Skip to main content

Bioremediation of Toxic Pesticides in Soil Using Microbial Products

  • Chapter
  • First Online:
Mycoremediation and Environmental Sustainability

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Environmental contamination is increasing day by day and hence new systems should be developed for its remediation. Therefore, we attempt to depend much on manageable approaches to treat contamination. Bioremediation is one such encouraging procedure in which microorganisms are utilized for the treatment of environmental pollutants and can be characterized as environmental reaction to environmental abuse. Bioremediation deals with environmental restoration of the already contaminated environments and with the cleaning of regions that have been contaminated as of late, due to the production, storage, transport, and utilization of chemicals. Among these chemicals, pesticides are exceptionally significant as they are widely utilized to increase the yield and quality of crops by protecting them. Likewise, pesticides have turned into an important component of current agribusiness. However, nonstop use of pesticides prompts degradation of the air. Pesticides have turned into a noteworthy contaminant of atmosphere, water, soil, and vegetables. Microorganism and their by-products (e.g., enzyme, toxin, crystal protein, pigments, and biosurfactants) play a significant role in preserving the environment by degrading chemical wastes and xenobiotic compounds that have becomes toxicants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abioye OP, Aina PF, Ijah UJJ, Aransiola SA (2019) Effects of cadmium and lead on the biodegradation of diesel-contaminated soil. J Taibah Univ Sci 13(1):628–638

    Article  Google Scholar 

  • Aislabie J, Richards NK, Boul HL (1997) Microbial degradation of DDT and its residues – a review. N Z J Agric Res 40:269–282

    Google Scholar 

  • Aislabie J, Bej AK, Ryburn J, Lloyd N, Wilkins A (2005) Characterization of Arthrobacter nicotinovorans HIM, an atrazine degrading bacterium, from agricultural soil New Zealand, FEMS Microbiol Ecol 52:279–286

    Google Scholar 

  • Andreu V, Picó Y (2004) Determination of pesticides and their degradation products in soil. Trends Anal Chem 23(10–11):772–789

    Article  CAS  Google Scholar 

  • Aransiola SA, Ijah UJJ, Abioye OP (2013) Phytoremediation of lead polluted soil by Glycine max L. Appl Environ Soil Sci 2013. Article ID: 631619, https://doi.org/10.1155/2013/631619

  • Babitha S (2009) Microbial pigments. In: Singh-Nee Nigam P, Pandey A (eds) Biotechnology for agroindustrial residues utilisation. Springer & Business Media B.V., Dordrecht, pp 147–162, ISBN 978-1-4020-9942-7

    Chapter  Google Scholar 

  • Banitz T, Frank K, Wick LY, Harms H, Johst K (2016) Spatial metrics as indicators of biodegradation benefits from bacterial dispersal networks. Ecol Indic 60:54–63

    Article  Google Scholar 

  • Barkay T, Navon-Venezia S, Ron EZ, Rosenberg E (1999) Enhancement of solubilization and biodegradation of polyaromatic hydrocarbons by the bioemulsifier alasan. Appl Environ Microbiol 65:2697–2702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bastos AC, Magan N (2009) Trametesversicolor: potential for atrazine bioremediation in calcareous clay soil, under low water availability conditions. Int Biodeterior Biodegrad 63:389–394

    Article  CAS  Google Scholar 

  • Bending GD, Friloux M, Walker A (2002) Degradation of contrasting pesticides by white rot fungi and its relationship with ligninolytic potential. FEMS Microbiol Lett 212:59–63

    Article  CAS  PubMed  Google Scholar 

  • Benimeli CS, Fuentes MS, Abate CM, Amoroso MJ (2008) Bioremediation of lindane-contaminated soil by Streptomyces sp. M7 and its effects on Zea mays growth, Int. Biodeterior. Biodegradation 61:233–239

    Article  CAS  Google Scholar 

  • Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA and Prasad R (2016) Nano-biofungicides: Emerging trend in insect pest control. In: R. Prasad (ed.), Advances and Applications through Fungal Nanobiotechnology, Springer International Publishing Switzerland 307–319

    Google Scholar 

  • Bingham S (2007) Pesticides in rivers and groundwater. Environment Agency, UK. Heather B, et al (1997) Movement of pesticides and best management practices, Ground Water Pollution Primer, Virginia

    Google Scholar 

  • Blais JM, Schindler DW, Mair DC, Kimpe LE, Donald DB, Rosenberg B (1998) Acclimation of persistent organochlorine compounds in mountains of Western Canada. Nature 395:585–588

    Article  CAS  Google Scholar 

  • Bollag JM, Liu SY (1990) Biological transformation processes of pesticides. In: Cheng HH (ed) Pesticides in the soil environment processes, impacts and modeling. Soil Science Society of America, Madison, pp 169–211, ISBN 0–89118-791-X

    Google Scholar 

  • Bouziani M (2007) L’usage immod´er´e des pesticides. De graves cons´equences sanitaires, Le Guide de laM´edecine et de la Sant´e, Sant´emaghreb

    Google Scholar 

  • Briceño G, Fuentes MS, Palma G, Jorquera MA, Amoroso MJ, Diez MC (2012) Chlorpyrifos biodegradation and 3,5,6-trichloro-2-pyridinol production by actinobacteria isolated from soil. Int Biodeterior Biodegrad 73:1–7

    Article  CAS  Google Scholar 

  • Bruck DJ, Lewis LC, Gunnarson RD (2001) Interaction of Nosema pyrausta and temperature on Ostrinia nubilalis egg production and hatch. J Invertebr Pathol 78(4):210–214

    Article  CAS  PubMed  Google Scholar 

  • Cassidy DP, Srivastava VJ, Dombrowski FJ, Lingle JW (2015) Combining in situ chemical oxidation, stabilization, and anaerobic bioremediation in a single application to reduce contaminant mass and leachability in soil. J Hazard Mater 297:347–355

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay A, Bhatnagar NB, Bhatnagar R (2004) Bacterial insecticidal toxins. Crit Rev Microbiol 30(1):33–54

    Article  CAS  PubMed  Google Scholar 

  • Chishti Z, Hussain S, Arshad KR, Khalid A, Arshad M (2013) Microbial degradation of chlorpyrifos in liquid media and soil. J Environ Manag 114:372–380

    Article  CAS  Google Scholar 

  • Chirnside AEM, Ritter WF, Radosevich M (2007) Bioremediation strategies for pesticide-contaminated Soil: IV. Biodegradation using a selected microbial consortium following pretreatment with fungal Enzymes. In: Proceedings of the 9th International In situ and On-Site Bioremediation Symposium, pp 1233–1240, Baltimore, MD, May 2007

    Google Scholar 

  • Chawla N, Suneja S, Kukreja K, Kumar R (2013) Bioremediation: an emerging technology for remediation of pesticides. Res J Chem Environ 17(4):88–105

    Google Scholar 

  • Chaudhry GR, Chapalamadugu S (1991) Biodegradation of halogenated organic compounds microbiological reviews. Microbiol Mol Biol Rev 55(1):59–79

    CAS  Google Scholar 

  • Colosio C, Tiramani M, Brambilla G, Colombi A, Moretto A (2009) Neurobehavioural effects of pesticides with special focus on organophosphorus compounds: which is the real size of the problem? Neurotoxicology 30(6):1155–1161

    Article  CAS  PubMed  Google Scholar 

  • Cory JS, Hails RS (1997) The ecology and biosafety of baculoviruses. Curr Opin Biotechnol 8(3):323–327

    Article  CAS  PubMed  Google Scholar 

  • Cui ZI, Cui LX, Huang Y, Yan X, He J, Li SP (2012) Advances and application of microbial degradation in pesticides pollution remediation. Nanjing Nongye Daxue Xuebao 35(5):93–102

    CAS  Google Scholar 

  • Debarati P, Gunjan P, Janmejay P, Rakesh VJK (2005) Accessing microbial diversity for bioremediation and environmental restoration. Trends Biotechnol 23(3):135–142

    Article  CAS  Google Scholar 

  • Diaz E (2004) Bacterial degradation of aromatic pollutants: a paradigm of metabolic versatility. Int Microbiol 7:173–180

    CAS  PubMed  Google Scholar 

  • Dixon B (1996) Bioremediation is here to stay. ASM News 62:527528

    Google Scholar 

  • Dua M, Singh A, Sethunathan N, Johri AK (2002) Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol 59(2–3):143–152

    CAS  PubMed  Google Scholar 

  • Dubey RC (2004) A text book of biotechnology, 3rd edn. S. Chand and Company Ltd., New Delhi, pp 365–375

    Google Scholar 

  • EPA (2015) What is a Pesticide, April 2015, http://www.epa.gov

  • Fang H, Dong B, Yan H, Tang F, Yunlong Y (2010) Characterization of a bacterial strain capable of degrading DDT congeners and its use in bioremediation of contaminated soil. J Hazard Mater 184(1–3):281–289

    Article  CAS  PubMed  Google Scholar 

  • Finley SD, Broadbelt LJ, Hatzimanikatis V (2010) In Silico feasibility of novel biodegradation pathways for 1,2,4-Trichlorobenzene. BMC Syst Biol 4(7):4–14

    Google Scholar 

  • Fragoeiro S, Magan N (2008) Impact of Trametes versicolor and Phanerochaete crysosporium on differential breakdown of pesticide mixtures in soil microcosms at two water potentials and associated respiration and enzyme activity, Int. Biodeterior Biodegrad 62:376–383

    Article  CAS  Google Scholar 

  • Frankenhuyzen KV (2009) Insecticidal activity of Bacillus thuringiensis crystal proteins. J Invertebr Pathol 101(1):1–16

    Article  PubMed  CAS  Google Scholar 

  • Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359

    Article  CAS  PubMed  Google Scholar 

  • Fries GR, Marrow GS, Gordon H (1969) Metabolism of o,p’-DDT by rumen microorganisms. J Agric Food Chem 17(4):860–862

    Article  CAS  Google Scholar 

  • Fulekar MH, Geetha M (2008) Bioremediation of chlorpyrifos in surface soil treatment unit using microbial consortium. Can J Pure Appl Sci 2(2):267–273

    Google Scholar 

  • Garcia-Delgado C, Alfaro-Barta I, Eymar E (2015) Combination of biochar amendment and mycoremediation for polycyclic aromatic hydrocarbons immobilization and biodegradation in creosote-contaminated soil. J Hazard Mater 285:259–266

    Article  CAS  PubMed  Google Scholar 

  • Gavrilescu M (2005) Fate of pesticides in the environment and its bioremediation. Eng Life Sci 5(6):497–526

    Article  CAS  Google Scholar 

  • Gerhardson B (2002) Biological Substitutes for Pesticides. Trends Biotechnol 20(8):338–343

    Article  CAS  PubMed  Google Scholar 

  • Ghosh PG, Sawant NA, Patil SN, Aglave BA (2010) Microbial biodegradation of organophosphate pesticides. Int J Biotechnol Biochem 6(6):871–876

    Google Scholar 

  • Gill SS, Singh GJP, Hornung JM (1987) Cell membrane interaction of Bacillus thuringiensis Subsp. israelensis cytolytic toxins. Infect Immun 55(5):1300–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillion RJ (2007) The Quality of our nation’s waters: pesticides in the nation’s streams and ground water, 1992–2001. US Geological Survey

    Google Scholar 

  • Gimsing AL, Borggaard OK, Jacobsen OS, Aamand J, Sorensen J (2004) Chemical and microbiological soil characteristics controlling glyphosate mineralization in Danish surface soils. Appl Soil Ecol 2:233–242

    Article  Google Scholar 

  • Gold RS, Maxim J, Johnson DA (2005) Electron beam irradiation as protection against the environmental release of recombinant molecules for biomaterials applications. J Biomater Sci Polym Ed 16:79–89

    Article  CAS  PubMed  Google Scholar 

  • Gondim-Tomaz MA, Franco TT, Durrant LR (2005) Biodegradation of diuron and pyruthiobac-sodium by white rot and soil fungi. Contam Soils Sediments Water 9:21–32

    Article  CAS  Google Scholar 

  • Gouma S (2009) Biodegradation of mixtures of pesticides by bacteria and white rot fungi, Ph.D. Thesis, School of Health Cranfield University, 416

    Google Scholar 

  • Gupta PK (2004) Pesticide exposure—Indian scene. Toxicology 198(1–3):83–90

    Article  CAS  PubMed  Google Scholar 

  • Hackenberg D (2007) Letter from David Hackenberg to American growers. Plattform Imkerinnen Austria

    Google Scholar 

  • Hai FI, Modin O, Yamamoto K, Fukushi K, Nakajima F, Nghiem LD (2012) Pesticide removal by a mixed culture of bacteria Scientifica 9 and white-rot fungi. J Taiwan Inst Chem Eng 43(3):459–462

    Article  CAS  Google Scholar 

  • Harrison SA (1990) The fate of pesticides in the environment, Agrochemical Fact Sheet # 8, Penn, USA

    Google Scholar 

  • Helweg (2003) Fate of pesticides in surface waters, Laboratory and Field Experiments; Ministry of Environment, Danish Environmental Protection Agency, Pesticides Research No. 68

    Google Scholar 

  • Hussain S, Siddique T, Arshad M, Saleem M (2009) Bioremediation and phytoremediation of pesticides: recent advances. Crit Rev Environ Sci Technol 39(10):843–907

    Article  CAS  Google Scholar 

  • Inceoglu AB, Kamita SG, Hammock BD (2006) Genetically modified baculoviruses: a historical overview and future outlook. Adv Virus Res 68:323–360

    Article  CAS  PubMed  Google Scholar 

  • Iwata H, Tanabe S, Sakai N, Tatsukawa R (1993) Distribution of persistent organochlorine in the oceanic air and surface seawater and the role of ocean on their global transport and fate. Environ Sci Technol 27:1080–1098

    Article  CAS  Google Scholar 

  • Jain RK, Kapur M, Labana S, Lal B, Sarma PM, Bhattacharya D, Thakur IS (2005) Microbial diversity: application of microorganisms for the biodegradation of xenobiotics. Curr Sci 89(1):101–112

    CAS  Google Scholar 

  • Jauregui J, Valderrama B, Albores A, Vazquez-Duhalt R (2003) Microsomal transformation of organophosphorus pesticides by white rot fungi. Biodegradation 14:397–406

    Article  CAS  PubMed  Google Scholar 

  • Jokanovic M, Prostran M (2009) Pyridinium oximes as cholinesterase reactivators. Structure-activity relationship and efficacy in the treatment of poisoning with organophosphorus compounds. Curr Med Chem 16(17):2177–2188

    Article  CAS  PubMed  Google Scholar 

  • Johnson J, Ware WG (1992) Pesticide litigation manual 1992 edition, Clark Boardman Callaghan Environmental Law Series, New York, NY

    Google Scholar 

  • Joshi SR (2006) Biopesticides: a biotechnological approach, New Age International Publishers, New Delhi, ISBN 81–224–1781-7

    Google Scholar 

  • Jung H, Sohn KD, Neppolian B, Choi H (2008) Effect of soil organic matter (SOM) and soil texture on the fatality of indigenous microorganisms in intergrated ozonation and biodegradation. J Hazard Mater 150:809–817

    Article  CAS  PubMed  Google Scholar 

  • Kadam TA, Jadhav VD, Gyananath G (2003) Microbial degradation of dimethoate by Gram negative soil isolates from cotton field. Pollut Res 22(3):443–445

    Google Scholar 

  • Kannan K, Tanabe S, Willians RJ, Tatsukawa R (1994) Persistent organochlorine residues in foodstuffs from Australia, Papua New Guinea and the Solomon Islands: contamination levels and dietary exposure. Sci Total Environ 153:29–49

    Article  CAS  PubMed  Google Scholar 

  • Karpouzas DG, Fotopoulou A, Menkissoglu-Spiroudi U, Singh BK (2005) Non-specific biodegradation of the organophosphorus pesticides, cadusafos and ethoprophos, by two bacterial isolates. FEMS Microbiol Ecol 53(3):369–378

    Article  CAS  PubMed  Google Scholar 

  • Kaya HK, Gaugler R (1993) Entomopathogenic nematodes. Annu Rev Entomol 38:181–206

    Article  Google Scholar 

  • Kaneva I, Chen W (1999) Detoxification of organophosphate pesticides by immobilized Escherichia coli expressing organophosphorus hydrolase on cell surface. Biotechnol Bioeng 63:216–223

    Article  PubMed  Google Scholar 

  • Kegley S (1999) Disrupting the balance, ecological impacts of pesticides in California, California, USA

    Google Scholar 

  • Knowles BH, Ellar D (1987) Colloid-osmotic Lysis is a general feature of the mechanism of action of Bacillus thuringiensis δ-endotoxins with different insect specificity. Biochim Biophys Acta 924(3):509–518

    Article  CAS  Google Scholar 

  • Krishna KR, Philip L (2009) Biodegradation of mixed pesticides by mixed pesticide enriched cultures. J Environ Sci Health B 44(1):18–30

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Philip L (2006) Bioremediation of endosulfan contaminated soil and water-optimization of operating conditions in laboratory scale reactors. J Hazard Mater 136:354–364

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Prasad R, Goyal P, Teotia P, Tuteja N, Varma A, Kumar V (2017) Environmental biodegradation of xenobiotics: role of potential microflora. In: Xenobiotics in the Soil Environment (ed. Hashmi MZ, Kumar V and Varma A) Springer International Publishing Switzerland 319–334

    Google Scholar 

  • Kumar V, Prasad R, Goyal P, Tuteja N, Singh J, Varma A, Kumar M (2017) Prominences on xenobiotic degradation underneath of ecological sanitary. In: Xenobiotics in the Soil Environment (ed. Hashmi MZ, Kumar V and Varma A) Springer International Publishing Switzerland 373–383

    Google Scholar 

  • Kye CM, Reukaradhya M, Islam K (2009) Biodegradation of chlorpyrifos by lactic acid bacteria during kimchi fermentation. J Agric Food Chem 57(5):1882–1889

    Article  CAS  Google Scholar 

  • Lacey LA, Goettel MS (1995) Current developments in microbial control of insect pests and prospects for the early 21st century. Entomophaga 40:3–27

    Article  Google Scholar 

  • Langlois BE, Collins JA, Sides KG (1970) Some factors affecting degradation of organochlorine pesticide by bacteria. J Dairy Sci 53(12):1671–1675

    Article  CAS  PubMed  Google Scholar 

  • Lan WS, Gu JD, Zhang JL (2006) Co-expression of two detoxifying pesticide-degrading enzymes in a genetically engineered bacterium. Int Biodeterior Biodegrad 58(2):70–76

    Article  CAS  Google Scholar 

  • Lal R, Dogra C, Malhotra S, Sharma P, Pal R (2006) Diversity, distribution and divergence of lin genes in hexachlorocyclohexane degrading sphingomonads. Trends Biotechnol 24:121–129

    Article  CAS  PubMed  Google Scholar 

  • Larkin M, Kulakov L, Allen C (2005) Biodegradation and Rhodococcus-masters of catabolic versatility. Curr Opin Biotech 16:282–290

    Article  CAS  PubMed  Google Scholar 

  • Li H, Liang W, Wu X, Liu Y (2004) Research on biodegradation of organophosphorus insecticide by a novel psychrotrophic bacterium SA-8. Zhongshan Daxue Xuebao, Ziran Kexueban 43(3):131–132

    CAS  Google Scholar 

  • Li-Qing BL, Hong-Xia J, Yan-Chun Y et al (2008) Degradation of organophosphorus pesticide by engineered bacteria and immobilized cell. Huanjing Kexue Yu Jishu 31(5):45–48

    Google Scholar 

  • Lorenz ES (2009) Potential health effects of pesticides. Ag Communications and Marketing: 1–8

    Google Scholar 

  • Lio M, Xie X (2009) Application of enterobacteraerogenes in degrading pyrethroid pesticide residue, and preparation with enterobacteraerogenes, Faming Zhuanli Shenqing, CN102021135 A

    Google Scholar 

  • Lima AS, Alegre RM (2009) Evaluation of emulsifier stability of biosurfactant produced by Saccharomyces lipolytica CCT-0913. Braz Arch Biol Technol 52:285–290

    Article  CAS  Google Scholar 

  • Lotter DW, Seidel R, Liebhardt W (2003) The performance of organic and conventional cropping systems in an extreme climate year. Am J Altern Agric 18:146–154

    Article  Google Scholar 

  • Liu YH, Chung YC, Xiong Y (2001) Purification and characterization of a dimethoate-degrading enzyme of Aspergillus niger ZHY256, isolated from sewage. Appl Environ Microbiol 67(8):3746–3749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Hong Q, Xu JH, Jun W, Li SP (2006) Construction of a genetically engineered microorganism for degrading organophosphate and carbamate pesticides. Int Biodeterior Biodegrad 58(2):65–69

    Article  CAS  Google Scholar 

  • Liu Z, Hong Q, Xu JH, Jun W, Li SP (2007) Construction of a genetically engineered microorganism for degrading organophosphate and carbamate pesticides, International Biodeterioration and Biodegradation 58(2):65–69

    Google Scholar 

  • Martınez-Pascual E, Grotenhuis T, Solanas AM, Vinas M (2001) Coupling chemical oxidation and biostimulation: effects on the natural attenuation capacity and resilience of the native micro-bial community in alkylbenzene-polluted soil. J. Hazard Mater 300:135–143

    Google Scholar 

  • Martinez-Pascual E, Grotenhuis T, Solanas AM, Vinas M (2015) Coupling chemical oxidation and biostimulation: effects on the natural attenuation capacity and resilience of the native microbial community in alkylbenzene-polluted soil. J Hazard Mater 300:135–143

    Article  CAS  PubMed  Google Scholar 

  • Mata-Sandoval JC, Karns J, Torrents A (2002) Influence of rhamnolipids and Triton X-100 on the desorption of pesticides from soils. Environ Sci Technol 36:4669–4675

    Article  PubMed  Google Scholar 

  • McCutchen WF, Flexner L (1999) Join action of Baculovirus and other control agents. In: Hall DR, Menn JJ (eds) Biopesticides use and delivery. Humana Press, New Jersey, pp 341–355, ISBN 0–89603–515-8

    Google Scholar 

  • Mercadier C, Vega D, Bastide J (1997) Iprodione degradation by isolated soil microorganisms. FEMS Microbiol Ecol 23:207–215

    Article  CAS  Google Scholar 

  • Mervat SM (2009) Degradation of methomyl by the novel bacterial strain Stenotrophomonas maltophilia M1. Electron J Biotechnol 12(4):1–6

    Google Scholar 

  • Miller GT (2004) Sustaining the earth, 6th edn. Thompson Learning, Inc., Pacific Grove

    Google Scholar 

  • Mishra V, Lal R, Srinivasan S (2001) Enzymes and operons mediating xenobiotic degradation in bacteria. Crit Rev Microbiol 27(2):133–166

    Article  CAS  PubMed  Google Scholar 

  • Mohamed AT, El Hussein AA, El Siddig MA, Osman AG (2011) Degradation of oxyfluorfen herbicide by soil microorganisms: biodegradation of herbicides. Biotechnology 10:274–279

    Article  CAS  Google Scholar 

  • Montesinos E (2003) Development, registration and commercialization of microbial pesticides for plant protection, Int. Microbiology 6(4):245–252

    CAS  Google Scholar 

  • Moussa TAA, Ahmed GM, Abdel-hamid SMS (2006) Optimization of cultural conditions for biosurfactants production from Nocardia amarae. J Appl Sci Res 2:844–850

    Google Scholar 

  • Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133:183–198

    Article  CAS  PubMed  Google Scholar 

  • Nagata Y, Futamura AA, Miyauchi K, Takagi M (1999) Two different types of dehalogenases, Lin A and Lin B, involved in γ- hexachlorocyclohexane degradation in Sphingomonas paucimobilis UT26 are localized in the periplasmic space without molecular processing. J Bacteriol 181:5409–5413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagata Y, Endo R, Ito M, Ohtsubo Y, Tsuda M (2007) Aerobic degradation of lindane (hexachlorocyclohexane) in bacteria and its biochemical and molecular basis. Appl Microbiol Biotechnol 76:741–752

    Article  CAS  PubMed  Google Scholar 

  • Nagpal V, Srinivasan MC, Paknikar KM (2008) Biodegradation of 𝛾-hexachlorocyclohexane (Lindane) by a non-white rot fungus conidiobolus 03-1-56 isolated from litter. Indian J Microbiol 48(1):134–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nawab A, Aleem A, Malik A (2003) Determination of organochlorine pesticides in agricultural soil with special reference to 𝛾-HCH degradation by Pseudomonas strains. Bioresour Technol 88(1):41–46

    Article  CAS  PubMed  Google Scholar 

  • Ning L, Jing-ying C, Li L (2005) Isolation and selection of strains used to degrade organic PCNB pesticides and their application effects. Jilin Nongye Daxue Xuebao 27(2):205–208

    Google Scholar 

  • Normand P, Queiroux C, Tisa LS, Benson DR, Rouy Z, Cruvellier S, Medigue C (2007) Exploring the genomes of Frankia. Physiol Plant 130:331–343

    Article  CAS  Google Scholar 

  • Ortega NO, Nitschke M, Mouad AM, Landgraf MD, Rezende MOO, Seleghim MHR, Sette LD, Porto ALM (2011) Isolation of Brazilian marine Fungi capable of growing on DDD pesticide. Biodegradation 22:43–50

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Hernández ML, Sánchez-Salinas E (2010) Biodegradation of the organophosphate pesticide tetrachlorvinphos by bacteria isolated from agricultural soils in México. Rev Int Contam Ambient 26(1):27–38

    Google Scholar 

  • Parekh NR, Walker A, Roberts SJ, Welch SJ (1994) Rapid degradation of the triazinone herbicide metamitron by a Rhodococcus sp. isolated from treated soil. J Appl Bacteriol 77(5):467–475

    Article  CAS  PubMed  Google Scholar 

  • Pesce S, Wunderlin D (2004) Biodegradation of lindane by a native bacterial consortium isolated from contaminated river sediment. Int Biodeterior Biodegradation 54:255–260

    Article  CAS  Google Scholar 

  • Peng X, Zhang JS, Li YY, Li W, Xu GM, Yan YC (2008) Biodegradation of insecticide carbofuran by Paracoccus sp. YM3. J Environ Sci Health B 43(7):588–594

    Article  CAS  PubMed  Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33

    Article  CAS  PubMed  Google Scholar 

  • Poinar GO, Thomas GM, Hess R (1977) Characteristics of the specific bacterium associated with Heterorhabditis Bacteriophora (Heterorhabditidae: Rhabditida). Nematologica 23(1):97–102

    Article  Google Scholar 

  • Poinar G (1990) Biology and taxonomy of Steinernematidae and Heterorhabditidae. In: Gaugler RR, Kaya RK (eds) Entomopathogenic nematodes in biological control. CRC Press, Boca Raton, pp 23–62

    Google Scholar 

  • Prasad R (2017) Mycoremediation and Environmental Sustainability. Volume 1. Springer International Publishing (ISBN 978-3-319-68957-9) https://link.springer.com/book/10.1007/978-3-319-68957-9

  • Prasad R (2018) Mycoremediation and Environmental Sustainability, Volume 2. Springer International Publishing (ISBN 978-3-319-77386-5) https://www.springer.com/us/book/9783319773858

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

    Article  Google Scholar 

  • Prasad R, Aranda E (2018) Approaches in Bioremediation. Springer International Publishing https://www.springer.com/de/book/9783030023683

  • Prasad R (2021) Environmental Pollution and Remediation. Springer (ISBN 978-981-15-5499-5) (in press) https://www.springer.com/gp/book/9789811554988

  • Prescott LM, Harley JP, Klein DA (2002) Microbiology. Fundamental of applied microbiology. Microbiology 2:1012–1014

    Google Scholar 

  • Raaijmakers JM, Vlami M, De Souza TJ (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81(1–4):537–547

    Article  CAS  PubMed  Google Scholar 

  • Ragnarsdottir K (2000) Environmental fate and toxicology of organophosphate pesticides. J Geol Soc London 157(4):859–876

    Article  CAS  Google Scholar 

  • Rizwan M, Singh M, Mitra CK, Morve RK (2014) Ecofriendly application of nanomaterials: nanobioremediation. J Nanoparticles 2014:1–7

    Article  CAS  Google Scholar 

  • Rodríguez-Cruz MS, Sánchez-Martín MJ, Sánchez-Camazano M (2004) Enhanced desorption of herbicides sorbed on soils by addition of Triton X-100. J Environ Qual 33:920–929

    Article  PubMed  Google Scholar 

  • Ron EZ, Rosenberg E (2001) Minireview: natural roles of biosurfactants. Environ Microbiol 3:229–236

    Article  CAS  PubMed  Google Scholar 

  • Rosell G, Quero C, Coll J, Guerrero A (2008) Biorational insecticides in pest management. J Pestic Sci 33(2):103–121

    Article  CAS  Google Scholar 

  • Rubilar O, Feijoo G, Diez MC, Lu-Chau TA, Moreira MT, Lema JM (2007) Biodegradation of pentachlorophenol in soil slurry cultures by Bjerkanderaadusta and Anthracophyllumdiscolour. Ind Eng Chem Res 4:6744–6751

    Article  CAS  Google Scholar 

  • Sacramento CA (2008) Department of pesticide regulation “What are the potential health effects of pesticides?” Community guide to recognizing and reporting pesticide problems, pp 27–29

    Google Scholar 

  • Schisler DA, Slininger PJ, Behle RW, Jackson MA (2004) Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology 94(11):1267–1271

    Article  CAS  PubMed  Google Scholar 

  • Schoefs O, Perrier M, Samson R (2004) Estimation of contaminant depletion in unsaturated soils using a reduced-order biodegradation model and carbon dioxide measurement. Appl Microbiol Biotechnol 64(1):53–61

    Article  CAS  PubMed  Google Scholar 

  • Schroll R, Brahushi R, Dorfler U, Kuhn S, Fekete J, Munch JC (2004) Biomineralization of 1,2,4-Trichlorobenzene in soils by an adapted microbial population. Environ Pollut 127(3):395–401

    Article  CAS  PubMed  Google Scholar 

  • Shanahan P (2004, Spring) Bioremediation, waste containment and remediation technology, Massachusetts Institute of Technology, MIT Open Course Ware

    Google Scholar 

  • Shin KH, Kim KW, Ahn Y (2006) Use of biosurfactant to remediate phenanthrene-contaminated soil by the combined solubilization-biodegradation process. J Hazard Mater B 137:1831–1837

    Article  CAS  Google Scholar 

  • Shunpeng L, Mingxing Z (2006) Sphingomonas strain for degrading chlorophenothane pesticide residue and bacteria agent containing this strain, Faming Zhuanli Shenqing Gongkai Shuomingshu

    Google Scholar 

  • Siegel JP, Shadduck JA (1990) Clearence of B. sphaericus and B. thuringiensis spp. israelensis from mammals. J Eco Entomol 83(2):347–355

    Article  CAS  Google Scholar 

  • Singh A, Ranjit JA, Dhasarathan P (2003) Isolation and characterization of pesticide metabolizing bacteria from groundnut soil system. Asian J Microbiol Biotechnol Environ Sci 5(3):323–332

    CAS  Google Scholar 

  • Singh BK, Walker A, Morgan JAW, Wright DJ (2004) Biodegradation of chlorpyrifos by Enterobacter strain B-14 and its use in bioremediation of contaminated soils. Appl Environ Microbiol 70(8):4855–4863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva-Castro GA, Uad I, Gonzalez-Lopez J, Fandino CG, Toledo FL, Calvo C (2012) Application of selected microbial consortia combined with inorganic and oleophilic fertilizers to recuperate oil-polluted soil using land farming technology. Clean Techn Environ Policy 14:719–726

    Article  CAS  Google Scholar 

  • Silva FC, Cardeal ZL, De Carvalho CR (1999) Determination of organophosphorus pesticides in water using SPME-GC-MS. Química Nova 22(2):197–200

    Article  CAS  Google Scholar 

  • Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30(3):428–471

    Article  CAS  PubMed  Google Scholar 

  • Singh DP, Khattar JI, Nadda J, Singh Y, Garg A, Kaur N, Gulati A (2011) Chlorpyriphos degradation by the cyanobacterium Synechocystis sp. strain PUPCCC 64. Environ Sci Poll Res Int 18(8):1351–1359

    Article  CAS  Google Scholar 

  • Sogorb MA, Vilanova E (2002) Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis. Toxicol Lett 128(1–3):215–228

    Article  CAS  PubMed  Google Scholar 

  • Soriano JM, Jiménez B, Font G, Moltó JC (2001) Analysis of carbamate pesticides and their metabolites in water by solid phase extraction and liquid chromatography: a review. Crit Rev Anal Chem 31(1):19–52

    Article  CAS  Google Scholar 

  • Srivastava CN, Maurya P, Sharma P, Mohan L (2009) Prospective role of insecticides of fungal origin: review. Entomol Res 39(6):341–355

    Article  Google Scholar 

  • Stenrod M, Charnay MP, Benoit P, Eklo OM (2006) Spatial variability of glyphosate mineralization and soil microbial characteristics in two Norwegian sandy loam soils as affected by surface topographical features. Soil Biol Biochem 38:962–971

    Article  CAS  Google Scholar 

  • Subba-Rao RV, Alexander M (1985) Bacterial and fungal cometabolism of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) and its breakdown products. Appl Environ Microbiol 49:509–516

    Google Scholar 

  • Sutherland TD, Horne I, Harcourt RL, Russel RJ, Oakeshott JG (2002) Isolation and characterization of a Mycobacterium strain that metabolizes the insecticide endosulfan. J Appl Microbiol 93:380–389

    Article  CAS  PubMed  Google Scholar 

  • Suzuki O, Watanabe K (2005) Drugs and poisons in humans – a handbook of practical analysis. In: Carbamate pesticides. Springer, pp 559–570. https://doi.org/10.1007/3-540-27579-7-62

  • Tallur PN, Megadi VB, Ninnekar HZ (2008) Biodegradation of Cypermethrin by Micrococcus sp. strain CPN 1. Biodegradation 19(1):77–82

    Article  CAS  PubMed  Google Scholar 

  • Theilmann DA, Blissard GW, Bonning B, Jehle JA, O’Reilly DR, Rohrmann GF (2005) Baculoviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy classification and nomenclature of viruses: eighth report of the international committee on the taxonomy of viruses. Elsevier, New York, pp 177–185

    Google Scholar 

  • Thomas MB, Read AF (2007) Can fungal biopesticides control malaria? Nat Rev Microbiol 5(5):377–383

    Article  CAS  PubMed  Google Scholar 

  • Tingting L, Kunming D, Miao L (2012) Isolation, identification and biodegradation characteristics of a bacterial strain able to degrade bifenthrin. Nongye Huanjing KexueXuebao 31(6):1147–1152

    Google Scholar 

  • Tortella G (2005) Fungal diversity and use in decomposition of environmental pollutants. Crit Rev Microbiol 31:197–212

    Article  CAS  PubMed  Google Scholar 

  • Tyagi M, da Fonseca MMR, de Carvalho CCCR (2011) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22:231–241. https://doi.org/10.1007/s10532-010-9394-4

    Article  CAS  PubMed  Google Scholar 

  • Vaccari DA, Strom PF, Alleman JE (2006) Environmental biology for engineers and scientists. John Wiley & Sons, New York. https://doi.org/10.1002/0471741795

    Book  Google Scholar 

  • Vidya Lakshmi C, Kumar M, Khanna S (2008) Biotransformation of chlorpyrifos and bioremediation of contaminated soil. Int Biodeter Biodegrad 62(2):204–209

    Article  CAS  Google Scholar 

  • Veiga MM, Silva DM, Veiga LBE, de Castro Faria MV (2006) Pesticide pollution in water systems in a small rural community in Southeast Brazil. Cad Saude Publica 22:2391–2399

    Article  PubMed  Google Scholar 

  • Wang X, Wang Q, Wang S, Li F, Guo G (2012) Effect of biostimulation on community level physiological profiles of microorganisms in field-scale biopiles composed of aged oil sludge. Bioresour Technol 111:308–315

    Article  CAS  PubMed  Google Scholar 

  • Wattanaphon HT, Kerdsin A, Thammacharoen C, Sangvanich P, Vangnai AS (2008) A biosurfactant from Burkholderia cenocepacia BSP3 and its enhancement of pesticide solubilization. J Appl Microbiol 105:416–423

    Article  CAS  PubMed  Google Scholar 

  • Wedemeyer G (1967) Dechlorination of 1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane by Aerobacter aerogene. J Appl Microbiol 15(3):569–574

    Article  CAS  Google Scholar 

  • Weir KM, Sutherland TD, Horne I, Russell RJ, Oakeshott JG (2006) A single Monooxygenase, Ese, is involved in the metabolism of the organochlorides endosulfan and endosulfate in an Arthrobacter sp. Appl Environ Microbiol 72:3524–3530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whalon ME, McGaughey WH (1998) BT: use and resistance management. In: Ishaaya I, Degheele D (eds) Insecticides with novel modes of action, mechanism and application. Springer, Berlin, pp 106–137, ISBN 3–5406–3058-9

    Chapter  Google Scholar 

  • Wolfe NL, Zepp RG, Paris DF (1978) Use of structure-reactivity relationships to estimate hydrolytic persistence of Carbamate pesticides. Water Res 12(8):561–563, ISSN 0043–1354

    Article  CAS  Google Scholar 

  • Xiang-Ming L, Ping-Ping C (2012) Progress in degradation of organo-chlorinated pesticides by microorganism. Huanjing Kexue Yu Jishu 35(6):89–93

    Google Scholar 

  • Yang C, Liu N, Guo X, Qiao C (2006) Cloning of mpd gene from a chlorpyriphos-degrading bacterium and use of this strain in bioremediation of contaminated soil. FEMS Microbiol Lett 265:118–125

    Article  CAS  PubMed  Google Scholar 

  • Yates SR, McConnell LL, Hapeman CJ, Papiernik SK, Gao S, Trabue SL (2011) Managing agricultural emissions to the atmosphere: state of the science, fate and mitigation and identifying research gaps. J Environ Qual 40:1347–1358

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama Y, Kohda K, Okamoto M (1998) CytA protein, a Dendotoxin of Bacillus thuringiensis subsp. Israelensis is associated with DNA. Biol Pharm Bull 21(12):1263–1266, ISSN 0918–6158

    Article  CAS  PubMed  Google Scholar 

  • Yoshii K, Tonogai Y, Ueno H, Nakamuro K (2006) Malathion residue in wheat kernels is degraded by thion organophosphorus pesticide-specific carboxylesterase. J Health Sci 52(3):221–227

    Article  CAS  Google Scholar 

  • Zhang FY, Jiao YA, Guangyu Y (2012) Sequence of Geobacillus phosphotriesterase mutant and its uses in decomposing organophosphorus pesticide, Faming Zhuanli Shenqing

    Google Scholar 

  • Zhang H, Yang C, Li C, Li L, Zhao Q, Qiao C (2008) Functional assembly of a microbial consortium with autofluorescent and mineralizing activity for the biodegradation of organophosphates. J Agric Food Chem 56:7897–7902

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. P. Abioye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abioye, O.P., Ijah, U.J.J., Aransiola, S.A., Auta, S.H., Ojeba, M.I. (2021). Bioremediation of Toxic Pesticides in Soil Using Microbial Products. In: Prasad, R., Nayak, S.C., Kharwar, R.N., Dubey, N.K. (eds) Mycoremediation and Environmental Sustainability. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-54422-5_1

Download citation

Publish with us

Policies and ethics