the diversity of fungi from soda soils. Fungal Divers 76(1):27–74

    Article  Google Scholar 

  • Grum-Grzhimaylo AA, Debets AJM, Van Diepeningen AD, Georgieva ML, Bilanenko EN (2013) Sodiomyces alkalinus, a new holomorphic alkaliphilic ascomycete within the Plectosphaerellaceae. Persoonia Molecular Phylogeny and Evolution of Fungi 31:147–158

    Article  CAS  PubMed Central  Google Scholar 

  • Gunde-Cimerman N, Zalar P (2014) Extremely halotolerant and halophilic fungi inhabit brine in solar salterns around the globe. Food Technol Biotechnol 52(2):170–179

    Google Scholar 

  • Gunde-Cimerman N, Plemenitaš A, Oren A (2018) Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol Rev 42(2):353–375

    Article  CAS  PubMed  Google Scholar 

  • Gupta GN, Srivastava S, Khare SK, Prakash V (2014) Extremophiles: an overview of microorganism from extreme environment. Int J Agric Environ Biotech 7(2):371–380

    Article  Google Scholar 

  • Guzmán-Guzmán P, Porras-Troncoso MD, Olmedo-Monfil V, Herrera-Estrella A (2019) Trichoderma species: versatile plant symbionts. Phytopathology 109(1):6–16

    Article  PubMed  Google Scholar 

  • Hallberg KB, González-Toril E, Johnson KB (2010) Acidithiobacillus ferrivorans, sp. nov.; facultatively anaerobic, psychrotolerant iron, and sulfur -oxidizing acidophilus isolated from metal mine-impacted environments. Extremophiles 14:9–19

    Article  CAS  PubMed  Google Scholar 

  • Hamid B, Rana RS, Chauhan D, Singh P, Mohiddin FA, Sahay S et al (2014) Psychrophilic yeasts and their biotechnological applications. Afr J Biotechnol 13(22):2188–2197

    Article  CAS  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species- opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • Hassan N, Ratiq M, Hagar M, Nadeem S, Shah AA, Hasan F (2016) Potential of psychrophilic fungi isolated from siachen Glacier, Pakistan, to produce antimicrobial metabolites. Appl Ecol Environ Res 15(3):1157–1171

    Article  Google Scholar 

  • Hassan N, Rafiq M, Rehman M, Sajjad W, Hasan F, Abdullah S (2019) Fungi in acidic fire: a potential source of industrially important enzymes. Fungal Biol Rev 33(1):58–71

    Article  Google Scholar 

  • Huang Y, Begum M, Chapman B, Hocking AD (2010) Effect of reduced water activity and reduced matric potential on the germination of xerophilic and non-xerophilic fungi. Int J Food Microbiol 140:1–5

    Article  CAS  PubMed  Google Scholar 

  • Hujslová M, Kubátová A, Kostovčík M, Blanchette RA, de Beer ZW, Chudíčková M et al (2014) Three new genera of fungi from extremely acidic soils. Mycol Prog 13(3):819–831

    Google Scholar 

  • Hussain M, Hamid MI, Wang N, Bin L, Xiang M, Liu X (2016) The transcription factor SKN7 regulates conidiation, thermotolerance, apoptotic-like cell death and parasitism in the nematode endoparasitic fungus Hirsutella minnesotensis. Sci Rep 6:1–12

    Article  CAS  Google Scholar 

  • Indra TH, Kamala S (2011) Evaluation of indigenous Trichoderma isolates from Manipur as biocontrol agent against Pythium aphanidermatum on common beans. Biotechnology 1:217–215

    Google Scholar 

  • Irwin J, Baird AW (2004) Extremophiles and their application to veterinary medicine. Ir Vet J 57(6):348–354

    Article  PubMed  PubMed Central  Google Scholar 

  • Javaid R, Sabir A, Sheikh N, Ferhan M (2019) Recent advances in applications of acidophilic. Molecules 24(786):1–24

    Google Scholar 

  • Jebbar M, Franzetti B, Girard E, Oger P (2015) Microbial diversity and adaptation to high hydrostatic pressure in deep-sea hydrothermal vents prokaryotes. Extremophiles 19:721–740

    Article  CAS  PubMed  Google Scholar 

  • Jeon J, Kim JT, Kim Y, Kim HK, Lee H, Kang SG et al (2009) Cloning and characterization of a new cold active lipase from a deep-sea sediment metagenome. Appl Microbiol Biotechnol 81:865–874

    Article  CAS  PubMed  Google Scholar 

  • Jha P (2014) Microbes thriving in extreme environments: how do they do it? Int J Appl Sci Biotechnol 2(4):393–401

    Article  Google Scholar 

  • Jia Z, Davies PL (2002) Antifreeze proteins: an unusual receptor–ligand interaction. Trends Biochem Sci 27:101–106

    Article  CAS  PubMed  Google Scholar 

  • Jyoti S, Singh DP (2016) Fungi as biocontrol agents in sustainable agriculture. In: Singh JS, Singh DP (eds) Microbes and environmental management. Studium Press, New Delhi, pp 172–194

    Google Scholar 

  • Kanekar PP, Kanekar SP, Kelkar AS, Dhakephalkar PK (2012) Halophiles-taxonomy, diversity, physiology, and applications. In: Satyanarayana T, Johri BN, Prakash A (eds) Microorganisms in environmental management: microbes and environment. Springer, Dordrecht, pp 1–34

    Google Scholar 

  • Kanokmedhakul K, Kanokmedhakul S, Suwannatrai R, Soytong K, Prabpai S, Kongsaeree P (2011) Bioactive meroterpenoids and alkaloids from the fungus Eurotium chevalieri. Tetrahedron 67:5461–5468

    Article  CAS  Google Scholar 

  • Karlsson M, Atanasova L, Jensen DF, Zeilinger S (2017) Necrotrophic mycoparasites and their genomes. Microbiol Spectr 5:FUNK-0016-2016

    Article  Google Scholar 

  • Kim JS, Lee SJ, Lee HB (2014) Enhancing the thermotolerance of entomopathogenic Isaria fumosoroseaSFP-198 conidial powder by controlling the moisture content using drying and adjuvants. Mycobiology 42(1):59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klahn S, Hagemann M (2011) Compatible solute biosynthesis in cyanobacteria. Environ Microbiol 13:551–562

    Article  PubMed  CAS  Google Scholar 

  • Kogej T, Gostinćar C, Volkmann M, Gorbushina AA, Gunde-Cimerman N (2006) Mycosporines in extremophilic fungi — novel complementary Osmolytes ? Environ Chem 3:105–110

    Article  CAS  Google Scholar 

  • Kostadinova N, Krumova E, Tosi S, Pashova Angelova M (2009) Isolation and identification of filamentous fungi from island Livingston, Antarctica. Biotechnol Eq 23:267–270

    Article  Google Scholar 

  • Kour D, Rana KL, Kaur T, Singh B, Chauhan VS, Kumar A et al (2019) Extremophiles for hydrolytic enzymes productions: biodiversity and potential biotechnological applications. In: Molina G, Gupta VK, Singh B, Gathergood N (eds) Bioprocessing for biomolecules production, pp 321–372. https://doi.org/10.1002/9781119434436.ch16

    Chapter  Google Scholar 

  • Krulwich TA, Hicks DB, Ito M (2009) Cation/proton antiporter complements of bacteria: why so large and diverse? Mol Microbiol 74:257–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Alam A, Tripathi D, Rani M, Khatoon H, Pandey S et al (2018) Protein adaptations in extremophiles: an insight into extremophilic connection of mycobacterial proteome. Semin Cell Dev Bio 84:147–157

    Article  CAS  Google Scholar 

  • Laura E, Godinho FVM, Furbino LE, Santiago IF, Pellizzari FM, Yokoya NA (2013) Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica. ISME J 7:1434–1451

    Article  CAS  Google Scholar 

  • Lentzen G, Schwarz T (2006) Extremolytes: natural compounds from extremophiles for versatile applications. Appl Microbiol Biotechnol 72:623–634

    Article  CAS  PubMed  Google Scholar 

  • Leong SL, Lantz H, Pettersson OV, Frisvad JC, Thrane U, Heipieper HJ et al (2015) Genome and physiology of the ascomycete filamentous fungus Xeromyces bisporus , the most xerophilic organism isolated to date. Environ Microbiol 17(2):496–513

    Article  CAS  PubMed  Google Scholar 

  • Liao WY, Shen CN, Lin LH, Yang YL, Han HY, Chen JW et al (2012) Asperjinone, a nor-neolignan, and terrein, a suppressor of ABCG2-expressing breast cancer cells, from thermophilic Aspergillus terreus. J Nat Prod 75(4):630–635

    Article  CAS  PubMed  Google Scholar 

  • Lin YH, Xu JL, Hu J, Wang LH, Ong SL, Leadbetter JR et al (2003) Acyl-homoserine lactone acylase from Ralstonia strain xj12B represents a novel and potent class of quorum quenching enzymes. Mol Microbiol 47:849–860

    Article  PubMed  Google Scholar 

  • Lindgren AR, Buckley BA, Eppley SM, Reysenbach A, Stedman KM, Wagner JT (2016) Life on the edge — the biology of organisms inhabiting extreme environments: an introduction to the symposium. Integr Comp Biol 56(4):493–499

    Article  PubMed  Google Scholar 

  • Loque CP, Medeiros AO, Pellizzari FM, Oliveira EC, Rosa CA, Rosa LH (2010) Fungal community associated with marine macroalgae from Antarctica. Polar Biol 3:641–648

    Article  Google Scholar 

  • Lotan T, Fluhr R (1990) Xylanase, a novel elicitor of pathogenesis-related proteins in tobacco, uses a nonethylene pathway for induction. Plant Physiol 93:811–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lugtenberg B, Malfanova N, Kamilova F, Berg G (2013) Plant growth promotion by microbes. In: de Brujin FJ (ed) Molecular microbial ecology of the rhizosphere, 1st edn, pp 561–573

    Google Scholar 

  • Manimegalai K, Devi A, Padmavathy S (2013) Marine Fungi as a source of secondary metabolites of antibiotics. Int J Biotechnol Bioeng Res 4(3):2231–1238

    Google Scholar 

  • Martinez C, Blanc F, Le Claire E, Besnard O, Nicole M, Baccou JC (2001) Salicylic acid and ethylene pathways are differentially activated in melon cotyledons by active or heat denatured cellulase from Trichoderma longibrachiatum. Plant Physiol 127:334–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLoughlin G, Wytinck N, Walker L, Girard J, Rashid Y, de Kievit T et al (2018) Identification and application of exogenous dsRNA confers plant protection against Sclerotinia sclerotiorum and Botrytis cinerea. Sci Rep 8:7320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mehta R, Arya R, Goyal K, Singh M, Sharma AK (2013) Biopreservative and therapeutic potential of pediocin: recent trends and future perspectives. Recent Pat Biotechnol 7:172–178

    Article  CAS  PubMed  Google Scholar 

  • Mehta R, Singhal P, Singh H, Demie D, Sharma AK (2016) Insight into thermophiles and their wide spectrum applications. Biotech 6:81

    Google Scholar 

  • Merino N, Aronson HS, Bojanova DP, Feyhl-Buska J, Wong ML, Zhang S et al (2019) Living at the extremes: extremophiles and the limits of life in a planetary context. Front Microbiol 10:780. https://doi.org/10.3389/fmicb.2019.00780

    Article  PubMed  PubMed Central  Google Scholar 

  • Mesbah NM, Wiegel J (2011) The Na+−translocating F1FO-ATPase from the halophilic, alkalithermophile Natranaerobius thermophiles. Biochimica et Biophysica Acta (BBA)—Bioenerg 1807:1133–1142

    Article  CAS  Google Scholar 

  • Mesbah NM, Cook GM, Wiegel J (2009) The halophilic alkalithermophile Natranaerobius thermophiles adapts to multiple environmental extremes using a large repertoire of Na+ (K+)/ H+ antiporters. Mol Microbiol 74:270–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Micheluz A, Manente S, Tigini V, Prigione V (2015) The extreme environment of a library: Xerophilic fungi inhabiting indoor niches. Int Biodeter Biodegrad 99:1–7

    Article  Google Scholar 

  • Milgroom MG, Cortesi P (2004) Biological control of chestnut blight with hypovirulence: a critical analysis. Annu Rev Phytopathol 42:311–338

    Article  CAS  PubMed  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Ann Rev Microbiol 55:165–199

    Article  CAS  Google Scholar 

  • Moayad W, Zha G, Yan Y (2017) Extremophile current challenges and new gate of knowledge by nanoparticles pathways. J Pharm Biol Sci 12(1):10–17. https://doi.org/10.9790/3008-1201021017

    Article  Google Scholar 

  • Mousa WK, Raizada MN (2016) Natural disease control in cereal grains. In: Corke H, Seetharam K, Wrigley C (eds) Encyclopedia of food grains, vol 4, 2nd edn. Agronomy 00206 Elsevier, Oxford, UK

    Google Scholar 

  • Nagano Y, Nagahama T (2012) Fungal diversity in deep-sea extreme environments. Fungal Ecol 5:463–471

    Article  Google Scholar 

  • Naglot A, Goswami S, Rahman I, Shrimali D, Kamlesh KY, Vikas K et al (2015) Antagonistic potential of native Trichoderma viride strain against potent tea fungal pathogens in Northeast India. Plant Pathol J 31:278–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nanguy SP, Perrier-cornet J, Bensoussan M, Dantigny P (2010) Impact of water activity of diverse media on spore germination of Aspergillus and Penicillium species. Int J Food Microbiol 142:273–276

    Article  PubMed  Google Scholar 

  • Nieto-jacobo MF, Steyaert JM, Salazar-badillo FB (2017) Environmental growth conditions of Trichoderma spp. affects indole acetic acid derivatives, volatile organic compounds , and plant growth promotion. Front Plant Sci 8:1–18

    Article  Google Scholar 

  • Niu S, Liu D, Shao Z, Proksch P, Lin W (2017) Eutypellazines a-m, thiodiketopiperazine-type alkaloids from deep sea derived fungus Eutypella sp. MCCC 3A00281. RSC Adv 7:33580–33590

    Article  CAS  Google Scholar 

  • Nonzom S, Sumbali G (2015) Fate of mitosporic soil fungi in cold deserts: a review. Am Int J Res Form Appl Nat Sci 9(1):1–9

    Google Scholar 

  • Nygren K, Dubey M, Zapparata A, Iqbal M, Tzelepis GD, Durling MB et al (2018) The mycoparasitic fungus Clonostachys rosea responds with both common and specific gene expression during interspecific interactions with fungal prey. Evol Appl 11(6):931–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Odoh CK (2017) Plant growth promoting rhizobacterial (PGPR): a bioprotectant bioinoculant for sustainable agrobiology. Int J Adv Res Biol Sci 4(5):123–142. https://doi.org/10.22192/ijarbs.2017.04.05.014

    Article  CAS  Google Scholar 

  • Odoh CK, Martins PE, Akpi UK, Okekeaji U, Adobu US (2017a) Phytoremediation potential of Vigna unguiculata on lead polluted soil and its biotoxic effects on soil microbial activities. Glob J Sci Front Resol 17:35–42

    Google Scholar 

  • Odoh CK, Amapu TY, Orjiakor PI, Martins PE, Seibai TB, Akpi UK et al (2017b) Assessment of mould contamination and physico-chemical properties of crude palm oil sold in Jos, Nigeria. Food Sci Nutr 5(2):310–316. https://doi.org/10.1002/fsn3.393

    Article  CAS  PubMed  Google Scholar 

  • Odoh CK, Akpi UK, Anya F (2017c) Environmental impact of mineral exploration in Nigeria and their phytoremediation strategies for sustainable ecosystem. Glob J Sci Front Res 17(3):19–27. https://doi.org/10.17406/GJSFR

    Article  Google Scholar 

  • Odoh CK, Eze CN, Akpi UK, Unah VU (2019) Plant growth promoting rhizobacteria (PGPR): a novel agent for sustainable food production. Am J Agric Biol Sci 14:35–54

    Article  CAS  Google Scholar 

  • Odoh CK, Sam K, Zabbey N, Eze CN, Nwankwegu AS, Laku C et al (2020a) Microbial consortium as biofertilizers for crops growing under the extreme habitats. In: Plant microbiomes for sustainable agriculture. “Sustainable development and biodiversity”. Springer-Nature, Cham

    Google Scholar 

  • Odoh CK, Eze CN, Obi CJ, Anyah F, Egbe K, Unah VU et al (2020b) Fungal biofertilizers for sustainable agricultural productivity. In: Agriculturally important fungi for sustainable agriculture. “Perspective for diversity and crop productivity”. Springer-Nature, Cham

    Google Scholar 

  • Oger PM, Jebbar M (2010) The many ways of coping with pressure. Res Microbiol 161(10):799–809

    Article  PubMed  Google Scholar 

  • Onofri S, Anastasi A, Del Frate G, Di Piazza S, Garnero N, Guglielminetti M et al (2011) Biodiversity of rock, beach and water fungi in Italy. Plant Biosyst 145:978–987

    Article  Google Scholar 

  • Oren A (2010) Industrial and environmental applications of halophilic microorganisms. Environ Technol 31:825–834

    Article  CAS  PubMed  Google Scholar 

  • Oren A (2011) Thermodynamic limits to microbial life at high salt concentrations. Environ Microbiol 13:1908–1923

    Article  CAS  PubMed  Google Scholar 

  • Petterson OV, Leong SL (2011) Fungal xerophile (Osmophiles). Wiley online library. https://doi.org/10.1002/9780470015902.a0000376.pub2

  • Pettit RK (2011) Culturability and secondary metabolite diversity of extreme microbes: expanding contribution of DeepSea and Deep-Sea vent microbes to natural product discovery. Mar Biotechnol 13:1–11

    Article  CAS  Google Scholar 

  • Phil O (2017) Coping with the pressure: microbial adaptation to high hydrostatic pressure in deep sea hydrothermal vents. J Phys Conf Ser 950(03):032016

    Google Scholar 

  • Pieterse CM, Zamioudis C, Berendsen RL, Weller DM, VanWees SC, Bakker PA (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375

    Article  CAS  PubMed  Google Scholar 

  • Pinar G, Piombino-Mascali D, Maixner F, Zink A, Sterflinger K (2013) Microbial survey of the mummies from the Capuchin Catacombs of Palermo, Italy: biodeterioration risk and contamination of the indoor air. FEMS Microbiol Ecol 86:341–356

    Article  CAS  PubMed  Google Scholar 

  • Pinar G, Tafer H, Sterflinger K, Pinzari F (2015) Amid the possible causes of a very famous foxing: molecular and microscopic insight into Leonardoda Vinci’s self-portrait. Environ Microbiol Rep 7:849–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pulschen AA, de Araujo GG, de Carvalho A, Cerini MF, Fonseca LM, Galante D et al (2018) Survival of extremophilic yeasts in the stratospheric environment during balloon flights and in laboratory simulations. Appl Environ Microbiol 84(23):1–12

    Article  Google Scholar 

  • Punja ZK, Utkhede RS (2003) Using fungi and yeasts to manage vegetable crop diseases. Trends Biotechnol 21:400–407

    Article  CAS  PubMed  Google Scholar 

  • Purić J, Viera G, Cavalca L, Sette L, Ferreira H, Viera M et al (2018) Activity of Antarctic fungi extracts against Phytopathogenic bacteria. Lett Appl Microbiol 66:6

    Article  CAS  Google Scholar 

  • Raghukumar C, Damare S, Singh P (2010) A review on deep-sea fungi: occurrence, diversity and adaptation. Bota Mari 53(6):479–492

    Google Scholar 

  • Rampelotto PH (2010) Resistance of microorganisms to extreme environmental conditions and its contribution to astrobiology. Sustainability 2:1602–1623

    Article  CAS  Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020a) New and future developments in microbial biotechnology and bioengineering: trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam

    Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020b) New and future developments in microbial biotechnology and bioengineering: trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam

    Google Scholar 

  • Raveendran S, Palaninathan V, Nagaoka V, Fulkuda T, Iwai S, Higashi T et al (2015) Extremophilic polysaccharide nanoparticles for cancer and evaluation of antioxidant properties. Int J Biolog Macromol 76:310–319

    Article  CAS  Google Scholar 

  • Reddy A, Saravanan S (2013) Polymicrobial multi-functional approach for enhancement of crop productivity. Adv Appl Microbiol 82:53–113

    Article  CAS  PubMed  Google Scholar 

  • Reeb V, Bhattacharya D (2010) The thermo-acidophilic Cyanidiophyceae (Cyanidiales). In: Seckbach J, Chapman DJ (eds) Red algae in the genomic age. Springer, Dordrecht, pp 409–426

    Chapter  Google Scholar 

  • Reed CJ, Lewis H, Trejo E, Winston V, Evilia C (2013) Protein adaptations in archaeal extremophiles. Archaea. https://doi.org/10.1155/2013/373275

  • Robin A, Vansuyt G, Hinsinger P, Meyer JM, Briat JM, Lemamnceau P (2008) Iron dynamics in the rhizosphere: consequences for plant health and nutrition. Adv Agron 99:183–225

    Article  CAS  Google Scholar 

  • Ruisi S, Barreca D, Selbmann L, Zucconi L, Onofri S (2007) Fungi in Antarctica. Rev Environ Sci Biotechnol 6:127–141

    Article  Google Scholar 

  • Sachdev DP, Cameotra SS (2013) Biosurfactants in agriculture. Appl Microbiol Biotechnol 97:1005–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahni N, Gupta U (2014) Bio-degradation of synthetic textile dyes by thermophilic lignolytic fungal isolates. J Adv Lab Res Biol 5(4):137–139

    Google Scholar 

  • Salar RK, Aneja KR (2006) Thermophilous fungi from temperate soils of northern. India J Agric Technol 2(1):49–58

    Google Scholar 

  • Salar RK, Aneja KR (2007) Thermophilic fungi: taxonomy and biogeography. J Agric Technol 3(1):77–107

    Google Scholar 

  • Salvino D, Tony C, Jean-Claude M, Georges F, Charles G (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7(4):385–389

    Article  CAS  Google Scholar 

  • Samson RA, Houbraken J, Thrane U, Frisvad JC, Andersen B (2010) Food and Indoor Fungi. CBS Laboratory manual, pp 390

    Google Scholar 

  • Santiago M, Ramírez-sarmiento CA, Zamora RA, Parra LP (2016) Discovery, molecular mechanisms, and industrial applications of cold-active enzymes. Front Microbiol 7(1408):1–32

    Google Scholar 

  • Saraf M, Jha CK, Patel D (2011) The role of ACC deaminase producing PGPR in sustainable agriculture. In: Maheshwari DK (ed) Plant growth and health promoting bacteria microbiology monographs. Springer, Berlin, pp 365–386

    Google Scholar 

  • Sati SC, Pathak R, Belwal M (2014) Occurrence and distribution of Kumaun Himalayan aquatic hyphomycete. Lemo Mycosphere 5:545–553

    Article  Google Scholar 

  • Schafer P, Pfiffi S, Voll LM, Zajic D, Chandler PM, Waller F et al (2009) Manipulation of plant innate immunity and gibberellin as factor of compatibility in the mutualistic association of barley roots with Piriformospora indica. Plant J 59:461–474

    Article  PubMed  CAS  Google Scholar 

  • Schalk IJ, Hannauer M, Braud A (2011) Minireview new roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13:2844–2854

    Article  CAS  PubMed  Google Scholar 

  • Schulze-Makuch D (2013) Extremophiles on alien worlds: what types of organismic adaptations are feasible on other planetary bodies. In: de Vera J-P, Seckbach J (eds) Habitability of other planets and satellites. Springer, Berlin, pp 253–265. https://doi.org/10.1007/978-94-007-6546-7_14

    Chapter  Google Scholar 

  • Seckbach J, Rampelotto PH (2015) Polyextremophiles. In: Bakermans C (ed) Microbial evolution under extreme conditions. DeGruyter Publishers, Berlin, pp 153–170

    Chapter  Google Scholar 

  • Segerra G, Casanova E, Avilés M, Trillas I (2010) Trichoderma asperellum strain T34 controls Fusarium wilt disease in tomato plants in soilless culture through competition for iron. Microb Ecol 59:141–149

    Article  Google Scholar 

  • Selbmann L (2019) Extreme-fungi and the benefits of a stressing life. Life 9(2):31

    Article  PubMed Central  Google Scholar 

  • Shahraki M, Heydari A, Hassanzadeh N (2009) Investigation of antibiotic, siderophore and volatile metabolites production by Bacillus and Pseudomonas bacteria. Iran J Biol 22:71–85

    Google Scholar 

  • Sharma A, Diwevidi VD, Singh S, Pawar KK, Jerman M, Singh LB et al (2013) Biological control and its important in agriculture. Int J Biotechnol Bioeng Res 4(3):175–180

    Google Scholar 

  • Sharma S, Kour D, Rana KL, Dhiman A, Thakur S, Thakur P et al (2019) Trichoderma: biodiversity, ecological significances, and industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Diversity and enzymes perspectives, vol 1. Springer, Cham, pp 85–120. https://doi.org/10.1007/978-3-030-10480-1_3

    Chapter  Google Scholar 

  • Shoresh M, Harman E, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    Article  CAS  PubMed  Google Scholar 

  • Siglioccolo A, Paiardini A, Piscitelli M, Pascarella S (2011) Structural adaptation of extreme halophilic proteins through decrease of conserved hydrophobic contact surface. BMC Struc Biol 50(11):1–12

    Google Scholar 

  • Silke R, Philipp F, Katja W (2013) Properties of the halophyte microbiome and their implications for plant salt tolerance. Func Plant Biol 40:940–951

    Article  CAS  Google Scholar 

  • Singh B, Satyanarayana T (2009) Thermophilic molds in environmental management. Prog Mycol Res 1:352–375

    Google Scholar 

  • Singh A, Shahid M, Srivastava M, Pandey S, Sharma A, Kumar V (2014) Virology & Mycology Optimal Physical Parameters for growth of Trichoderma species at varying pH, temperature and agitation. Virol Mycol 3(1):1–7

    Google Scholar 

  • Singh A, Kumar R, Yadav AN, Mishra S, Sachan S, Sachan SG (2020) Tiny microbes, big yields: microorganisms for enhancing food crop production sustainable development. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 1–15. https://doi.org/10.1016/B978-0-12-820526-6.00001-4

    Chapter  Google Scholar 

  • Sonia M, Tiquia-Arashiro, Martin G (2019) Fungi in extreme environments: ecological role and biotechnological significance. Springer- Science, Cham, p 283

    Google Scholar 

  • Stan-Lotter H, Fendrihan S (2012) Adaption of microbial life to environmental extremes. Springer, New York

    Book  Google Scholar 

  • Stetter KO (1999) Extremophiles and their adaptation to hot environments. FEBS Lett 452(1–2):22–25

    Article  CAS  PubMed  Google Scholar 

  • Subrahmanyam G, Kumar A, Sandilya SP, Chutia M, Yadav AN (2020) Diversity, plant growth promoting attributes, and agricultural applications of rhizospheric microbes. In: Yadav AN, Singh J, Rastegari AA, Yadav N (eds) Plant microbiomes for sustainable agriculture. Springer, Cham, pp 1–52. https://doi.org/10.1007/978-3-030-38453-1_1

    Chapter  Google Scholar 

  • Sureshbabu K, Amaresan N, Kumar K (2016) Amazing multiple function properties of plant growth promoting rhizobacteria in the rhizosphere soil. Int J Curr Microbiol Appl Sci 5:661–683

    Article  CAS  Google Scholar 

  • Tagawa M, Tamaki H, Manome A, Koyama O, Kamagata Y (2010) Isolation and characterization of antagonistic fungi against potato scab pathogens from potato field soils. FEMS Microbiol Letters 305(2):136–142

    Article  CAS  Google Scholar 

  • Terpe K (2013) Overview of thermostable DNA polymerases for classical PCR applications: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 97:10243–10254

    Article  CAS  PubMed  Google Scholar 

  • Thakur N, Kaur S, Tomar P, Thakur S, Yadav AN (2020) Microbial biopesticides: current status and advancement for sustainable agriculture and environment. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 243–282. https://doi.org/10.1016/B978-0-12-820526-6.00016-6

    Chapter  Google Scholar 

  • Thanh VN, Thuy NT, Huong HTT, Hien DD, Hang DTM, Anh DTK et al (2019) Surveying of acid-tolerant thermophilic lignocellulolytic fungi in Vietnam reveals surprisingly high genetic diversity. Sci Rep 9:3674

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomashow LS, Bonsall RF, Weller DM (2002) Antibiotic production by soil and rhizosphere microbes in situ. ASM Press, Washington DC, pp 638–647

    Google Scholar 

  • Tiquia-Arashiro S, Rodrigues D (2016) Extremophiles: applications in nanotechnology. Springer International Publishing AG. https://doi.org/10.1007/978-3-319-45215-9-4

  • Tiwari P, Bajpai M, Singh LK, Mishra S, Yadav AN (2020) Phytohormones producing fungal communities: metabolic engineering for abiotic stress tolerance in crops. In: Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (eds) Agriculturally important Fungi for sustainable agriculture, Perspective for diversity and crop productivity, vol 1. Springer, Cham, pp 1–25. https://doi.org/10.1007/978-3-030-45971-0_8

    Chapter  Google Scholar 

  • Tkachenko O (2017) Cryophilic fungi: ways to adapt to cold environments. Mikologiya Fitopatologiya 51(1):15–18

    Google Scholar 

  • Usui K, Hiraki T, Kawamoto J, Kurihara T, Nog Y, Kato C et al (2012) Eicosapentaenoic acid plays a role in stabilizing dynamic membrane structure in the deep-sea piezophile Shewanella violacea: a study employing high-pressure time-resolved fluorescence anisotropy measurement. Biochim Biophys Acta Biomembr 1818:574–583

    Article  CAS  Google Scholar 

  • Vallad GE, Goodman RM (2004) Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci 44:1920–1934

    Article  Google Scholar 

  • Van der Ent S, Van Wess SC, Pieterse CM (2009) Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochemistry 70:1581–1588

    Article  PubMed  CAS  Google Scholar 

  • Van Noort V, Bradatsch B, Arumugam M, Amlacher S, Bange G, Creevey C et al (2013) Consistent mutational paths predict eukaryotic thermostability. BMC Evol Biol 13(1):7

    Article  PubMed  PubMed Central  Google Scholar 

  • Verma A, Shirkot P (2014) Purification and characterization of thermostable laccase from thermophilic Geobacillus thermocatenulatus MS5 and its applications in removal of textile dyes. Scholars Acad J Biosci 2(8):479–485

    Google Scholar 

  • Verma P, Yadav AN, Kumar V, Singh DP, Saxena AK (2017) Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crop improvement. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives, Microbial interactions and agro-ecological impacts, vol 2. Springer, Singapore, pp 543–580. https://doi.org/10.1007/978-981-10-6593-4_22

    Chapter  Google Scholar 

  • Visagie CM, Yilmaz N, Renaud JB, Sumarah MW, Hunks V, Frisvad JC et al (2017) A survey of xerophilic Aspergillus from indoor environment, including descriptions of two new section Aspergillus species producing Eurotium-like sexual states. Mycokeys 19:1–30

    Article  Google Scholar 

  • Vylkova S (2017) Environmental pH modulation by pathogenic fungi as a strategy to conquer the host. PLoS Pathog 13:e1006149. https://doi.org/10.1371/journal.ppat.1006149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Tian J, Xiang M, Liu X (2017) Living strategy of cold-adapted fungi with the reference to several representative species. Myco 8(3):178–188

    Google Scholar 

  • Wicklow DT, Poling SM (2009) Antimicrobial activity of pyrrocidines from Acremonium zeae against endophytes and pathogens of maize. Phytopathology 99(1):109–115

    Article  CAS  PubMed  Google Scholar 

  • Wiegel J (2011) Anaerobic alkaliphiles and alkaliphilic poly-extremophiles. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 81–97

    Chapter  Google Scholar 

  • Williams S, Boehm M, Mitchell T (2017) Fungal and Fungal-like diseases of plants. Agric Nat Resour PLPATH-GEN-7

    Google Scholar 

  • Winkelmann G (2002) Microbial siderophores mediated transport. Biochem Soc Trans 30:691–695

    Article  CAS  PubMed  Google Scholar 

  • Wu B, Wiese J, Labes A, Kramer A, Schmaljohann R, Imhoff JF (2015) Lindgomycin an unusual antibiotic polyketide from a marine fungus of the Lindgomycetaceae. Mar Drugs 2015(13):4617–4632

    Article  CAS  Google Scholar 

  • Xu L, Meng W, Cao C, Wang J, Shan W, Wang Q (2015) Antibacterial and antifungal compounds from marine fungi. Mar Drugs 13(6):3479–3513. https://doi.org/10.3390/md13063479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav AN (2017) Beneficial role of extremophilic microbes for plant health and soil fertility. J Agric Sci Bot 1(1):9–12

    Article  Google Scholar 

  • Yadav S, Kaushik R, Saxena AK, Arora DK (2011) Diversity and phylogeny of plant growth-promoting bacilli from moderately acidic soil. J Basic Microbiol 51:98–106

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2015a) Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 119:683–693. https://doi.org/10.1016/j.jbiosc.2014.11.006

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Tyagi SP, Kaushik R, Saxena AK (2015b) Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World J Microbiol Biotechnol 31:95–108. https://doi.org/10.1007/s11274-014-1768-z

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Verma P, Kumar M, Pal KK, Dey R, Gupta A et al (2015c) Diversity and phylogenetic profiling of niche-specific Bacilli from extreme environments of India. Ann Microbiol 65:611–629. https://doi.org/10.1007/s13213-014-0897-9

    Article  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Kaushik R, Saxena AK (2016) Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. J Basic Microbiol 56:294–307

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Kaur T, Kour D, Rana KL, Yadav N, Rastegari AA et al (2020a) Saline microbiome: biodiversity, ecological significance and potential role in amelioration of salt stress in plants. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 283–309. https://doi.org/10.1016/B978-0-12-820526-6.00018-X

    Chapter  Google Scholar 

  • Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (2020b) Agriculturally important Fungi for sustainable agriculture, volume 1: perspective for diversity and crop productivity. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (2020c) Agriculturally important fungi for sustainable agriculture, volume 2: functional annotation for crop protection. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yang YL, Lu CP, Chen MY, Chen KY, Wu YC, Wu SH (2007) Cytotoxic polyketides containing tetramic acid moieties isolated from the fungus Myceliophthora Thermophila: elucidation of the relationship between cytotoxicity and stereoconfiguration. Chem Eur J 2007(13):6985–6991

    Article  CAS  Google Scholar 

  • Yao Q, Wang J, Zhang X, Nong X, Xu X, Qi S (2014) Cytotoxic polyketides from the deep-sea-derived fungus Engyodontium album DFFSCS021. Mar Drugs 2014:12

    Google Scholar 

  • Yu T, Chen J, Chen R, Huang B, Liu D, Zheng X (2007) Biocontrol of blue and gray mold diseases of pear fruit by integration of antagonist yeast with salicylic acid. Int J Food Microbiol 116(3):339–345

    Article  CAS  PubMed  Google Scholar 

  • Zakharova K, Tesei D, Marzban G, Dijksterhuis J, Wyatt T, Sterflinger K (2013) Microcolonial Fungi on rocks: a life in constant drought? Mycopathologia 175(5–6):537–547

    Article  PubMed  Google Scholar 

  • Zhang SH (2016) The genetic basis of abiotic stress resistance in extremophilic fungi: the genes cloning and application. In: Purchase D (ed) Fungal applications in sustainable environmental biotechnology. Fungal Biol, Springer, Cham

    Google Scholar 

  • Zhang Y, Li X, Xiao X, Bartlett DH (2015) Current developments in marine microbiology: high-pressure biotechnology and the genetic engineering of piezophiles. Curr Opin Biotechnol 33:157–164

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Li S, Li J, Liang Z, Zhao C (2018) Novel natural products from extremophilic fungi. Mar Drugs 16(194):1–36

    Google Scholar 

  • Zheng L, Zhao J, Liang X, Zhan G, Jiang S, Kang Z (2017) Identification of a novel Alternaria alternata strainable to hyperparasitize Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust. Front Microbiol 8:71

    PubMed  PubMed Central  Google Scholar 

  • Zhuang X, Han Z, Bai Z, Zhuang G, Shim H (2010) Progress in decontamination by halophilic microorganisms in saline wastewater and soil. Environ Pollut 158:1119–1126

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors appreciate the reviewers of this manuscript and all those who made invaluable contributions leading to the success of this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Odoh, C.K. et al. (2021). Extremophilic Fungi and Their Role in Control of Pathogenic Microbes. In: Yadav, A.N. (eds) Recent Trends in Mycological Research. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-60659-6_10

Download citation

Publish with us

Policies and ethics