Skip to main content

Advertisement

Log in

Estimation of contaminant depletion in unsaturated soils using a reduced-order biodegradation model and carbon dioxide measurement

  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The objective of this study was to develop a reduced-order model of biodegradation in unsaturated soils that allows the estimation of contaminant depletion, using available on-line measurements. Hexadecane was chosen as a model compound for petroleum hydrocarbons. A two-compartment model was developed, decoupling the intrinsic biodegradation kinetics from limiting factors imposed by field conditions, such as oxygen transfer and contaminant bioavailability. Two new experimental protocols (one for the liquid phase and the other for the solid phase) were developed to monitor hexadecane depletion, hexadecane mineralization, total mineralization, and evolution of the degraders. Using the liquid-phase experiment, parameters of a Haldane kinetic model and yield coefficients were identified and used in the complete model of biodegradation in soil. Using the carbon dioxide production curve, a biocontact kinetic model was identified so that, despite the high sensitivity of the model outputs to variations in the parameters, hexadecane depletion could be correctly predicted with an average error on the entire time trajectory of about 8%. Moreover, the ratio between hexadecane mineralization and total mineralization remained constant after a brief transient period, indicating that hexadecane mineralization could be deduced from the total carbon dioxide measurement. Finally, the new model developed in this study allows real-time monitoring of contaminant biodegradation, using on-line carbon dioxide measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c
Fig. 2a–c
Fig. 3a–c
Fig. 4a–c
Fig. 5a, b
Fig. 6a, b

Similar content being viewed by others

References

  • Alexander M (1994) Biodegradation and bioremediation. Academic Press, San Diego

  • Arocha MA (1997) Matter. Comput Chem Eng 21:489–499

    Article  CAS  Google Scholar 

  • Bailey JE, Ollis DF (1986) Biochemical engineering fundamentals. McGraw–Hill, New York

  • Baker KH, Herson DS (1994) Bioremediation. McGraw–Hill, New York

  • Bernard O, Hadj-Sadok Z, Dochain D, Genovesi A, Steyer J-P (2001) Dynamical model development and parameter identification for an anaerobic wastewater treatment process. Biotechnol Bioeng 75:424–438

    Article  CAS  PubMed  Google Scholar 

  • Davies NA, Edwards PA, Lawrence MAM, Taylor MG, Simkiss K (1999) Influence of particle surfaces on the bioavailability to different species of 2,4-dichlorophenol and pentachlorophenol. Environ Sci Technol 33:2465–2468

    Article  CAS  Google Scholar 

  • De Jonge H, Freijer JI, Verstraten JM, Westerveld J (1997) Relation between bioavailability and fuel oil hydrocarbon composition in contaminated soils. Environ Sci Technol 31:771–775

    Article  Google Scholar 

  • Déziel E, Paquette G, Villemur R, Lépine F, Bisaillon J-G (1996) Biosurfactant production by a soil Pseudomonas strain growing on polycylic aromatic hydrocarbons. Appl Environ Microbiol 62:1908–1912

    Google Scholar 

  • Dhawan S, Erickson LE, Fan LT (1993) Model development and simulation of bioremediation in soil beds with aggregates. Ground Water 31:271–284

    CAS  Google Scholar 

  • Feng Y, Park J-H, Voice TC, Boyd SA (2000) Bioavailability of soil-sorbed biphenyl to bacteria. Environ Sci Technol 34:1977–1984

    Article  CAS  Google Scholar 

  • Fu C, Pfanstiel S, Gao C, Yan X, Govind R, Tabak HH (1996) Studies on contaminant biodegradation in slurry, water, and compacted soil tube reactors. Environ Sci Technol 30:743–750

    Article  CAS  Google Scholar 

  • Geerdink MJ, Van Loosdrecht MCM, Luyben KCA (1996) Model for microbial degradation of nonpolar organic contaminants in a slurry reactor. Environ Sci Technol 30:779–786

    Article  CAS  Google Scholar 

  • Ghoshal S, Ramaswami A, Luthy RG (1996) Biodegradation of naphthalene from coal tar and heptamethylnonane in mixed batch systems. Environ Sci Technol 30:1282–1291

    Article  CAS  Google Scholar 

  • Graham DW, Smith VH, Cleland DL, Law KP (1999) Effects of Nitrogen and phosphorus supply on hexadecane biodegradation in soil systems. Water Air Soil Pollut 111:1–18

    Article  CAS  Google Scholar 

  • Greer CW, Hawari J, Samson R (1990) Influence of environmental factors on 2,4-dichlorophenoxyacetic acid degradation by Pseudomonas cepacia isolated from peat. Arch Microbiol 154:317–322

    CAS  PubMed  Google Scholar 

  • Guerin WF, Boyd SA (1992) Differential bioavailability of soil-sorbed naphthalene to two bacterial species. Appl Environ Microbiol 58:1142–1152

    Google Scholar 

  • Harms H, Zehnder AJB (1995) Bioavailability of sorbed 3-chlorodibenzofuran. Appl Environ Microbiol 61:27–33

    CAS  Google Scholar 

  • Karickhoff SW (1980) Sorption kinetics of hydrophobic pollutants in natural sediments. In: Baker RA (ed) Contaminants and sediments. Ann Arbor Science, Ann Arbor, Mich., pp 193–205

  • Li KY, Zhang Y, Xu T (1995) Bioremediation of oil-contaminated soil—a rate model. Waste Manag 15:335–338

    Article  CAS  Google Scholar 

  • Liwarska-Bizukojc E, Bizukojc M, Ledakowicz S (2002) Kinetics of the aerobic biological degradation of shredded municipal solid waste in liquid phase. Water Res 36:2124–2132

    Article  CAS  PubMed  Google Scholar 

  • Mills AL, Breuil C, Colwell RR (1978) Enumeration of petroleum-degrading marine and estuarine microorganisms by the most probable number method. Can J Microbiol 24:552–557

    Google Scholar 

  • Misra G, Pavlostathis SG (1997) Biodegradation kinetics of monoterpenes in liquid and soil-slurry systems. Appl Microbiol Biotechnol 47:572–577

    Article  CAS  Google Scholar 

  • Park J-H, Zhao X, Voice TC (2001) Biodegradation of non-desorbable naphthalene in soils. Environ Sci Technol 35:2734–2740

    Article  CAS  PubMed  Google Scholar 

  • Pignatello JJ, Martinson MM, Steiert JG, Carlson RE, Crawford RL (1983) Biodegradation and photolysis of pentachlorophenol in artificial freshwater streams. Appl Environ Microbiol 46:1024–1031

    CAS  PubMed  Google Scholar 

  • Ramaswami A, Luthy RG (1997) Measuring and modeling physicochemical limitations to bioavailability and biodegradation. In: Hurst JH (ed) Manual of environmental microbiology. ASM Press, Washington, D.C., pp 721–729

  • Schoefs O (2002) Modélisation et observation des procédés de biodégradation d′un polluant dans un sol non-saturé. PhD thesis, Ecole Polytechnique de Montréal, Montréal

  • Schwarzenbach RP, Gschwend PM, Imboden DM (1993) Environmental organic chemistry. Wiley, New York

  • Wick LY, Colangelo T, Harms H (2001) Kinetics of mass transfer-limited bacterial growth on solid PAHs. Environ Sci Technol 35:354–361

    Article  CAS  PubMed  Google Scholar 

  • Woo SH, Park JM, Rittmann BE (2001) Evaluation of the interaction between biodegradation and sorption of phenanthrene in soil-slurry systems. Biotechnol Bioeng 73:12–24

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Voice TC (2000) Assessment of bioavailability using a multicolumn system. Environ Sci Technol 34:1506–1512

    Article  CAS  Google Scholar 

  • Zhao X, Szafranski MJ, Maraqa MA, Voice TC (1999) Sorption and bioavailability of carbon tetrachloride in a low organic content sandy soil. Environ Toxicol Chem 18:1755–1762

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the partners of the Industrial Chair in Site Remediation and Management: Alcan, EDF/GDF, Bell Canada, Cambior, Canadian Pacific Railway, Centre Expertise Analyse Environnementale du Québec (CEAEQ), City of Montreal, Total Fina Elf, Hydro-Québec, Natural Science and Engineering Research Council (NSERC), Petro-Canada, and Solvay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Schoefs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schoefs, O., Perrier, M. & Samson, R. Estimation of contaminant depletion in unsaturated soils using a reduced-order biodegradation model and carbon dioxide measurement. Appl Microbiol Biotechnol 64, 53–61 (2004). https://doi.org/10.1007/s00253-003-1423-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1423-3

Keywords

Navigation