Skip to main content

Feeding

  • Chapter
  • First Online:
Ecology of Protozoa

Abstract

Phagocytosis—the uptake of particulate food particles—is an essential feature of protozoan feeding. Some protozoa obtain additional energy and materials for growth by other mechanisms, such as the uptake of dissolved materials, which will be discussed at the end of this chapter, while symbiotic relations with photosynthetic organisms is discussed in Chap. 8.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen BD (1984) Paramecium phagosome membrane: from oral region to cytoproct and back again. J Protozool 31:1–6

    Article  Google Scholar 

  • Anderson OR (1983) Radiolaria. Springer-Verlag, New York

    Book  Google Scholar 

  • Anderson OR (2017) Amoebozoan Lobose Amoebae (Tubulinea, Flabellinea, and Others). In: Archibald JM, Simpson AGB, Slamovits CH, Margulis L, Melkonian M, Chapman DJ (eds) Handbook of the Protists. J.O. Springer, Corliss, pp 1–31

    Google Scholar 

  • Anderson OR, Be AWH (1976) A cytochemical fine structure of phagotrophy a planktonic foraminifer Hastegerina pelagica (d’Orbigny). Biol Bull 151:437–449

    Article  Google Scholar 

  • Anderson OR, Spindler M, Be AWH, Hemleben C (1979) Trophic activity of planktonic foraminifera. J Mar Biol Assoc UK 59:791–799

    Article  Google Scholar 

  • Bardele CF (1972) A microtubule model for ingestion and transporting in the suctorian tentacle. Z Zellforsch Mikrosk Anat 126:116–134

    Article  CAS  PubMed  Google Scholar 

  • Bardele CF, Grell KG (1967) Elektronenmikroskopische Beobachtungen zur Nahrungsaufnahme bei dem Suktor Acineta tuberosa Ehrenberg. Z Zellforsch Mikrosk Anat 80:108–123

    Article  CAS  PubMed  Google Scholar 

  • Berger JD, Pollock C (1981) Kinetics of food vacuole accumulation and loss in Paramecium tretraurelis. Trans Am Microsc Soc 100:120–133

    Article  Google Scholar 

  • Biecheler B (1952) Recherches sur les Peridiniens. Bull Biol Fr Belg (Suppl) 36:1–149

    Google Scholar 

  • Canella MF (1951) Contribution à la connaissance de gymnostomes des genres Holophrya, Amphileptus et Litonotus prédateurs de Carchesium polypinum et d’autres peritriches sessiles. Ann Univ Ferrara NS 1:1–11

    Google Scholar 

  • Canella MF, Rocchi-Canella L (1976) Biologie des Ophryoglenina. Ann Univ Ferrara NS 3:1–150

    Google Scholar 

  • Cassidy-Hanley DM (2012) Tetrahymena in the laboratory: strain resources, methods for culture, maintenance, and storage. Methods Cell Biol 109:237–276

    Article  PubMed  PubMed Central  Google Scholar 

  • Chapman-Andresen C (1967) Studies on endocytosis in amoebae. The distribution of pinocytically ingested dyes in relation to food vacuoles in Chaos chaos. I. Light microscopic observations. CR Trav Lab Carlsberg 36:161–187

    CAS  Google Scholar 

  • Christensen-Dalsgaard KK, Fenchel T (2003) Increased filtration efficiency of attached compared to free-swimming flagellates. Aquat Microb Ecol 33:77–86

    Article  Google Scholar 

  • Christiansen BO (1971) Notes on the biology of foraminifera. Vie Milieu Suppl 22 2: 465

    Google Scholar 

  • Corliss JO (1973) History, taxonomy, ecology, and evolution of species of Tetrahymena. In: Elliot AM (ed) Biology of Tetrahymena. Dowdon, Hutchinson & Ross, Inc., Stroudsburg, Pennsylvania, pp 1–55

    Google Scholar 

  • Corliss J0 (1979) The ciliated protozoa: characterization, classification, and guide to the literature. Pergamon Press, Oxford

    Google Scholar 

  • Deroux G (1976) Plan corticale des cyrtophorida III-Les structures differen­ ciatrices chez les dysterina. Protistologica 12:505–538

    Google Scholar 

  • Dragesco J (1962) Capture et ingestion des proies chez les infusoires ciliés. Bull Biol Fr Belg. 46:123–167

    Google Scholar 

  • Dragesco J (1963) Revision du genre Dileptus Dujardin 1871 (Ciliata Holotricha) (systematiqes, cytology, biologie). Bull Biol Fr Belg 97:103–145

    Google Scholar 

  • Dragesco J (1964) Capture et ingestion des proies chez Actinosphaerium eicborni (Rhizopoda, Heliozoa). Arch Zool Exp Gen 104:163–175

    Google Scholar 

  • Droop MR (1966) The role of algae in the nutrition of Heteramoeba clara Droop with notes on Oxyrrhis marina Dujardin and Philodina roseola Ehrenberg. In: Barnes H (ed) Some contemporary studies in marine science. Allen & Unwin, London, pp 269–282

    Google Scholar 

  • Esteban G, Téllez C, Muñoz A (1991) Infraciliature, morphogenesis and life cycle of Endosphaera terebrans (Suctoria, Tokophridae). J Protozool 38:483–488

    Article  CAS  PubMed  Google Scholar 

  • Fenchel T (1968) The ecology of marine microbenthos. II. The food of marine benthic ciliates. Ophelia 5:73–121

    Article  Google Scholar 

  • Fenchel T (1980a) Suspension feeding in ciliated protozoa: structure and function of feeding organelles. Arch Protistenkd 123:239–260

    Article  Google Scholar 

  • Fenchel T (1980b) Suspension feeding in ciliated protozoa: functional response and particle size selection. Microb Ecol 6:1–11

    Article  CAS  PubMed  Google Scholar 

  • Fenchel T (1980c) Suspension feeding in ciliated protozoa,: feeding rates and their ecological significance. Microb Ecol 6:13–25

    Article  CAS  PubMed  Google Scholar 

  • Fenchel T (1982a) Ecology of heterotrophic microflagellates. I. Some important forms and their functional morphology. Mar Ecol Prog Ser 8:211–223

    Article  Google Scholar 

  • Fenchel T (1982b) Ecology of heterotrophic microflagellates. II. Bioenergetics and growth. Mar Ecol Prog Ser 8:225–231

    Article  Google Scholar 

  • Fenchel T (1984) Suspended marine bacteria as food source. In: Fashham MJ (ed) Energy and materials in marine ecosystems. Plenum Press, New York, pp 301–315

    Chapter  Google Scholar 

  • Fenchel (1986) Protozoan filter-feeding. Prog Protistol 1:65–113

    Google Scholar 

  • Finlay BJ, Berninger UG (1984) Coexistence of congeneric ciliates (Karyorelectida, Loxodes). J Anim Ecol 53:929–943

    Article  Google Scholar 

  • Gause GF (1934) The struggle for existence. Williams and Wilkins, Baltimore

    Book  Google Scholar 

  • Hausmann K, Patterson DJ (1982) Pseudopod formation and membrane production during prey capture by a heliozoon (feeding by Actinophrys, II). Cell Motil 2:9–24

    Article  Google Scholar 

  • Heal GW (1961) The distribution of testate amoebae (Rhizopoda, Testacea) in some ferns and bogs in Northern England. Zool J Linn Soc 44:369–382

    Article  Google Scholar 

  • Hines HN, McCarthy PJ, Esteban GF (2016) The first record for the Americas of Loxodes rex, a flagship ciliate with an alleged restricted biogeography. Microb Ecol 71:5–8

    Article  PubMed  Google Scholar 

  • Jee B-Y, Kim Y-C, Park MS (2001) Morphology and biology of parasite responsible for scuticociliatosis of cultured olive flounder Paralichthys olivaceu. Dis Aquat Org 47:49–55

    Article  CAS  Google Scholar 

  • Jørgensen CB (1976) August Pütter, August Krogh, and modern ideas on the use of dissolved organic matter in aquatic environments. Biol Rev 51:291–328

    Article  Google Scholar 

  • Koch AL (1971) The adaptive respponses of Escherichia coli to a feast and fanibe existence. Adv Microb Physiol 6:147–217

    Article  CAS  PubMed  Google Scholar 

  • Kozlova I, Singh M, Easton A (2002) Predator-prey models with diffusion based on Luckinbill’s experiment with Didinium and Paramecium. Math Comput Model 36:83–102

    Article  Google Scholar 

  • Kuhlmann S, Patterson DJ, Hausmann K (1980) Untersuchungen zu Nah­ rungserwerts und Nahrungsaufname bei Homalozoon vermiculare, Stokes 1887. Protistologica 16:39–55

    Google Scholar 

  • Laval M (1971) Ultrastructure et mode de nutrition du chaonaflagellate Salpingoeca pelagic asp. Nov. Comparaison avec les choanocytes des spongaires. Protistologica 7:325–336

    Google Scholar 

  • Leadbeater BSC (2015) The Choanoflagellates: evolution, biology and ecology. Cambridge Unviersity Press. 315pp

    Google Scholar 

  • Leadbeater BSC, Morton C (1974) A microscopical study of a marine species of Codosiga James-Clarck with special reference to the ingestion of bacteria. Biol J Linn Soc 6:337–347

    Article  Google Scholar 

  • Lee JJ (1980) Nutrition and physiology of foraminifera. In: Levandowsky M, Hutner SH (eds) The biochemistry and physiology of protozoa, vol 3, 2nd edn. Academic Press, New York, pp 43–66

    Google Scholar 

  • Lee JJ, Muller WA (1973) Trophic dynamics and niches of salt marsh foraminifera. Am Zool 13:215–223

    Article  Google Scholar 

  • Lee JJ, McEnery ME, Rubin H (1969) Quantitative studies on the growth of Allogromia laticollaris (Foraminifera). J Protozool 16:377–395

    Article  Google Scholar 

  • Lee KH, Jeong HJ, Jang TY, Lim AS, Kang NS, Kim J-H, Kim KY, Park K-T, Lee K (2014) Feeding by the newly described mixotrophic dinoflagellate Gymnodinium smaydae: feeding mechanism, prey species, and effect of prey concentration. J Exp Mar Biol Ecol 459:114–125

    Article  Google Scholar 

  • Lighthill J (1976) Fagellar hydrodynamics. SIAM Rev 18:161–230

    Article  Google Scholar 

  • Lindberg RE, Bovee EC (1976) Chaos caroliensis, induction of phagocytosis and cannibalism. J Protozool 23:333–336

    Article  Google Scholar 

  • Linnenbach M, Hausmann K, Patterson DJ (1983) Ultrastructural studies on the food vacuole cycle of a helizoan (Feeding by Actibophrys, III). Protoplasma 115:43–51

    Article  Google Scholar 

  • Luckinbill LS (1973) Coexistence in laboratory populations of Paramecium aurelia and its predator Didinium nasutum. Ecology 54:1320–1327

    Article  Google Scholar 

  • Luckinbill LS (1974) The effects of space and enrichment on a predator-prey system. Ecology 55:1142–1147

    Article  Google Scholar 

  • Lynn D (2008) The Ciliated protozoa: characterization, classification, and guide to the literature. Springer. 605pp

    Google Scholar 

  • Matsuoka A (2007) Living radiolarian feeding mechanisms: new light on past marine ecosystems. Swiss J Geosci 100:273–279

    Article  Google Scholar 

  • Meadows PS, Anderson JG (1966) Micro-organisms attached to marine and freshwater sand grains. Nature 212:1059–1060

    Article  Google Scholar 

  • Mueller M, Röhlich P, Torö I (1965) Studies on feeding and digestion in protozoa. VII. Ingestion of polystyrene latex particles and its early effect on acid phosphatase in Paramecium mulitimicronucleatumn and Tetrahymena pyriformis. J Protozool 12:27–34

    Article  CAS  Google Scholar 

  • Muller WA (1975) Competition for food and other niche-related studies of three species of salt-marsh foraminifera. Mar Biol 31:339–351

    Article  Google Scholar 

  • Murray JW (2006) Ecology and applications of benthic foraminifera. Cambridge University Press, p 426

    Google Scholar 

  • Nielsen C, Riisgård HU (1998) Tentacle structure and filter-feeding in Crisia eburnea and other cyclomatous bryozoans—collecting mechanisms. Mar Ecol Prog Ser 168:163–186

    Article  Google Scholar 

  • Nilsson JB (1979) Phagotrophy in Tetrahymena. In: Levandowsky M, Hutner SH (eds) Biochemistry and physiology of protozoa, vol 2, 2nd edn. Academic Press, New York, pp 339–379

    Google Scholar 

  • Ofelio C, Blanco A, Roura Á, Pintado J, Pascual S, Planas M (2014) Isolation and molecular identification of the scuticociliate Porpostoma notata Moebius, 1888 from moribund reared Hippocampus hippocampus (L.) seahorses, by amplification of the SSU rRNA gene sequences. J Fish Dis 37:1061–1065

    Article  CAS  PubMed  Google Scholar 

  • Ogden CG, Hedley RH (1980) An Atlas of freshwater testate amoebae. Oxford University Press, Oxford

    Book  Google Scholar 

  • Page FC (1976) An illustrated key to freshwater and soil amebae. Freshwater Biological Association, Ambleside, UK

    Google Scholar 

  • Page FC (1983) Marine gymnamoebae. Institute of Terrestrial Ecology, NERC, Camridge, UK

    Google Scholar 

  • Peck RK (1985) Feeding behavior in the ciliate Pseudomicrothorax dubius in a series of morphologically and physiologically distinct events. J Protozool 32:492–501

    Article  Google Scholar 

  • Prasad RR (1958) A note on the occurrence and feeding habit of Noctiluca and their effects on the plankton communities and fisheries. Proc Ind Acad Sci B 47:331–337

    Google Scholar 

  • Rasmussen L, Orias E (1975) Tetrahymena growth without ophagocytosis. Science 190:464–465

    Article  Google Scholar 

  • Roberts AM (1981) Hydrodynamics in protozoan swimming. In: Levandowsky M, Hutner SH (eds) Biochemistry and physiology of pro­tozoa, vol 4, 2nd edn. Academic Press, New York, pp 6–66

    Google Scholar 

  • Salt GW (1979) Density, starvation, and swimming rate in Didinium populations. Am Nat 113:135–143

    Article  Google Scholar 

  • Savoie A (1968) Les cilliés histophages e biologie cellulaire. Ann Univ Ferrara NS 3(6):65–71

    Google Scholar 

  • Schuster FL (1979) Small amoebas and amoeba flagellates. In: Levandowsky M, Hutner SH (eds) Biochemistry and physiology of protozoa, 2nd edn. Academic Press, New York, pp 215–285

    Chapter  Google Scholar 

  • Song JY, Kitamura SI, Oh MJ, Kang HS, Lee JH, Tanaka SJ, Jung SJ (2009) Pathogenicity of Miamiensis avidus (syn. Philasterides dicentrarchi), Pseudocohnilembus persalinus, Pseudocohnilembus hargisi and Uronema marinum (Ciliophora, Scuticociliatida). Dis Aqat Organ 83:133–143

    Article  CAS  Google Scholar 

  • Spero HJ (1982) Phagotrophy in Gymnodinium fungiforme (Pyrrhophyta): the peduncle as an organelle of ingestion. J Phycol 18:356–360

    Article  Google Scholar 

  • Spielman LA (1977) Particle capture from low speed laminar flows. Ann Rev Fluid Mech 9:297–319

    Article  CAS  Google Scholar 

  • Steinberg C (2003) Ecology of humic substances in freshwaters: determinants from geochemistry to ecological niches. Springer, p 440

    Google Scholar 

  • Stidworthy MF, Garner MM, Bradway DS, Westfall BD, Joseph B, Repetto S, Guglielmi E, Schmidt-Posthaus H, Thornton SM (2013) Systemic scuticociliatosis (Philasterides dicentrarchi) in sharks. Vet Pathol 51:628–632

    Google Scholar 

  • Stump AB (1935) Observations on the feeding of Difflugia, Pontigulasia and Lesqereusia. Biol Bull 69:136–142

    Article  Google Scholar 

  • Swanberg NR, Anderson OR (1985) The nutrition of radiolarians: trophic activity of some solitary Spumellaria. Limnol Oceanogr 30:646–652

    Article  Google Scholar 

  • Tucker JB (1968) Fine structure and function of the pharyngeal basket in the ciliate Nassula. J Cell Sci 3:493–514

    CAS  PubMed  Google Scholar 

  • Wessenberg H, Antipa GA (1970) Capture and ingestion of Paramecium by Didinium nasutum. J Protozool 17:250–270

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Esteban, G.F., Fenchel, T.M. (2020). Feeding. In: Ecology of Protozoa. Springer, Cham. https://doi.org/10.1007/978-3-030-59979-9_4

Download citation

Publish with us

Policies and ethics