Skip to main content

Part of the book series: NATO Conference Series ((MARS,volume 13))

Abstract

During the last decade, evidence has accumulated which undermine the classical picture of planktonic food chains. The general belief was that phytoplankton is consumed by herbivorous zooplankters with an efficiency approaching 100% (Steele, 1976). It has more recently been found that the largest fraction of heterotrophic metabolic activity can be attributed to bacteria rather than to the herbivorous Zooplankton. Studies based on a variety of methods suggest that bacterial biomass has turnover times ranging from <0.5 to a few days and that this represents a production which amounts to 10–30% of the primary production. The reduced carbon sustaining this productivity derives mainly from exudates of phytoplankton cells, but leachates from dead cells and from herbivores as well as detrital material contribute, so that as much as 20–40% of the primary production turns up as dissolved organic matter to be utilized by bacteria (Azam and Hodson, 1977; Hagström et al., 1979; Larsson and Hagström 1979; Fuhrman et al., 1980; Rheinheimer, 1981; Williams, 1981; Stuart et al., 1982; Wolter, 1982). To this heterotrophic production of bacteria, a photosynthetic production of unicellular cyanobacteria, now known to be an ubiquitous component of plankton, must be added (Sieburth, 1979).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Azam, F., and Hodson, R.E., 1977, Size distribution and activity of marine microheterotrophs, Limnol. Oceanogr., 22: 492.

    Article  Google Scholar 

  • Chen, Y.C., 1955, Filtration of aerosols by fibrous media, Chem. Rev., 55: 595.

    Article  Google Scholar 

  • Davis, P.G., Caron, D.A., and Sieburth, J.McN., 1978, Oceanic amoebae from North Atlantic: culture, distribution and taxonomy, Trans. Am. Micros. Soc., 96: 73.

    Article  Google Scholar 

  • Fenchel, T., 1968, The ecology of marine microbenthos. II. The food of marine benthic ciliates, Ophelia, 5: 73.

    Article  Google Scholar 

  • Fenchel, T., 1980 a, Suspension feeding in ciliated protozoa: functional response and particle size selection, Microb. Ecol., 6: 1.

    Article  Google Scholar 

  • Fenchel, T., 1980 b, Suspension feeding in ciliated protozoa: feeding rates and their ecological significance, Microb. Ecol., 6: 13.

    Article  Google Scholar 

  • Fenchel, T., 1980 c, Relation between particle size selection and clearance in suspension feeding ciliates, Limnol. Oceanogr. 25: 733.

    Article  Google Scholar 

  • Fenchel, T., 1980 d, Suspension feeding in ciliated protozoa: structure and function of feeding organelles, Arch. Protistenk., 123: 239.

    Article  Google Scholar 

  • Fenchel, T., 1982a Ecology of heterotrophic microflagellates. I. Some important forms and their functional morphology. Mar. Ecol. Prog. Ser., 8: 211.

    Article  Google Scholar 

  • Fenchel, T., 1982b, Ecology of heterotrophic microflagellates, II. Bioenergetics and growth, Mar. Ecol. Prog. Ser., 8:215.

    Google Scholar 

  • Fenchel, T., 1982c, Ecology of heterotrophic microflagellates, III, Adaptations to heterogenous environments, Mar. Ecol. Prog. Ser., 9: 25.

    Article  Google Scholar 

  • Fenchel, T., 1982 d, Ecology of heterotrophic microflagellates. IV. Quantitative occurrence and importance as consumers of bacteria. Mar. Ecol. Prog. Ser., 9: 35.

    Article  Google Scholar 

  • Fenchel, T., and Harrison, P., 1976, The significance of bacterial grazing and mineral cycling for the decomposition of particulate detritus, in: “The Role of Terrestrial and Aquatic Organisms in Decomposition Processes,” Anderson, J.M. and Macfadyen, A., eds. Blackwell, Oxford.

    Google Scholar 

  • Fenchel, T., and Jørgensen, B.B., 1977, Detritus food chains of aquatic ecosystems: the role of bacteria, Adv. Microb. Ecol. 1: 1.

    Google Scholar 

  • Fenchel, T., Kofoed, L.H., and Lappalainen, A., 1975, Particle size-selection of two deposit feeders: the amphipod Corophium volutator and the prosobranch Hydrobia ulvae, Mar. Biol., 30: 119.

    Article  Google Scholar 

  • Fenchel, T., and Small, E.B., 1980, Structure and function of the oral cavity and its organelles in the hymenostome ciliate Glaucoma, Trans. Am. Micros. Soc., 99: 52.

    Article  Google Scholar 

  • Ferguson, R.L., and Rublee, P., 1976, Contribution of bacteria to the standing crop of coastal plankton, Limnol. Ocreanogr., 21:141.

    Article  Google Scholar 

  • Flood, P.R., 1978, Filter characteristics of appendicularian food catching nets, Experientia, 34: 173.

    Article  Google Scholar 

  • Foster-Smith, R.L. 1976, Pressures generated by the pumping mechanisms of some ciliary filter feeders, J. Exp. Mar. Biol. Ecol., 25: 199.

    Article  Google Scholar 

  • Fuhrman, J.A., Ammerman, J.W.A., and Azam, F., 1980, Bacterioplankton in the coastal euphotic zone; distribution, activity and possible relationships with phytoplankton, Mar. Biol., 60: 201.

    Article  Google Scholar 

  • Haas, L.W., and Webb, K.L., 1979, Nutritional mode of several non-pigmented microflagellates from the York River Estuary, Virginia, J. Exp. Mar. Biol. Ecol., 39: 125.

    Article  Google Scholar 

  • Hagström, A., Larsson, U., Hörstedt, P., and Normark, S., 1979, Frequency of dividing cells, a new approach to the determination of bacterial growth rates in aquatic environments, Appl. Environ. Microbiol., 37: 805.

    Google Scholar 

  • Hamilton, R.D., and Preslan, J.E., 1969, Cultural characteristics of a pelagic marine hymenostome ciliate, Uronema sp., J. Exp. Mar. Biol. Ecol., 4: 90.

    Article  Google Scholar 

  • Heinbokel, J.F., 1978, Studies on the functional role of tintinnids in the Southern California Bight. I. Grazing and growth rates in laboratory cultures, Mar. Biol., 47: 177.

    Article  Google Scholar 

  • Hobbie, J.E., Holm-Hansen, O., Packard, T.T., Pomeroy, L.R., Sheldon, R.W., Thomas, J.P., and Wiebe, W.J., 1972, A study of the distribution and activity of microorganisms in ocean water, Limnol. Oceanogr., 17: 544.

    Article  Google Scholar 

  • Jørgensen, C.B., 1966, “Biology of Suspension Feeding,” Pergamon, Oxford.

    Google Scholar 

  • Jørgensen, C.B., 1975, Comparative physiology of suspension feeding, Ann. Rev. Physiol., 37: 57.

    Article  Google Scholar 

  • Jørgensen, C.B., 1981, A hydromechanical principle for particle retention in Mytilus edulis and other ciliary suspension feeders, Mar. Biol. 61: 277.

    Article  Google Scholar 

  • King, K.R., Hollibaugh, J.T., and Azam, F., 1980, Predator-prey interactions between the larvacean Oikopleura dioica and bacterioplankton in enclosed water columns, Mar. Biol., 56: 49.

    Article  Google Scholar 

  • Koch, A.L., 1971, The adaptive responses of Escherichia coli to a feast and famine existence, Adv. Microb. Physiol., 6: 147.

    Article  Google Scholar 

  • Larsson, U., and Hägstrom, A., 1979, Phytoplankton exudate release as an energy source for the growth of pelagic bacteria, Mar. Biol. 52: 199.

    Article  Google Scholar 

  • Lighthill, J., 1976, Flagellar hydrodynamics, SIAM Rev., 18:161.

    Article  Google Scholar 

  • Linley, E.A.S., Newell, R.C., and Bosma, S.A., 1981, Heterotrophic utilisation of mucilage released during fragmentation of kelp (Eckonia maxima and Laminaria pallida). I. Development of microbial communities associated with the degradation of kelp mucilage, Mar. Ecol. Prog. Ser., 4: 31.

    Article  Google Scholar 

  • Meyer-Reil, L. -A., Bölter, M., Liebezeit, G., and Schramm, W., 1979, Short-term variations in microbiological and chemical parameters, Mar. Ecol. Prog. Ser., 1:1.

    Article  Google Scholar 

  • Møhlenberg, F., and Riisgård, H.U., 1978, Efficiency of particle retention in 13 species of suspension feeding bivalves, Ophelia, 17: 239.

    Article  Google Scholar 

  • Mullins M.M., Stewart, E.F., and Fuglister, F.J., 1975, Ingestion by planktonic grazers as a function of concentration of food, Limnol. Oceanogr., 20: 259.

    Article  Google Scholar 

  • Newell, R.C., Lucas, M.I., and Linley, E.A.S., 1981, Rate of degradation and efficiency of conversion of phytoplankton debris by marine micro-organisms, Mar. Ecol. Prog. Ser., 6: 123.

    Article  Google Scholar 

  • Peterson, B.J., Hobbie, J.E., and Haney, J.F., 1978, Daphnia grazing on natural bacteria, Limnol. Oceanogr., 23: 1039.

    Article  Google Scholar 

  • Platt, T., and Denman, K., 1977, Organisation in the pelagic ecosystem, Helgoländer wiss. Meeresunters., 30: 575.

    Article  Google Scholar 

  • Pourriot, R., 1977, Food and feeding habits of rotifera, Arch. Hydrobiol. Beitr., 8: 243.

    Google Scholar 

  • Prieur, D., 1981, Experimental studies of trophic relationships between marine bacteria and bivalve molluscs, Kieler Meeresforsch. Sonderh., 5: 376.

    Google Scholar 

  • Randløv, A., and Riisgård, H.U., 1979, Efficiency of particle retention and filtration rate in four species of ascidians, Mar. Ecol. Prog. Ser., 1: 55.

    Article  Google Scholar 

  • Rassoulzadegan, F., 1977, Evolution anuelle des ciliés pelagiques en Méditerranée nord-occidentale: ciliés oligotriches “non-tintinnides” (Oligotrichina), Ann. Inst. Océanogr. Paris, 53: 125.

    Google Scholar 

  • Rassoulzadegan, F., and Etienne, M., 1981, Grazing rate of the tin-tinnid Stenosomella ventricosa (Clap & Lachm.) Jörg, on the spectrum of naturally occurring particulate matter from a Mediterranean neritic area, Limnol. Oceanogr., 26: 258.

    Article  Google Scholar 

  • Reiswig, H.M., 1974, Water transport, respiration and energetics of three tropical marine sponges, J. Exp. Mar. Biol. Ecol., 14: 231.

    Article  Google Scholar 

  • Reiswig, H.M., 1975, The aquiferous systems of three marine demospongiae, J. Morph., 145: 493.

    Article  Google Scholar 

  • Rheinheimer, G., 1981, Investigations on the role of bacteria in the food web of the Western Baltic, Kieler Meeresforsch. Sonderh., 5: 284.

    Google Scholar 

  • Roberts, A.M., 1981, Hydrodynamics of protozoan swimming, in: “Biochemistry and Physiology of Protozoa,” IV, 2nd ed., M. Levandowsky and S.H. Hutner eds, Academic, New York.

    Google Scholar 

  • Robertson, M.L., Mills, A.L., and Zieman, J.C., 1982, Microbial synthesis of detritus-like particles from dissolved organic carbon released by tropical seagrasses, Mar. Ecol. Prog. Ser., 7: 279.

    Article  Google Scholar 

  • Seki, H., 1972, The role of microorganisms in the marine food chain with reference to organic aggregations, Mem. Ist. Ital. Idrobiol. 29 Suppl.: 245.

    Google Scholar 

  • Sieburth, J., 1979, “Sea Microbes,” Oxford Univ. Press, New York.

    Google Scholar 

  • Sieburth, J., Smetacek, V., and Lenz, J., 1978, Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions, Limnol. Oceanogr., 23: 1256.

    Article  Google Scholar 

  • Sleigh, M.A., and Blake, J.R., 1977, Methods of ciliary propulsion and their size limitation, in: “Scale Effects in Animal Locomotion,” T.J. Pedley ed., Academic, London.

    Google Scholar 

  • Sorokin, Yu. I., 1977, The heterotrophic phase of plankton succession in the Japan Sea, Mar. Biol., 41: 107.

    Article  Google Scholar 

  • Sorokin, Yu. I., 1978, Decomposition of organic matter and nutrient regeneration, in: “Marine Ecology, 4,” O. Kinne ed., Wiley, Chichester.

    Google Scholar 

  • Spielman, L.A., 1977, Particle capture from low-speed laminar flows, Ann. Rev. Fluid. Mech., 9: 297.

    Article  Google Scholar 

  • Spittler, P., 1973, Feeding experiments with tintinnids, Oikos, Suppl., 15: 128.

    Google Scholar 

  • Steele, J.H., 1976, “The Structure of Marine Ecosystems,” Harvard Univ. Press, Cambridge, Mass.

    Google Scholar 

  • Stuart, V., Newell, R.C., and Lucas, M.I., 1982, Conversion of kelp debris and fecal material from the mussel Aulacomya ater by marine microorganisms, Mar. Ecol. Prog. Ser., 7: 47.

    Article  Google Scholar 

  • Tamada, K., and Fujikawa, H., 1957, The steady two-dimensional flow of viscous fluid at low Reynolds numbers passing through an infinite row of equal parallel circular cylinders, Quart. Mech. Appl. Math., 10: 425.

    Article  Google Scholar 

  • Williams, P.J.leB., 1981, Incorporation of microheterotrophic processes into the classical paradigm of the planktonic food web, Kieler Meeresforsch., Sonderh., 5: 1.

    Google Scholar 

  • Wolter, K., 1982, Bacterial incorporation of organic substances released by natural phytoplankton populations, Mar. Ecol. Prog. Ser., 7: 287.

    Article  Google Scholar 

  • Wright, R.T., Coffin, R.B., Ersing, C.P., and Pearson, D., 1982, Field and laboratory measurements of bivalve filtration of natural marine bacterioplankton, Limnol. Oceanogr., 27: 91.

    Article  Google Scholar 

  • ZoBell, C.E., and Feltham, C.B., 1937–38, Bacteria as food for certain marine invertebrates, J. Mar. Res., 1: 312.

    Google Scholar 

  • ZoBell, C.E., and Landon, W.A., 1937, The bacterial nutrition of the California mussel, Proc. Soc. Exp. Biol. Med. N.Y., 36: 607.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Fenchel, T. (1984). Suspended Marine Bacteria as a Food Source. In: Fasham, M.J.R. (eds) Flows of Energy and Materials in Marine Ecosystems. NATO Conference Series, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0387-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0387-0_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0389-4

  • Online ISBN: 978-1-4757-0387-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics