Skip to main content
Log in

Current developments in microbial control of insect pests and prospects for the early 21st century

  • Review
  • Published:
Entomophaga Aims and scope Submit manuscript

Abstract

The role of microbial control in crop and forest protection and the abatement of insects of medical and veterinary importance has expanded considerably with the discovery and development of new microbial control agents and genetic improvement in bacterial and viral pathogens, and improvements in formulation, application options and compatibility with other interventions. A synopsis of the literature regarding the current use of bacteria, viruses, fungi, protozoans and nematodes as microbial control agents is presented along with speculation on their potential in the early 21st century. The most widely used of all microbial control agents isBacillus thuringiensis. The isolation within the past two decades of new strains that are larvicidal for certain Diptera and Coleoptera has increased the utility of the bacterium considerably. Further improvements in efficacy and broadening of its host range are in progress with the isolation of strains with new toxins and the manipulation ofB. thuringiensis genes that encode toxin production using both recombinant and nonrecombinant methods. Genetic manipulation of these genes has also enabled their incorporation into crop plants. The development and commercial availability of entomopathogenic nematodes in the families Steinernematidae and Heterorhabditidae expands the options for the control of insects, especially those with soil inhabiting stages. The results of natural epizootics of fungi and viruses often obviate the requirement for additional interventions. Breakthroughs in understanding the genetics ofBaculovirus and subsequent gene manipulation have increased their virulence and utility. Improved production methods that utilize insect cell culture technology may enable affordable use ofBaculovirus in the not too distant future. Fungi continue to offer the only control options using entomopathogens against plant sucking insects. Although fungi have great potential for development as microbial control agents, only a few have been used on an operational scale. Some factors that might limit the full range of entomopathogen potential, including development of resistance, are discussed. Because of their selectivity and minimal environmental impact, microbial control agents will be ideal components of integrated pest management programs in the early 21st century and beyond. However, if they are used merely as replacements for chemical pesticides, then eventually these agents will face some of the same fate as the chemicals they replace, particularly with respect to resistance.

Résumé

Le rôle de la lutte microbiologique dans la protection des cultures et des forêts et dans la limitation des insectes d'intérêt médical ou vétérinaire s'est accru considérablement avec la découverte et la mise au point de nouveaux agents de lutte microbiologique, l'amélioration génétique des pathogènes bactériens et viraux et les améliorations dans la formulation, les choix d'application et la compatibilité avec d'autres formes d'interventions. Une synthèse bibliographique de l'utilisation actuelle des bactéries, virus, champignons, protozoaires et nématodes en tant qu'agents de lutte microbiologique est présentée en même temps qu'une réflexion sur leurs potentialités à l'aube du XXIe siècle. L'agent microbiologique le plus largement utilisé estBacillus thuringiensis. L'isolation, au cours des deux décennies précédentes, de nouvelles souches larvicides pour certains Diptères et Coléoptères a fortement augmenté l'utilité de la bactérie. D'autres améliorations de l'efficacité et l'élargissement de son spectre d'hôtes sont en cours, grâce à l'isolation de souches produisant de nouvelles toxines et à la manipulation de gènes deB. thuringiensis codant une production de toxines à l'aide de méthodes recombinante et non-recombinante. La manipulation génétique de ces gènes a aussi permis leur introduction dans des plantes cultivées. Le développement et la commercialisation de nématodes entomopathogènes des familles Steinermatidae et Heterorhabditidae élargissent la gamme des agents disponibles pour la lutte contre les insectes, notamment pour ceux présentant des stades de développement dans le sol. Les épizooties naturelles de champignons et virus évitent souvent le recours à des interventions supplémentaires. Le bond en avant fait dans la compréhension de la génétique des Baculovirus et la manipulation de gènes qui a suivi a accru leur virulence et leur utilité. L'amélioration des méthodes de production qui utilisent la technologie de la culture de cellules d'insectes pourra permettre, dans un avenir assez proche, l'utilisation des baculovirus à un coût raisonnable. Les champignons restent les seuls agents entomopathogènes utilisables contre les phytophages suceurs. Bien que les champignons présentent une forte possibilité de développement en tant qu'agents de lutte microbiologique, seuls un petit nombre d'entre eux ont été utilisés à une grande échelle. Certains facteurs qui pourraient limiter leur potentiel, incluant le développement de résistance, sont discutés. En raison de leur sélectivité et de leur faible impact sur l'environnement, les agents de lutte microbiologique seront des éléments très intéressants pour la lutte contre les ravageurs pour le début du XXIe siècle et au-delà. Cependant, s'ils sont utilisés surtout comme des éléments de remplacement de pesticides chimiques, il se peut que ces agents aient à faire face par la suite aux mêmes difficultés que les produits chimiques qu'ils remplacement, en particulier sur le plan de la résistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adang, M. J. — 1991.Bacillus thuringiensis insecticidal crystal proteins: Gene structure, action and utilization. In: Biotechnology for Biological Control of Pests and Vectors, (K. Maramorosch, ed). —CRC Press, Boca Raton, 3–24.

    Google Scholar 

  • Akhurst, R.J. — 1990. Safety to nontarget invertebrates of nematodes of economically important pests. In: Safety of Microbial Insecticides (M. Laird, L. A. Lacey &E. W. Davidson, eds). —CRC Press, Boca Raton, 233–240.

    Google Scholar 

  • Akhurst, R. J. &Boemare, M.E. — 1990. Biology and taxonomy ofXenorhabdus. In: Entomopathogenic Nematodes in Biological Control, (R. Gaugler &H. K. Kaya, eds). —CRC Press, Boca Raton, 75–90.

    Google Scholar 

  • Akpoboua, L.K.B., Guillet, P., Kurtak, D.C. &Poudiougo, P. — 1989. Le rôle deB. thuringiensis H14 dans la lutte contreSimulium damnosum Theobald (Diptera: Simuliidae) vecteur de l'Onchocercose en Afrique Occidentale. —Naturaliste Can., 116, 167–174.

    Google Scholar 

  • Alfiler, A.R.R. — 1992. Current status of the use of a baculovirus inOryctes rhinoceros control in the Philippines. In: Use of Pathogens in Scarab Pest Management (T.A. Jackson &T.R. Glare, eds). —Intercept, Andover, 63–77.

    Google Scholar 

  • Bateman, R.P., Carey, M. &Prior, C. — 1993. The enhanced infectivity ofMetarhizium flavoviride in oil formulations to desert locusts at low humidities. —Ann. Appl. Biol., 122, 145–152.

    Google Scholar 

  • Becker, N. &Ludwig, M. — 1993. Investigations on possible resistance inAedes vexans field populations after a 10-year application ofBacillus thuringiensis israelensis. —J. Am. Mosq. Cont. Assoc., 9, 221–224.

    CAS  Google Scholar 

  • Bedding, R.A. — 1984a. Large scale production, storage and transport of the insect parasitic nematodes,Neoaplectana spp. andHeterorhabditis spp. —Ann. Appl. Biol., 104, 117–120.

    Google Scholar 

  • Bedding, R.A. — 1984b. Nematode parasites of Hymenoptera. In: Plants and Insect Nematodes. (W.R. Nickle, ed). —Marcel Dekker, New York, 755–795.

    Google Scholar 

  • Bedding, R.A. &Akhurst, R.J. — 1974. Use of the nematodeDeladenus siricidicola in the biological control ofSirex noctilio in Australia. —J. Austr. Entomol. Soc., 13, 129–135.

    Google Scholar 

  • Bedford, G.o. — 1981. Control of rhinoceros beetle by Baculovirus. In: Microbial Control of Prests and Plant Disease 1970–1980. (H.D. Burges, ed). —Academic Press, London, 409–426.

    Google Scholar 

  • Begley, J.W. — 1990. Efficacy against insects in habitats other than soil. In: Entomopathogenic Nematodes in Biological Control, (R. Gaugler, &H.K. Kaya, eds). —CRC Press, Boca Raton, 215–231.

    Google Scholar 

  • Brewer, G.J. — 1991. Resistance toBacillus thuringiensis subsp.kurstaki in the sunflower moth (Lepidoptera, Pyralidae). —Environ. Entomol., 20, 316–322.

    Google Scholar 

  • Briese, D.T. — 1986. Insect resistance to baculoviruses. In: The Biology of Baculoviruses. Vol. II Practical Application for Insect Control, (R.R. Granados &B.A. Federici, eds). —CRC Press, Boca Raton 237–263.

    Google Scholar 

  • Brooks, W.M. — 1988. Entomogenous Protozoa. In: Handbook of Natural Pesticides, Vol. V: Microbial Insecticides, Part A: Entomogenous Protozoa and Fungi (C.M. Ignoffo &N.B. Mandava, eds). —CRC Press, Boca Raton, 1–149.

    Google Scholar 

  • Bulla, L.A., Jr., Raymond, K.C. &Faust, R.M. — 1991. Mosquitocidal toxin gene ofBacillus thuringiensis subspeciesisraelensis. In: Biotechnology for Biological Control of Pests and Vectors. (K. Maramorosch, ed.). —CRC Press, Boca Raton, 25–34.

    Google Scholar 

  • Burges, H.D. (ed.). — 1981. Microbial Control of Pests and Plant Diseases 1970–1980. —Academic Press, London, 949pp.

    Google Scholar 

  • Burges, H. D. & Hussey, N.W. (eds.). — 1971. Microbial Control of Insects and Mites. —Academic Press, 861 pp.

  • Burnell, A.M. — 1994. Molecular genetics of entomopathogenic nematodes. —Proc. VIth Int. Colloq. Invertebr. Pathol. pp.23–28.

  • Cabanillas, H.E., Poinar, G.O. Jr. &Raulston, J.R. — 1994.Steinernema riobravis sp. nov. (Rhabditida: Steinernematidae) from Texas. —Academic — Fund. Appl. Nematol., 17, 123–131.

    Google Scholar 

  • Cabanillas, H.E. &Raulston, J.R. — 1994. Pathogenicity ofSteinernema riobravis against corn earworm,Helicoverpa zea (Boddie). —Fund. Appl. Nematol., 17, 219–223.

    Google Scholar 

  • Carlton, B.C. &Gawron-Burke, C. — 1993. Genetic improvement ofBacillus thuringiensis for bioinsecticide development. In: Advanced Engineered Pesticides, (L. Kim, ed.). —Marcel Dekker, New York, 43–61.

    Google Scholar 

  • Carruthers, R.I. &Onsager, J.A. — 1993. Perspective on the use of exotic natural enemies for biological control of pest grasshoppers. —Environ. Entomol., 22, 885–903.

    Google Scholar 

  • Carruthers, R.I. & Poprawski, T.J. — 1994. Use of exotic fungal isolates against indigenous pests. —Proc. VIth Int. Colloq. Invertebr. Pathol., pp.334–342.

  • Caudwell, R.W. & Gatehouse, A.G. — 1994. Extruded starch contact baits for the formulation of grasshopper and locust entomopathogens. —Proc. Brighton Crop Protect. Conf., pp.67–74.

  • Chilcott, C.N., Knowles, B.H., Ellar, D.J. &Drobniewski, F.A. — 1990. Mechanism of action ofBacillus thuringiensis israelensis parasporal body. In: Bacterial Control of Mosquitoes and Black Flies: Biochemistry Genetics, and Applications ofBacillus thuringiensis israelensis andBacillus sphaericus (H. de Barjac &D. Sutherland, eds). —Rutgers Univ. Press, New Brunswick, 45–65.

    Google Scholar 

  • Corsaro, B.G., Gijzen, M., Wang, P. &Granados, R.R. — 1993. Baculovirus enhancing proteins as determinants of viral pathogenesis. In: Parasites and Pathogens of Insects, Vol. 2: Pathogens (N.E. Beckage, S.N. Thompson &B.A. Federici, eds). —Academic Press, San Diego, 127–145.

    Google Scholar 

  • Cory, J.S., Hirst, M.L., Williams, T., Hails, R.S., Goulson, D. & Green, B. — 1994. First field trial of a genetically improved baculovirus insecticide. —Proc. VIth Int. Colloq. Invertebr. Pathol. pp.427.

  • Cunningham, G.L. — 1992. APHIS, grasshopper integrated pest management in the United States, a cooperative project with emphasis on biological control. In: Biological Control of Locusts and Grasshoppers (C.J. Lomer &C. Prior, eds). —C.A.B. International, Wallingford, 21–25.

    Google Scholar 

  • Cunningham, J. C. — 1982. Field trials with baculoviruses: Control of forest insect pests. In: Microbial and Viral Pesticides, (E. Kurstak, ed). —Marcel Dekker, New York, 335–386.

    Google Scholar 

  • Cunningham, J.C. — 1995. Baculoviruses as microbial insecticides. In: Novel Approaches to Integrated Pest Management, (R. Reuveni, ed). —Lewis Publishers, Boca Raton, 261–292.

    Google Scholar 

  • Cunningham, J.C. &Entwistle, P.F. — 1981. Control of sawflies by baculovirus. In: Microbial Control of Pests and Plant Diseases 1970–1980, (H.D. Burges ed). —Academic Press, London, 379–407.

    Google Scholar 

  • Davidson, E.W. — 1985.Bacillus sphaericus as a microbial control agent for mosquito larvae. In: Integrated mosquito control methodologies Vol. 2, (M. Laird, &J. Miles, eds). —Academic Press, London, 213–226.

    Google Scholar 

  • Dimock, M., Turner, J. &Lampel, J. — 1993. Endophytic microorganisms for delivery of genetically engineered microbial pesticides in plants. In: Advanced Engineered Pesticides (L. Kim, ed). —Marcel Dekker, New York, 85–97.

    Google Scholar 

  • Edwards, C.A. — 1990. The importance of integration in sustainable agricultural systems. In: Sustainable Agricultural Systems (C.A. Edwards, R. Lal, P. Madden, R.H. Miller &G. House, eds). —St. Lucie Press, Delray Beach, 249–264.

    Google Scholar 

  • Ehlers, R.-U. — 1994. Liquid culture production of entomopathogenic nematodesHeterorhabditis andSteinernema spp. —Proc. VIth Int. Colloq. Invertebr Pathol., pp. 75–81.

  • Elkinton, J.S., Hajek, A.E., Boettner, G.H. &Simons, E.E. — 1991. Distribution and apparent spread ofEntomophaga maimaiga (Zygomycetes: Entomophthorales) in gypsy moth (Lepidoptera: Lymantriidae) populations in North America. —Environ. Entomol., 20, 1601–1605.

    Google Scholar 

  • Entwistle, P.F., Cory, J.S., Bailey, M.J., &Higgs, S. — 1993.Bacillus thuringiensis, an Environmental Biopesticide: Theory and Practice. —John Wiley & Sons, New York, 311 pp.

    Google Scholar 

  • Evans, H.F. — 1986. Ecology and epizootiology of Baculoviruses. In: The Biology of Baculoviruses. Vol. II Practical Application for Insect Control (R.R. Granados &B.A. Federici, eds). —CRC Press, Boca Raton, 89–132.

    Google Scholar 

  • Federici, B.A. — 1994.Bacillus thuringiensis: Biology, application, and prospects for further development. In: Proc. 2nd CanberraBacillus thuringiensis Mtg. (R. K. Akhurst, ed). — 1–14.

  • Federici, B.A., Lüthy, P. &Ibarra, J.E. — 1990. Parasporal body ofBacillus thuringiensis israelensis. In: Bacterial Control of Mosquitoes and Black Flies: Biochemistry Genetics, and Applications ofBacillus thuringiensis israelensis andBacillus sphaericus (H. de Barjac &D. Sutherland, eds). —Rutgers Univ. Press, New Brunswick, 17–44.

    Google Scholar 

  • Federici, B.A. & Wu, D. — 1994. Synergism of insecticidal activity inBacillus thuringiensis. In: Proc. 2nd CanberraBacillus thuringiensis Mtg. (R. K. Akhurst, ed). — 23–30.

  • Feitelson, J.S. — 1993. TheBacillus thuringiensis family tree. In: Advanced Engineered Pesticides (L. Kim, ed) —Marcel Dekker, New York, 63–71.

    Google Scholar 

  • Feng, M.G., Poprawski, T.J. &Khatchatourians, G.G. — 1994. Production, formulation and application of the entomopathogenic fungusBeauveria bassiana for insect control: current status. —Biocont. Sci. Technol., 4, 3–34.

    Google Scholar 

  • Ferré, J., Real, M. D., Van Rie, J., Jansens, S. &Peferoen, M. — 1991. Resistance to theBacillus thuringiensis bioinsecticide in a field population ofPlutella xylostella is due to a change in a midgut membrane receptor. —Proc. Natl. Acad. Sci., USA 88, 5119–5123.

    PubMed  Google Scholar 

  • Ferro, D.N. — 1993. Potential for resistance otBacillus thuringiensis: Colorado potato beetle (Coleoptera: Chrysomelidae). A model system. —Am. Entomol., 39, 38–44.

    Google Scholar 

  • Ferron, P. — 1981. Pest control by the fungiBeauveria andMetarhizium In: Microbial Control of Pests and Plant Diseases 1970–1980, (H. D. Burges, ed). —Academic Press, London, 465–483.

    Google Scholar 

  • Ferron, P., Fargues, J. &Riba, G. — 1991. Fungi as microbial insecticides against pests. In: Handbook of Applied Mycology. Vol. 2 (D.K. Arora, L. Ajelio &K.G. Mukerji eds). —Marcel Dekker, New York, 665–706.

    Google Scholar 

  • Francki, R.I.B., Fauquet, C.M., Knudson, D.L., andBrown, F. — 1991. Classification and Nomenclature of Viruses. Fifth Report of the International Committee on Taxonomy of Viruses. —Arch. Virol. Suppl., 2. Springer Verlag, Vienna.

    Google Scholar 

  • Fransen J.J. — 1990. Natural enemies of whiteflies: Fungi. In: Whiteflies: Their Bionomics, Pest Status and Management (D. Gerling, ed). —Intercept, Andover, 187–210.

    Google Scholar 

  • Friedman, M.J. — 1990. Commercial production and development In: Entomopathogenic Nematodes in Biological Control, (R. Gaugler &H.K. Kaya, eds). —CRC Press, Boca Raton, 153–172.

    Google Scholar 

  • Fuxa, J.R. — 1989. Fate of released entomopathogens with reference to risk assessment of genetically engineered microorganisms. —Bull. Entomol. Soc. Am., 35, 12–24.

    Google Scholar 

  • Fuxa, J.R. — 1990. Environmental risks of genetically engineered entomopathogens. In: Safety of Microbial Insecticides (M. Laird, L.A. Lacey &E.W. Davidson, eds). —CRC Press, Boca Raton, 203–207.

    Google Scholar 

  • Fuxa, J.R. — 1992. Pathogens for insect control. In: A New Technological Era for American Agriculture. — OTA Commissioned Background Papers. Part B. Emerging Plant Technology.Congress of the United States, Office of Technology Assessment, Washington, D. C. pp 263–349.

  • Fuxa, J.R. &Tanada, Y. (eds.) — 1987 Epizootiology of Insect Diseases. —Wiley & Sons, New York, pp. 3–21.

    Google Scholar 

  • Fuxa, J.R. &A.R. Richter — 1989. Reversion of resistance bySpodoptera frugiperda to nuclear polyhedrosis virus. —J. Invertebr. Pathol., 53, 52–56.

    Google Scholar 

  • Gasser, C.S. &R.T. Fraley — 1989. Genetically engineered plants for crop improvement. —Science. 244, 1293–1299.

    CAS  Google Scholar 

  • Gaugler, R. &H.K. Kaya (eds.). — 1990. Entomopathogenic Nematodes in Biological Control. —CRC Press, Boca Raton, 365 pp.

    Google Scholar 

  • Georgis, R. — 1990. Formulation and application technology. In: Entomopathogenic Nematodes in Biological Control, (R. Gaugler &H.K. Kaya, eds). —CRC Press, Boca Raton, 173–194.

    Google Scholar 

  • Georgis, R. & Grewal, P.S. — 1994. Commercial application of entomopathogenic nematodes. —Proc. VIth Int. Colloq. Invertebr. Pathol., pp. 157–163.

  • Glare, T.R. — 1992. Fungal pathogens of scarabs. In: Use of Pathogens in Scarab Pest Management (T.A. Jackson &T.R. Glare, eds). —Intercept, Andover, 63–77.

    Google Scholar 

  • Glen, D.M., Wilson, M.J., Pearce, J.-D. & Rodgers, P.B. — 1994.Phasmarhabditis hermaphrodita, a novel nematode biocontrol agent for slugs. —Proc. VIth Int. Colloq. Invertebr. Pathol., pp.164–169.

  • Goettel, M. — 1992a. Fungal agents for biocontrol. In: Biological Control of Locusts and Grasshoppers (C.J. Lomer &C. Prior, eds). —CAB International, Wallingford pp. 122–132.

    Google Scholar 

  • Goettel, M. — 1992b. Whatever happened to the “I” in “IPM”? Editorial, Society for Invertebrate Pathology Newsletter, 24, 5–6.

    Google Scholar 

  • Goettel, M.S., Johnson, D.L. &Inglis, G.D. — 1995. The role of fungi in the control of grasshoppers. —Can. J. Botany, 73 (suppl. 1), S71-S75

    Google Scholar 

  • Goldman, L.F., Arnold, J. &Carlton, B.C. — 1986. Selection for resistance toBacillus thuringiensis subspeciesisraelensis in field and laboratory populations of the mosquitoAedes aegypti. —J. Invertebr. Pathol., 47, 317–324.

    CAS  PubMed  Google Scholar 

  • Gould, F., Martinez-Ramirez, A., Ferré, J., Silva, F.J. &Moar, W.J. —1992. Broad spectrum resistance toBacillus thuringiensis toxins inHeliothis virescens. —Proc. Natl. Acad. Sci. USA., 89, 7986–7990.

    CAS  PubMed  Google Scholar 

  • Granados, R.R. &Federici, B.A. (eds.)., — 1986. The Biology of Baculoviruses. Vol. I & II. —CRC Press, Boca Raton.

    Google Scholar 

  • Granados, R.R. &McKenna, K.A. — 1995. Insect cell culture methods and their use in virus research. In: Baculovirus Expression Systems and Biopesticides (M.L. Shuler, H.A. Wood, R.R. Granados &D.A. Hammer, eds). —Wiley-Liss Publ., New York, 13–40.

    Google Scholar 

  • Grewal, P.S., Selvan, S. andGaugler, R. — 1994. Thermal adaptation of nematodes: niche breadth for infection, establishment, and reproduction. —J. Therm. Biol., 19, 245–253.

    Google Scholar 

  • Gröner, A. — 1986. Specificity and safety of baculoviruses. In: The Biology of Baculoviruses. Vol. II Practical Application for Insect Control (R.R. Granados &B.A. Federici, eds). —CRC Press, Boca Raton, 177–202.

    Google Scholar 

  • Gröner, A. — 1990. Safety to nontarget invertebrates of baculoviruses. In: Safety of Microbial Insecticides, (M. Laird, L.A. Lacey &E.W. Davidson, eds). —CRC Press, Boca Raton, 135–147.

    Google Scholar 

  • Hajek, A. E. Elkinton, J. S., Smitley, D. R. & Bauer, L. S. — 1994. Re-discovery of the fungusEntomophaga maimaiga and its application for gypsy moth control. —Proc. VIth Int. Colloq. Invertebr. Pathol., pp. 385–387.

  • Hajek, A. E., Humber, R. A. &Elkinton, J. S. — 1995. Mysterious origin ofEntomophaga maimaiga in North America. —Am. Entomol., 41, 31–41.

    Google Scholar 

  • Hajek, A. E. &Roberts, D. W. — 1991. Pathogen reservoirs as a biological control resource: introduction ofEntomophaga maimaiga to North American gypsy moth,Lymantria dispar, populations. —Biol. Control 1, 29–34.

    Article  Google Scholar 

  • Hall, R. A. — 1981. The fungusVerticillium lecanii as a microbial insecticide against aphids and scales. In: Microbial Control of Pests and Plant Diseases 1970–1980, (H.D. Burges, ed) —Academic Press, London, 483–498.

    Google Scholar 

  • Harper, J. D. — 1986. Interactions between baculoviruses and other entomopathogens, chemical pesticides and parasitoids. In: The Biology of Baculoviruses. Vol. II Practical Application for Insect Control (R.R. Granados &B.A. Federici, eds). —CRC Press, Boca Raton, 133–155.

    Google Scholar 

  • Harper, J. D. — 1987. Applied epizootiology: microbial control of insects. In: Epizootiology of Insect Diseases (J.R. Fuxa &Y. Tanada, eds). —John Wiley & Sons New York, 473–496.

    Google Scholar 

  • Henry, J.E. — 1981. Natural and applied control of insects by Protozoa. —Annu. Rev. Entomol., 26, 49–73.

    Article  Google Scholar 

  • Henry, J.E. &Oma, E.A. — 1981. Pest control byNosema locustae, a pathogen of grasshoppers and crickets. In: Microbial Control of Pests and Plant Diseases 1970–1980 (H.D. Burges, ed) —Academic Press, London, 573–586.

    Google Scholar 

  • Henry, J.E. &Onsager, J.A. — 1982. Large-scale test of control of grasshoppers on rangeland withNosema locustae. —J. Econ. Entomol., 75, 31–35.

    Google Scholar 

  • Hollander, A.K. — 1991. Environmental impacts of genetically engineered microbial and viral biocontrol agents. In: Biotechnology for Biological Control of Pests and Vectors (K. Maramorosch, ed). —CRC Press, Boca Raton, 251–266.

    Google Scholar 

  • Hostetter, D.L. andPuttler, P. — 1991. A new broad host spectrum nuclear polyhedrosis virus isolated from a celery looper,Anagrapha falcifera (Kirby), (Lepidoptera: Noctuidae). —Environ. Entomol., 20, 1480–1488.

    Google Scholar 

  • Hoy, M.A. &Herzog, D.C. — 1985. Biological Control in Agricultural IPM Systems. —Academic Press, New York. 589 pp.

    Google Scholar 

  • Huber, J. — 1986. Use of baculoviruses in pest management programs. In: The Biology of Baculoviruses, Vol. II Practical Application for Insect Control (R.R. Granados &B.A. Federici, eds). —CRC Press, Boca Raton, 181–202.

    Google Scholar 

  • Huber, J. — 1990. Viral insecticides: Profits, problems, and prospects. In: Pesticides and Alternatives, (J.E. Casida, ed). —Elsevier Science Publishers, B. V., Amsterdam, 117–122.

    Google Scholar 

  • Hukuhara, T. &J.-R. Bonami, — 1991. Reoviridae. In: Atlas of Invertebrate Viruses (J.R. Adams &J.-R. Bonami, eds). —CRC Press, Boca Raton, 393–434.

    Google Scholar 

  • Ignoffo, C.M. — 1981. The fungusNomuraea rileyi as a microbial insecticide. In: Microbial Control of Pests and Plant Diseases 1970–1980, (H.D. Burges, ed). —Academic Press, London, 513–538.

    Google Scholar 

  • Ignoffo, C.M. — 1985. Manipulating enzootic-epizootic diseases of arthropods In: Biological Control in Agricultural IPM Systems, (M.A. Hoy &D.C. Herzog eds). —Academic Press, New York, 243–262.

    Google Scholar 

  • Ignoffo, C.M. &Couch, T.L. — 1981. The nucleopolyhedrosis virus ofHeliothis species as a mocrobial insecticide. In: Microbial Control of Pests and Plant Diseases 1970–1980., (H.D. Burges, ed). —Academic Press, London, 330–362.

    Google Scholar 

  • Inglis, G.D., Goettel, M.S. &Johnson, D.L. — 1995. Influence of ultraviolet protectants on the persistence of the entomopathogenic fungus,Beauveria bassiana. —Biol. Cont., 5, 581–590.

    Google Scholar 

  • Jackson, T.A., Pearson, J.F., O'Callaghan, M. andWillocks, M.J. — 1992. Pathogen to product — Development ofSerratia entomophila (Enterobacteriaceae) as a commercial biological control agent for the New Zealand grass grub (Costelytra zealandica). In: Use of Pathogens in scarab Pest Management, (T.A. Jackson &T.R. Glare, eds). —Intercept, Andover, 191–198.

    Google Scholar 

  • Katagiri, K. — 1969. Review of microbial control of insect pests in forests in Japan. —Entomophaga., 14, 203–214.

    Article  Google Scholar 

  • Katagiri, K. — 1981. Pest control by cytoplasmic polyhedrosis viruses. In: Microbial Control of Pests and Plant Diseases 1970–1980 (H. D. Burges, ed). —Academic Press, London, 433–440.

    Google Scholar 

  • Kaya, H.K. &Gaugler, R. — 1993. Entomopathogenic nematodes. —Annu. Rev. Entomol., 38, 181–206.

    Article  Google Scholar 

  • Kennedy, G.G. &Whalon, M.E. — 1995. Managing pest resistance toBacillus thuringiensis endotoxins: constraints and incentives to implementation. —Environ. Entomol., 88, 454–460.

    Google Scholar 

  • Klein, M. G. — 1990 Efficacy against soil inhabiting pests. In: Entomopathogenic Nematodes in Biological Control (R. Gaugler &H.K. Kaya, eds). —CRC Press, Boca Raton, 195–231.

    Google Scholar 

  • Klein, M.G. — 1992. Use ofBacillus popilliae in Japanese beetle control. In: Use of Pathogens in Scarab Pest Management. (T.A. Jackson &T.R. Glare, eds). —Intercept, Andover, 179–190.

    Google Scholar 

  • Klein, M. G. & Georgis, R. — 1994. Application techniques for entompathogenic nematodes. —Proc. VIth. Int. Colloq. Invertebr. Pathol., pp. 483–484.

  • Klein, M.G. &Jackson, T.A. — 1992. Bacterial diseases of scarabs. In: Use of Pathogens in Scarab Pest Management (T.A. Jackson &T. R. Glare, eds). —Intercept, Andover, 43–61.

    Google Scholar 

  • Klein, M.G. &Kaya, H.K. — 1995.Bacillus andSerratia species for scarab control., —Mem. Inst. Oswaldo Cruz., 90, 87–95.

    Google Scholar 

  • Kurtak, D., Grunewald, J. & Baldry, D.A.T. — 1987. Control of black fly vectors of onchocerciasis in Africa. In: Black Flies: Ecology, Population Management, and Annotated World List, (K. C. Kim & R. Merritt, eds). —Penn. State Univ. Press, 341–362.

  • Lacey, L.A. — 1990. Persistence and formulation ofBacillus sphaericus. In: Bacterial control of mosquitoes, and black flies: Biochemistry, genetics, and applications ofBacillus thuringiensis israelensis andBacillus sphaericus, (H. de Barjac &D. Sutherland, eds) —Rutgers Univ. Press, New Brunswick, 284–294.

    Google Scholar 

  • Lacey, L.A., Fransen, J.J. &Carruthers, R. — 1995. Global distribution of naturally occurring fungi ofBemisia, their biologies and use as biological control agents. In:Bemisia 1995: taxonomy, biology, damage, and management (D. Gerling &R. Mayer, eds). —Intercept, Andover,in press.

    Google Scholar 

  • Lacey, L.A. &Harper, J.D. — 1986. Microbial control and integrated pest management. —J. Entomol. Sci., 21, 206–213.

    Google Scholar 

  • Lacey, L.A. &Lacey, C.M. — 1990. The medical importance of riceland mosquitoes and their control using alternatives to chemical insecticides. —J. Am. Mosq. Cont. Assoc., 6, suppl. 2: 1–93.

    Google Scholar 

  • Lacey, L.A. &Mulla, M.S. — 1990. The safety ofBacillus pathogens of mosquitoes and black flies for nontarget organisms in the aquatic environment. In: Safety of Microbial Insecticides, (M. Laird, L.A. Lacey &E.W. Davidson, eds) —CRC Press Boca Raton, 169–188.

    Google Scholar 

  • Lacey, L.A. &Orr, B.K. — 1994. The role of biological control of mosquitoes in integrated vector control. —Am. J. Trop. Med. Hyg., 50, suppl. 97–115.

    CAS  PubMed  Google Scholar 

  • Lacey, L.A. &Undeen, A.H. — 1986. Microbial control of black flies and mosquitoes. —Annu. Rev. Entomol., 31, 265–296.

    Article  CAS  PubMed  Google Scholar 

  • Laird, M., Lacey, L.A. &Davidson, E.W. (eds) — 1990. Safety of Microbial Insecticides. —CRC Press, Boca Raton, 259 pp.

    Google Scholar 

  • Latgé, J.P. &Papierok, B. — 1988. Aphid pathogens. In: Aphids Their Biology, Natural Enemies and Control, (A.K. Minks &P. Harrewijn, eds) — Vol.B.,Elsevier Science Publishers B. V., Amsterdam, 323–335.

    Google Scholar 

  • Lisansky, S.G. and Coombs, J. — 1994. Developments in the market for biopesticides. —Proc. Brighton Crop Protect. Conf. pp. 1049–1054.

  • Lobo Lima, M.L., Brito, J.M. &Henry, J.E. — 1992. Biological control of grasshoppers in the Cape Verde Islands. In: Biological Control of Locusts and Grasshoppers, (C.J. Lomer &C. Prior, eds). —CAB International, Wallingford 287–295.

    Google Scholar 

  • Luckow, V.A. &Summers, M.D. — 1988. Trends in the development of baculovirus expression vectors. —Biotechnol., 6, 47–55.

    Article  CAS  Google Scholar 

  • Luna, J. M. &House, G.J. — 1990. Pest management in sustainable agricultural systems. In: Sustainable Agricultural Systems, (C.A. Edwards, R. Lal, P. Madden, R.H. Miller &G. House, eds). —St. Lucie Press, Delray Beach, 157–173.

    Google Scholar 

  • Maddox, J.V., Brooks, W.M. &Fuxa, J.R. — 1981.Vairimorpha necatrix, a pathogen of agricultural pests: potential for pest control. In: Microbial Control of Pests and Plant Diseases 1970–1980 (H.D. Burges, ed). —Academic Press, London, 587–594.

    Google Scholar 

  • Mamiya, Y. — 1988.Steinernema kushidai n. sp. (Nematoda: Steinernematidae) associated with scarabaeid beetle larvae from Shizuoka, Japan. —Appl. Entomol. Zool., 23, 313–320.

    Google Scholar 

  • Mamiya, Y. — 1989. Comparison of the infectivity ofSteinernema kushidai (Nematode: Steinernematidae) and other steinernematid and heterorhabditid nematodes for three different insects. —Appl. Ent. Zool., 24, 302–308.

    Google Scholar 

  • Marrone, P.G. — 1993. Engineered plants and microbes in integrated pest management. In: Advanced Engineered Pesticides, (L. Kim, ed),Marcel Dekker, New York, 233–247.

    Google Scholar 

  • Marrone, P.G. — 1993. Present and future use ofBacillus thuringiensis in integrated pest management systems: An industrial perspective. —Biocont. Sci. Technol., 4, 517–526.

    Google Scholar 

  • Mason, P.G. &Erlandson, M.A., — 1994. The potential of biological control for management of grasshoppers (Orthoptera: Acrididae) in Canada. —Can. Entomol., 126, 1459–1491.

    Google Scholar 

  • McCoy, C.W. — 1981. Pest control by the fungusHirsutella thomposonii. In: Microbial Control of Pests and Plant Diseases 1970–1980. (H. D. Burges, ed). —Academic Press, London, 499–512.

    Google Scholar 

  • McCoy, C.W., Samson R.A. &Boucias, D.G. — 1988. Entomogenous fungi. In: Handbook of Natural Pesticides, Vol. V: Microbial Insecticides, Part A: Entomogenous Protozoa and Fungi, (C. M. Ignoffo &N. B. Mandava, eds) —CRC Press, Boca Raton, 151–236.

    Google Scholar 

  • McCoy, C.W., Selhime, A.G., Kanavel, R.F. andHill, A.J. — 1971. Suppression of citrus rust mite populations with application of fragmented mycelia ofHirsutella thompsoniiJ. Invertebr. Pathol., 17, 270–276.

    CAS  PubMed  Google Scholar 

  • McDonald, R.C., Harper, J.D. & Dickerson, W.A. — 1993. Biological Control: Developing Strategies for the 90's. —Proc. NCDA/NCSU Natl. Conf., 79 pp.

  • McGaughey, W.H. — 1985. Insect resistance to the biological insecticideBacillus thuringiensis.Science 229, 193–195.

    Google Scholar 

  • McGaughey, W.H. &Whalon, M.E. — 1992. Managing insect resistance toBacillus thuringiensis toxins. —Science, 258, 1451–1455.

    CAS  Google Scholar 

  • Meeusen, R.L. &Warren, G. — 1989. Insect control with genetically engineered crops. —Annu. Rev. Entomol., 34, 373–81.

    Article  Google Scholar 

  • Melin, B.E. &Cozzi, E.M. — 1990. Safety to nontarget invertebrates of lepidopteran strains ofBacillus thuringiensis and their β-exotoxins. In: Safety of Microbial Insecticides, (M. Laird, L.A. Lacey &E.W. Davidson, eds) —CRC Press Boca Raton, 149–167.

    Google Scholar 

  • Miller, L.K. — 1988. Baculoviruses as gene expression vectors. —Annu. Rev. Microbiol., 42, 177–199.

    Article  CAS  PubMed  Google Scholar 

  • Miller, L.K. — 1995. Genetically engineered insect virus pesticides: present and future. —J. Invertebr. Pathol., 65, 211–216.

    CAS  PubMed  Google Scholar 

  • Milner, R.J., Soper, R.S., &Lutton, G.G. — 1982. Field release of an Israeli strain of the fungusZoophthora radicans (Brefeld) Batko for biological control ofTherioaphis trifoli (Monell)f. maculata. —J. Aust. Entomol. Soc., 21, 113–118.

    Google Scholar 

  • Morris, O.N. — 1982. Bacteria as pesticides: Forest applications. In: Microbial and Viral Pesticides, (E. Kurstak, ed). —Marcel Dekker, New York, 239–287.

    Google Scholar 

  • Moscardi, F. — 1993. Soybean integrated pest management in Brazil. —FAO Plant Protect. Bull., 41, 91–100.

    Google Scholar 

  • Nielsen-LeRoux, C., Charles, J.-F., Georghiou, G.P., Silva-Filha, M.-H. & Regis, L. — 1994. Mechanism of resistance of mosquito larvae toBacillus sphaericus binary toxin. —Proc. VIth Int. Colloq. Invertebr., Pathol, pp. 201–206.

  • Ogura, N. — 1993. Control of scarabaeid grubs with an entomogenous nematode,Steinernema kushidai. —Jpn. Agr. Res. Quart., 27, 49–54.

    Google Scholar 

  • Parkman, J.P., Hudson, W.G., Frank, J.H., Nguyen, K.B. &Smart, G.C. Jr. —1993. Establishment and persistence ofSteinernema scapterisci (Rhabditida: Steinernematidae) in field populations ofScapteriscus spp. mole crickets (Orthoptera: Gryllotalpidae). —J. Entomol. Sci., 28, 182–190.

    Google Scholar 

  • Peferoen, M. &Van Mellaert, H. — 1991. Engineering of insect resistance in plants withBacillus thuringiensis genes. In: Biotechnology for Biological Control of Pests and Vectors, (K. Maramorosch, ed). —CRC Press, Boca Raton, 95–104.

    Google Scholar 

  • Petersen, J.J. — 1985. Nematode parasites. In: Biological Control of Mosquitoes, (H. C. Chapman, ed). —Bull. Am. Mosq. Cont. Assoc., 6, 110–122.

  • Piot, J.-C., Jellis, C.L., Bruyere, T., Bassand, D., Rusche, J. R. andWitt, D.P. — 1990. Construction ofBacillus thuringiensis strains with improved insecticidal performances by genetic exchange and enhancement of the biological activity of a cloned toxin gene byin vitro mutagenesis. In: Pesticides and Alternatives, (J. E. Casida, ed). —Elsevier Science Publishers, B. V., Amsterdam, 149–156.

    Google Scholar 

  • Poinar, G.O., Jr. — 1979. Nematodes for Biological Control of Insects. —CRC Press, Boca Raton, Florida, 277 pp.

    Google Scholar 

  • Poinar, G.O., Jr. — 1990. Taxonomy and biology of Steinernematidae and Heterorhabditidae. In: Entomopathogenic Nematodes in Biological Control, (R. Gaugler &H. K. Kaya, eds.). —CRC Press, Boca Raton, 23–61.

    Google Scholar 

  • Poinar, G.O., Jr. — 1991. Genetic engineering of nematodes for pest control. In: Biotechnology for Biological Control of Pests and Vectors. (K. Maramorosch, ed.). —CRC Press, Boca Raton, 77–93.

    Google Scholar 

  • Poinar, G.O., Jr. — 1992. Nematodes associated with Scarabaeidae. In: Use of Pathogens in Scarab Pest Management, (T.A. Jackson &T.R. Glare, eds). —Intercept, Andover, 93–109.

    Google Scholar 

  • Possee, R.D. — 1993. Viral approaches for insect control. In: Advanced Engineered Pesticides, (L. Kim, ed). —Marcel Dekker, New York, 99–112.

    Google Scholar 

  • Rao, D.R., Mani, T.R., Rajendran, R., Joseph, A.S., Gajanana, A. &Reuben R. — 1995. Development of a high level of resistance toBacillus sphaericus in a field population ofCulex quinquefasciatus from Kochi, India. —J. Am. Mosq. Cont. Assoc., 11, 1–5.

    CAS  Google Scholar 

  • Reardon, R. & Hajek, A. — 1993.Entomophaga maimaiga in North America: A, Review. —Appal. Inte. Pest Man. Publ. USDA Forest Svc., 22 pp.

  • Reardon, R., Dubois, N. & McLane, W. — 1994.Bacillus thuringiensis for managing gypsy moth: A review. —Nat. Cen. Forest Hlth. Man. Publ., 32 pp.

  • Riba, G., Couteaudier, Y., Maurer, P., & Neuvéglise, C. — 1994. Molecular methods offer a new challenge for fungal bioinsecticides. —Proc. VIth Int. Colloq. Invertebr. Pathol., pp. 16–22.

  • Roberts, D.W. — 1981. Toxins of entomopathogenic fungi. In: Microbial Control of Pests and Plant Diseases 1970–1980, (H.D. Burges, ed). —Academic Press, London, 441–464.

    Google Scholar 

  • Roberts, D.W., Fuxa, J.R., Gaugler, R., Goettel, M., Jaques, R., &Maddox, J. — 1991. Use of Pathogens in Insect Control. In: CRC Handbook, of Pest Management in Agriculture, (D. Pimentel (ed))CRC Press, Boca Raton, pp. 243–278.

    Google Scholar 

  • Rossiter, M.C., Yendol, W.G. &Dubois, N.R. — 1990. Resistance toBacillus thuringiensis in gypsy moth: genetic and environmental causes. —J. Econ. Entomol., 83, 2211–2218.

    Google Scholar 

  • Shapiro, M. — 1986.In vivo production of baculoviruses. In: The Biology of Baculoviruses. Vol.II Practical Application for Insect Control, (R.R. Granados &B.A. Federici, eds). —CRC Press, Boca Raton, 31–61.

    Google Scholar 

  • Shapiro, M. &Dougherty, E.M. — 1993. The use of fluorescent brighteners as activity enhancers for insect pathogenic viruses. In: Pest Management: Biologically Based Technologies, (R.D. Lumsden &J.L. Vaughn, eds). —American Chemical Society, Washington,D.C., 40–46.

    Google Scholar 

  • Shelton, A.M., Robertson, J.L., Tang, J.D., Perez, C., Eigenbrode, S.D., Preisler, H.K., Wilsey, W.T., Cooley, R.J. — 1993. Resistance of diamondback moth (Lepidoptera: Plutellidae) toBacillus thuringiensis subspecies in the field. —J. Econ. Entomol., 3, 697–705.

    Google Scholar 

  • Shuler, M.L., Wood, H.A., Granados, R.R., &Hammer, D.A (eds) — 1995. Baculovirus Expression Systems and Biopesticides. —Wiley-Liss Publ., New York, 13–40.

    Google Scholar 

  • Smits, P.H. — 1994. Biological control of scarabs with entomopathogenic nematodes. —Proc. VIth Int. Colloq. Invertebr. Pathol., pp. 145–150.

  • St. Leger, R.J. — 1994. Mycoinsecticides: An opportunity for genetic engineering. —Proc. VIth Int. Colloq. Invertebr. Pathol., pp.299–304.

  • Starnes, R.L., Liu, C.L. &Marrone, P.G. — 1993. History, use, and future of microbial insecticides —Am. Entomol., 39, 83–91.

    Google Scholar 

  • Steinhaus, E.A. — 1956. Microbial control. The emergence of an idea. —Hilgardia, 26, 107–160.

    Google Scholar 

  • Steinhaus, E.A. — 1960. Insect pathology: Challenge, achievement, and promise. —Bull. Entomol. Soc. Am., 6, 9–16.

    Google Scholar 

  • Steinkraus, D.C., Hollingsworth, R.G. &Slaymaker, P.H. — 1995. Prevalence ofNeozygites fresenii (Entomophthorales: Neozygitaceae) on cotton aphids (Homoptera: Aphididae) in Arkansas cotton. —Environ. Entomol., 24, 465–474.

    Google Scholar 

  • Stone, T.B., Sims, S.R., MacIntosh, S.C., Fuchs, R.L., &Marrone, P.G. —1991. Insect resistance toBacillus thuringiensis. In: Biotechnology for Biological Control of Pests and Vectors, (K. Maramorosch, ed). —CRC Press, Boca Raton, 53–66.

    Google Scholar 

  • Tabashnik, B.E. — 1992a. Evaluation of synergism amongBacillus thuringiensis toxins. —Appl. Environ. Microbiol., 58, 3343–3346.

    CAS  PubMed  Google Scholar 

  • Tabashnik, B.E. — 1992b. Resistance risk management: realized heritability of resistance toBacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae), tobacco budworm (Lepidoptera: Noctuidae), and Colorado potato beetle (Coleoptera: Chrysomelidae). —J. Econ. Entomol., 85, 1551–1559.

    Google Scholar 

  • Tabashnik, B.E. — 1994. Evolution of resistance toBacillus thuringiensis. —Annu. Rev. Entomol., 39, 47–79.

    Article  Google Scholar 

  • Tabashnik, B.E., Cushing, N.L., Finson, N. &Johnson, M.W. — 1990. Field development of resistance toBacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). —J. Econ. Entomol., 83, 1671–1676.

    Google Scholar 

  • Tabashnik, B.E., Finson, N., Chilcutt, C.F., Cushing, N.L., &Johnson, M.W. —1993. Increasing efficiency of bioassays: evaluating resistance toBacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). —J. Econ. Entomol., 86, 635–644.

    Google Scholar 

  • Tabashnik, B.E., Finson, N. &Johnson, M.W. — 1991. Managing resistance toBacillus thuringiensis: lessons from the diamondback moth (Lepidoptera: Plutellidae). —J. Econ. Entomol., 84, 49–55.

    Google Scholar 

  • Tabashnik, B.E., Finson, N., Johnson, M.W. &Heckel, D.G. — 1995. Prolonged selection affects stability of resistance toBacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). —J. Econ. Entomol., 88, 219–224.

    Google Scholar 

  • Tabashnik, B.E., Groeters, F.R., Finson, N., &Johnson, M.W. — 1994. Instability of resistance toBacillus thuringiensis inPlutella xylostella. —Biocont. Sci. Tech., 4, 419–426.

    Google Scholar 

  • Tabashnik, B.E., Schwartz, J.M., Finson, N. &Johnson, M.W. — 1992. Inheritance of resistance toBacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). —J. Econ. Entomol., 85, 1046–1055.

    Google Scholar 

  • Talekar, N.. (ed). — 1992. Diamondback moth and other crucifer pests. —Proc. 2nd Int. Workshop, Taipei, Taiwan: Asian Vegetable Research and Development Center, 603 pp.

  • Tanada, Y. &Kaya, H.K. — 1993. Insect Pathology. —Academic Press, New York. 666pp.

    Google Scholar 

  • van Schelt, J. — 1993. Market-driven research and development in biological control. —Pestic. Sci., 37, 405–409.

    Google Scholar 

  • Waalwijk, C., Dullemans, A. &Maat, C. — 1991. Construction of a bioinsecticidal rhizosphere isolate ofPseudomonas florescens. —FEMS Microbiol. Let., 77, 257–264.

    CAS  Google Scholar 

  • Weiss, S.A., &Vaughn, J.L. — 1986. Cell culture methods for large-scale propagation of Baculoviruses. In: The Biology of Baculoviruses. Vol. II Practical Application for Insect Control, (R.R. Granados &B.A. Federici, eds). —CRC Press, Boca Raton, 63–87.

    Google Scholar 

  • Weiss, S.A., Dunlop, B.F., Georgis, R., Thomas, D.W., Vail, P.V., Hoffmann, D.F. & Manning, J.S. — 1994. Production of baculoviruses on industrial scale. —Proc. VIth Int. Colloq. Invertebr. Pathol., pp 440–446.

  • Whalon, M.E. &McGaughey, W.H. — 1993. Insect resistance toBacillus thuringiensis. In: Advanced Engineered Pesticides, (L. Kim, ed). —Marcel Dekker, New York, 215–231.

    Google Scholar 

  • Whalon, M.E., Miller, D.L., Hollingworth, R.M., Grafius, E.J. &Miller, J.R. —1993. Selection of a Colorado potato beetle (Coleoptera: Chrysomelidae) strain resistant toBacillus thuringiensis. —J. Econ. Entomol., 86, 226–233.

    Google Scholar 

  • Wilson, G.G. — 1981.Nosema fumiferanae, a natural pathogen of a forest pest: potential for pest management. In: Microbial Control of Pests and Plant Diseases 1970–1980, (H. D. Burges, ed). —Academic Press, London, 595–601.

    Google Scholar 

  • Wilson, M.J., Glen, D.M. &George, S.K. — 1993. The rhabditid nematodePhasmarhadbitis hermaphrodita as a potential biological control agent for slugs. —Biocontrol Sci. Technol., 3, 503–511.

    Google Scholar 

  • Wood, H.A. — 1991. Development of genetically enhanced baculovirus pesticides. In: Biotechnology for Biological Control of Pests and Vectors, (K. Maramorosch, ed). —CRC Press, Boca Raton, 69–76.

    Google Scholar 

  • Wood, H.A. — 1994. Recombinant baculovirus pesticides: Protecting our crops and our environment. —Proc. VIth Int. Colloq. Invertebr. Pathol., pp.428–429.

  • Wood, H.A. — 1995. Development and testing of genetically improved baculovirus insecticides. In: Baculovirus Expression Systems and Biopesticides, (M.L. Shuler, H.A. Wood, R.R. Granados &D.A. Hammer, eds). —Wiley-Liss Publ. New York, 91–102.

    Google Scholar 

  • Wraight, S. &Roberts, D.W. — 1987. Insect control efforts with fungi. —J. Indus. Microbiol., 28, 77–87.

    Google Scholar 

  • Yap, W.-H., Liu, J.-W., Porter, A.-G. & Thanabalu, T. — 1994. Expression of mosquitocidal toxins in novel gram-negative hosts,Caulobacter andAncylobacter. —Proc. VIth Int. Colloq. Invertebr. Pathol., pp. 239.

  • Young, S.Y., III &Yearian, W.C. — 1986. Formulation and application of baculoviruses. In: The Biology of Baculoviruses. Vol. II Practical Application for Insect Control, (R.R. Granados &B.A. Federici, eds). —CRC Press, Boca Raton, 157–79.

    Google Scholar 

  • Zelazny, B., Lolong, A. andPattang, B. — 1992.Oryctes rhinoceros (Coleoptera: Scarabaeidae) populations suppressed by a baculovirus. —J. Invertebr. Pathol., 59, 61–68.

    Google Scholar 

  • Zimmermann, G. — 1992. Use of the fungus,Beauveria brongniartii, for the control of European Cockchafers,Melolontha spp., in Europe. In: Use of Pathogens in Scarab Pest management, (T.A. Jackson &T.R. Glare, eds). —Intercept, Andover, 199–208.

    Google Scholar 

  • Zimmermann, G. — 1993. The entomopathogenic fungusMetarhizium anisopliae and its potential as a biocontrol agent. —Pestic. Sci., 37, 375–379.

    Google Scholar 

  • Zimmermann, G. — 1994. Strategies for the utilization of entomopathogenic fungi. —Proc. VIth Int. Colloq. Invertebr. Pathol., pp.67–73.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lacey, L.A., Goettel, M.S. Current developments in microbial control of insect pests and prospects for the early 21st century. Entomophaga 40, 3–27 (1995). https://doi.org/10.1007/BF02372677

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02372677

Key-Words

Navigation