Skip to main content

Galectins in the Tumor Microenvironment: Focus on Galectin-1

  • Chapter
  • First Online:
Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1259))

Abstract

In the last decades, the focus of cancer research has moved from epithelial cells to the tumor milieu, in an effort to better understand tumor development and progression, and with the important end goal of translating this knowledge into effective therapies. The galectin family of glycan-binding proteins displays important functions in cancer development and progression. Numerous groups have made outstanding contributions to deepen our knowledge about the role of galectins in the tumor-stroma crosstalk, defining them as key players in modulating interactions between tumor cells and the extracellular matrix, fibroblasts, endothelium, and the immune system. While several members of the family have been of particular interest until now, others are still considered as future exploding stars. This chapter provides an overview for galectin-1, the first identified and still one of the most well-studied galectins, and highlights the very important implications in its regulation of the tumor microenvironment in many different tumor types. Besides, a glimpse of the role of other galectins in the tumor milieu is also provided. Gaining a deeper understanding about the numerous roles of galectin-1 will not only help us to better understand other galectins but also is likely to result in the development of more effective cancer therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frigeri LG, Robertson MW, Liu FT (1990) Expression of biologically active recombinant rat IgE-binding protein in Escherichia coli. J Biol Chem 265:20763–20769

    Article  CAS  PubMed  Google Scholar 

  2. Hirabayashi J, Kasai K (1991) Effect of amino acid substitution by sited-directed mutagenesis on the carbohydrate recognition and stability of human 14-kDa beta-galactoside-binding lectin. J Biol Chem 266:23648–23653

    Article  CAS  PubMed  Google Scholar 

  3. Whitney PL, Powell JT, Sanford GL (1986) Oxidation and chemical modification of lung β-galactoside-specific lectin. Biochem J 238:683–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Leffler H, Masiarz FR, Barondes SH (1989) Soluble lactose-binding vertebrate lectins: a growing family. Biochemistry 28:9222–9229

    Article  CAS  PubMed  Google Scholar 

  5. Barondes SH, Castronovo V, Cooper DN et al (1994) Galectins: a family of animal beta-galactoside-binding lectins. Cell 76:597–598

    Article  CAS  PubMed  Google Scholar 

  6. Cummings RD, Liu F-T, Vasta GR (2015) Galectins. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 2015–2017

    Google Scholar 

  7. Hirabayashi J, Kasai K (1993) The family of metazoan metal-independent beta-galactoside-binding lectins: structure, function and molecular evolution. Glycobiology 3:297–304

    Article  CAS  PubMed  Google Scholar 

  8. Rabinovich GA, Conejo-García JR (2016) Shaping the immune landscape in cancer by galectin-driven regulatory pathways. J Mol Biol 428:3266–3281

    Article  CAS  PubMed  Google Scholar 

  9. Hughes RC (1999) Secretion of the galectin family of mammalian carbohydrate-binding proteins. Biochim Biophys Acta 1473:172–185

    Article  CAS  PubMed  Google Scholar 

  10. Haudek KC, Patterson RJ, Wang JL (2010) SR proteins and galectins: what’s in a name? Glycobiology 20:1199–1207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rabinovich GA, Toscano MA, Jackson SS, Vasta GR (2007) Functions of cell surface galectin-glycoprotein lattices. Curr Opin Struct Biol 17:513–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Johannes L, Jacob R, Leffler H (2018) Galectins at a glance. J Cell Sci 131:jcs208884

    Google Scholar 

  13. Thiemann S, Baum LG (2016) Galectins and immune responses—just how do they do those things they do? Annu Rev Immunol 34:243–264

    Article  CAS  PubMed  Google Scholar 

  14. Teichberg VI, Silman I, Beitsch DD, Resheff G (1975) A beta-D-galactoside binding protein from electric organ tissue of Electrophorus electricus. Proc Natl Acad Sci U S A 72:1383–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Raz A, Lotan R (1981) Lectin-like activities associated with human and murine neoplastic cells. Cancer Res 41:3642–3647

    CAS  PubMed  Google Scholar 

  16. Raz A, Lotan R (1987) Endogenous galactoside-binding lectins: a new class of functional tumor cell surface molecules related to metastasis. Cancer Metastasis Rev 6:433–452

    Article  CAS  PubMed  Google Scholar 

  17. Sundblad V, Mathieu V, Kiss R, Rabinovich GA (2013) Galectins: key players in the tumor microenvironment. In: Prendergaste G, Jaffe E (eds) Cancer Immunother, 2nd edn. Elsevier inc. Academic Press. 537–563

    Google Scholar 

  18. Camby I, Le Mercier M, Lefranc F, Kiss R (2006) Galectin-1: a small protein with major functions. Glycobiology 16:137R–157R

    Article  CAS  PubMed  Google Scholar 

  19. Lopez-Lucendo MF, Solis D, Andre S et al (2004) Growth-regulatory human galectin-1: crystallographic characterisation of the structural changes induced by single-site mutations and their impact on the thermodynamics of ligand binding. J Mol Biol 343:957–970

    Article  CAS  PubMed  Google Scholar 

  20. Garner OB, Baum LG (2008) Galectin-glycan lattices regulate cell-surface glycoprotein organization and signalling. Biochem Soc Trans 36:1472–1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hughes RC (2001) Galectins as modulators of cell adhesion. Biochimie 83:667–676

    Article  CAS  PubMed  Google Scholar 

  22. Varki A, Cummings RD, Esko JD et al (2015--2017) Essentials of glycobiology, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  23. Pinho SS, Reis CA (2015) Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer 15:540–555

    Article  CAS  PubMed  Google Scholar 

  24. Jeschke U, Karsten U, Wiest I et al (2006) Binding of galectin-1 (gal-1) to the Thomsen-Friedenreich (TF) antigen on trophoblast cells and inhibition of proliferation of trophoblast tumor cells in vitro by gal-1 or an anti-TF antibody. Histochem Cell Biol 126:437–444

    Article  CAS  PubMed  Google Scholar 

  25. van den Brûle FA, Califice S, Garnier F et al (2003) Galectin-1 accumulation in the ovary carcinoma peritumoral stroma is induced by ovary carcinoma cells and affects both cancer cell proliferation and adhesion to laminin-1 and fibronectin. Lab Investig 83:377–386

    Article  PubMed  CAS  Google Scholar 

  26. van den Brûle FA, Buicu C, Baldet M et al (1995) Galectin-1 modulates human melanoma cell adhesion to laminin. Biochem Biophys Res Commun 209:760–767

    Article  PubMed  Google Scholar 

  27. Croci DO, Cerliani JP, Dalotto-Moreno T et al (2014) Glycosylation-dependent lectin-receptor interactions preserve angiogenesis in anti-VEGF refractory tumors. Cell 156:744–758

    Article  CAS  PubMed  Google Scholar 

  28. Hsieh SH, Ying NW, Wu MH et al (2008) Galectin-1, a novel ligand of neuropilin-1, activates VEGFR-2 signaling and modulates the migration of vascular endothelial cells. Oncogene 27:3746–3753

    Article  CAS  PubMed  Google Scholar 

  29. Hernandez JD, Nguyen JT, He J et al (2006) Galectin-1 binds different CD43 glycoforms to cluster CD43 and regulate T cell death. J Immunol 177:5328–5336

    Article  CAS  PubMed  Google Scholar 

  30. Pace KE, Lee C, Stewart PL, Baum LG (1999) Restricted receptor segregation into membrane microdomains occurs on human T cells during apoptosis induced by galectin-1. J Immunol 163:3801–3811

    CAS  PubMed  Google Scholar 

  31. Perillo NL, Pace KE, Seilhamer JJ, Baum LG (1995) Apoptosis of T cells mediated by galectin-1. Nature 378:736–739

    Article  CAS  PubMed  Google Scholar 

  32. Martinez-Bosch N, Vinaixa J, Navarro P (2018b) Immune evasion in pancreatic cancer: from mechanisms to therapy. Cancers (Basel) 10:E6

    Article  CAS  Google Scholar 

  33. Thijssen VL, Heusschen R, Caers J, Griffioen AW (2015) Galectin expression in cancer diagnosis and prognosis: a systematic review. Biochim Biophys Acta 1855:235–247

    CAS  PubMed  Google Scholar 

  34. van den Brûle FA, Waltregny D, Castronovo V et al (2001) Increased expression of galectin-1 in carcinoma-associated stroma predicts poor outcome in prostate carcinoma patients. J Pathol 193:80–87

    Article  PubMed  Google Scholar 

  35. Kohrenhagen N, Volker HU, Kapp M et al (2006) Increased expression of galectin-1 during the progression of cervical neoplasia. Int J Gynecol Cancer 16:2018–2022

    Article  CAS  PubMed  Google Scholar 

  36. Saussez S, Decaestecker C, Cludts S et al (2009) Adhesion/growth-regulatory tissue lectin galectin-1 in relation to angiogenesis/lymphocyte infiltration and prognostic relevance of stromal up-regulation in laryngeal carcinomas. Anticancer Res 29:59–65

    PubMed  Google Scholar 

  37. Kim H-J, Jeon H-K, Cho YJ et al (2012) High galectin-1 expression correlates with poor prognosis and is involved in epithelial ovarian cancer proliferation and invasion. Eur J Cancer 48:1914–1921

    Article  CAS  PubMed  Google Scholar 

  38. Schulz H, Schmoeckel E, Kuhn C et al (2017) Galectins-1, −3, and −7 are prognostic markers for survival of ovarian cancer patients. Int J Mol Sci 18:1230

    Article  PubMed Central  CAS  Google Scholar 

  39. Sanjuan X, Fernandez PL, Castells A et al (1997) Differential expression of galectin 3 and galectin 1 in colorectal cancer progression. Gastroenterology 113:1906–1915

    Article  CAS  PubMed  Google Scholar 

  40. Spano D, Russo R, Di VM et al (2010) Galectin-1 and its involvement in hepatocellular carcinoma aggressiveness. Mol Med 16:102–115

    Article  CAS  PubMed  Google Scholar 

  41. Wu H, Chen P, Liao R et al (2012) Overexpression of galectin-1 is associated with poor prognosis in human hepatocellular carcinoma following resection. J Gastroenterol Hepatol 27:1312–1319

    Article  CAS  PubMed  Google Scholar 

  42. You Y, Tan J-X, Dai H-S et al (2016) MiRNA-22 inhibits oncogene galectin-1 in hepatocellular carcinoma. Oncotarget 7:57099–57116

    Article  PubMed  PubMed Central  Google Scholar 

  43. Berberat PO, Friess H, Wang L et al (2001) Comparative analysis of galectins in primary tumors and tumor metastasis in human pancreatic cancer. J Histochem Cytochem 49:539–549

    Article  CAS  PubMed  Google Scholar 

  44. Chen R, Pan S, Ottenhof NA et al (2012) Stromal galectin-1 expression is associated with long-term survival in resectable pancreatic ductal adenocarcinoma. Cancer Biol Ther 13:899–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Martinez-Bosch N, Barranco LE, Orozco CA et al (2018a) Increased plasma levels of galectin-1 in pancreatic cancer: potential use as biomarker. Oncotarget 9:32984–32996

    Article  PubMed  PubMed Central  Google Scholar 

  46. Pan S, Chen R, Reimel BA et al (2009) Quantitative proteomics investigation of pancreatic intraepithelial neoplasia. Electrophoresis 30:1132–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shen J, Person MD, Zhu J et al (2004) Protein expression profiles in pancreatic adenocarcinoma compared with normal pancreatic tissue and tissue affected by pancreatitis as detected by two-dimensional gel electrophoresis and mass spectrometry. Cancer Res 64:9018–9026

    Article  CAS  PubMed  Google Scholar 

  48. Tang D, Yuan Z, Xue X et al (2012) High expression of Galectin-1 in pancreatic stellate cells plays a role in the development and maintenance of an immunosuppressive microenvironment in pancreatic cancer. Int J Cancer 130:2337–2348

    Article  CAS  PubMed  Google Scholar 

  49. Abroun S, Otsuyama K-I, Shamsasenjan K et al (2008) Galectin-1 supports the survival of CD45RA(−) primary myeloma cells in vitro. Br J Haematol 142:754–765

    Article  CAS  PubMed  Google Scholar 

  50. D’Haene N, Maris C, Sandras F et al (2005) The differential expression of Galectin-1 and Galectin-3 in normal lymphoid tissue and non-Hodgkin’s and Hodgkin’s lymphomas. Int J Immunopathol Pharmacol 18:431–443

    Article  PubMed  Google Scholar 

  51. Valach J, Fik Z, Strnad H et al (2012) Smooth muscle actin-expressing stromal fibroblasts in head and neck squamous cell carcinoma: increased expression of galectin-1 and induction of poor prognosis factors. Int J Cancer 131:2499–2508

    Article  CAS  PubMed  Google Scholar 

  52. Chen J, Tang D, Wang S et al (2014) High expressions of galectin-1 and VEGF are associated with poor prognosis in gastric cancer patients. Tumour Biol 35:2513–2519

    Article  CAS  PubMed  Google Scholar 

  53. Bektas S, Bahadir B, Ucan BH et al (2010) CD24 and galectin-1 expressions in gastric adenocarcinoma and clinicopathologic significance. Pathol Oncol Res 16:569–577

    Article  CAS  PubMed  Google Scholar 

  54. Chong Y, Tang D, Xiong Q et al (2016) Galectin-1 from cancer-associated fibroblasts induces epithelial–mesenchymal transition through β1 integrin-mediated upregulation of Gli1 in gastric cancer. J Exp Clin Cancer Res 35:175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Zheng L, Xu C, Guan Z et al (2016) Galectin-1 mediates TGF-β-induced transformation from normal fibroblasts into carcinoma-associated fibroblasts and promotes tumor progression in gastric cancer. Am J Transl Res 15:16411658

    Google Scholar 

  56. Clausse N, van den Brûle F, Waltregny D et al (1999) Galectin-1 expression in prostate tumor-associated capillary endothelial cells is increased by prostate carcinoma cells and modulates heterotypic cell-cell adhesion. Angiogenesis 3:317–325

    Article  CAS  PubMed  Google Scholar 

  57. Jung E-JJ, Moon H-GG, Cho BI et al (2007) Galectin-1 expression in cancer-associated stromal cells correlates tumor invasiveness and tumor progression in breast cancer. Int J Cancer 120:2331–2338

    Article  CAS  PubMed  Google Scholar 

  58. Dalotto-Moreno T, Croci DO, Cerliani JP et al (2013) Targeting galectin-1 overcomes breast cancer-associated immunosuppression and prevents metastatic disease. Cancer Res 73:1107–1117

    Article  CAS  PubMed  Google Scholar 

  59. Goldring K, Jones GE, Thiagarajah R, Watt DJ (2002) The effect of galectin-1 on the differentiation of fibroblasts and myoblasts in vitro. J Cell Sci 115:355–366

    Article  CAS  PubMed  Google Scholar 

  60. Maeda N, Kawada N, Seki S et al (2003) Stimulation of proliferation of rat hepatic stellate cells by galectin-1 and galectin-3 through different intracellular signaling pathways. J Biol Chem 278:18938–18944

    Article  CAS  PubMed  Google Scholar 

  61. Lin Y-T, Chen J-S, Wu M-H et al (2015) Galectin-1 accelerates wound healing by regulating the neuropilin-1/Smad3/NOX4 pathway and ROS production in myofibroblasts. J Invest Dermatol 135:258–268

    Article  PubMed  Google Scholar 

  62. Jin Lim M, Ahn J, Youn Yi J et al (2014) Induction of galectin-1 by TGF-β1 accelerates fibrosis through enhancing nuclear retention of Smad2. Exp Cell Res 326:125–135

    Article  CAS  Google Scholar 

  63. Wu M-H, Chen Y-L, Lee K-H et al (2017a) Glycosylation-dependent galectin-1/neuropilin-1 interactions promote liver fibrosis through activation of TGF-β- and PDGF-like signals in hepatic stellate cells. Sci Rep 7:11006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Jiang Z-J, Shen Q-H, Chen H-Y et al (2019) Galectin-1 gene silencing inhibits the activation and proliferation but induces the apoptosis of hepatic stellate cells from mice with liver fibrosis. Int J Mol Med 43:103–116

    CAS  PubMed  Google Scholar 

  65. Wu MH, Hong HC, Hong TM et al (2011) Targeting galectin-1 in carcinoma-associated fibroblasts inhibits oral squamous cell carcinoma metastasis by downregulating MCP-1/CCL2 expression. Clin Cancer Res 17:1306–1316

    Article  CAS  PubMed  Google Scholar 

  66. Martínez-Bosch N, Fernandez-Barrena MG, Moreno M et al (2014) Galectin-1 drives pancreatic carcinogenesis through stroma remodeling and hedgehog signaling activation. Cancer Res 74:3512–3524

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Orozco CA, Martinez-Bosch N, Guerrero PE et al (2018) Targeting galectin-1 inhibits pancreatic cancer progression by modulating tumor–stroma crosstalk. Proc Natl Acad Sci U S A 115:E3769–E3778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Masamune A, Satoh M, Hirabayashi J et al (2006) Galectin-1 induces chemokine production and proliferation in pancreatic stellate cells. Am J Physiol Gastrointest Liver Physiol 290:G729–G736

    Article  CAS  PubMed  Google Scholar 

  69. Tang D, Wu Q, Zhang J et al (2018) Galectin-1 expression in activated pancreatic satellite cells promotes fibrosis in chronic pancreatitis/pancreatic cancer via the TGF-β1/Smad pathway. Oncol Rep 39:1347–1355

    CAS  PubMed  Google Scholar 

  70. Tang D, Zhang J, Yuan Z et al (2014) Pancreatic satellite cells derived galectin-1 increase the progression and less survival of pancreatic ductal adenocarcinoma. PLoS One 9:e90476

    Article  PubMed  PubMed Central  Google Scholar 

  71. Zhu X, Wang K, Zhang K et al (2016) Galectin-1 knockdown in carcinoma-associated fibroblasts inhibits migration and invasion of human MDA-MB-231 breast cancer cells by modulating MMP-9 expression. Acta Biochim Biophys Sin Shanghai 48:462–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. He X-J, Tao H-Q, Hu Z-M et al (2014) Expression of galectin-1 in carcinoma-associated fibroblasts promotes gastric cancer cell invasion through upregulation of integrin β1. Cancer Sci 105:1402–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Xue X, Lu Z, Tang D et al (2011) Galectin-1 secreted by activated stellate cells in pancreatic ductal adenocarcinoma stroma promotes proliferation and invasion of pancreatic cancer cells: an in vitro study on the microenvironment of pancreatic ductal adenocarcinoma. Pancreas 40:832–839

    Article  CAS  PubMed  Google Scholar 

  74. Tang D, Gao J, Wang S et al (2016) Cancer-associated fibroblasts promote angiogenesis in gastric cancer through galectin-1 expression. Tumor Biol 37:1889–1899

    Article  CAS  Google Scholar 

  75. Gabius HJ, Brehler R, Schauer A, Cramer F (1986) Localization of endogenous lectins in normal human breast, benign breast lesions and mammary carcinomas. Virchows Arch B Cell Pathol Incl Mol Pathol 52:107–115

    Article  CAS  PubMed  Google Scholar 

  76. Baum LG, Seilhamer JJ, Pang M et al (1995b) Synthesis of an endogeneous lectin, galectin-1, by human endothelial cells is up-regulated by endothelial cell activation. Glycoconj J 12:63–68

    Article  CAS  PubMed  Google Scholar 

  77. La M, Cao TV, Cerchiaro G et al (2003) A novel biological activity for galectin-1: inhibition of leukocyte-endothelial cell interactions in experimental inflammation. Am J Pathol 163:1505–1515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Thijssen VL, Hulsmans S, Griffioen AW (2008) The galectin profile of the endothelium: altered expression and localization in activated and tumor endothelial cells. Am J Pathol 172:545–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Thijssen VL, Postel R, Brandwijk RJ et al (2006) Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy. Proc Natl Acad Sci U S A 103:15975–15980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lotan R, Belloni PN, Tressler RJ et al (1994) Expression of galectins on microvessel endothelial cells and their involvement in tumour cell adhesion. Glycoconj J 11:462–468

    Article  CAS  PubMed  Google Scholar 

  81. Croci DO, Salatino M, Rubinstein N et al (2012) Disrupting galectin-1 interactions with N-glycans suppresses hypoxia-driven angiogenesis and tumorigenesis in Kaposi’s sarcoma. J Exp Med 209:1985–2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Le Q-T, Shi G, Cao H et al (2005) Galectin-1: a link between tumor hypoxia and tumor immune privilege. J Clin Oncol 23:8932–8941

    Article  CAS  PubMed  Google Scholar 

  83. Zhao XY, Chen TT, Xia L et al (2010) Hypoxia inducible factor-1 mediates expression of galectin-1: the potential role in migration/invasion of colorectal cancer cells. Carcinogenesis 31:1367–1375

    Article  CAS  PubMed  Google Scholar 

  84. Ito K, Scott SA, Cutler S et al (2011) Thiodigalactoside inhibits murine cancers by concurrently blocking effects of galectin-1 on immune dysregulation, angiogenesis and protection against oxidative stress. Angiogenesis 14:293–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Laderach DJ, Gentilini LD, Giribaldi L et al (2013) A unique galectin signature in human prostate cancer progression suggests galectin-1 as a key target for treatment of advanced disease. Cancer Res 73:86–96

    Article  CAS  PubMed  Google Scholar 

  86. Le Mercier M, Mathieu V, Haibe-Kains B et al (2008) Knocking down galectin 1 in human hs683 glioblastoma cells impairs both angiogenesis and endoplasmic reticulum stress responses. J Neuropathol Exp Neurol 67:456–469

    Article  PubMed  Google Scholar 

  87. Manzi M, Bacigalupo ML, Carabias P et al (2016) Galectin-1 controls the proliferation and migration of liver sinusoidal endothelial cells and their interaction with hepatocarcinoma cells. J Cell Physiol 231:1522–1533

    Article  CAS  PubMed  Google Scholar 

  88. Thijssen VL, Barkan B, Shoji H et al (2010) Tumor cells secrete galectin-1 to enhance endothelial cell activity. Cancer Res 70:6216–6224

    Article  CAS  PubMed  Google Scholar 

  89. Mathieu V, de Lassalle EM, Toelen J et al (2012) Galectin-1 in melanoma biology and related neo-angiogenesis processes. J Invest Dermatol 132:2245–2254

    Article  CAS  PubMed  Google Scholar 

  90. Le Mercier M, Fortin S, Mathieu V et al (2009) Galectin 1 proangiogenic and promigratory effects in the Hs683 oligodendroglioma model are partly mediated through the control of BEX2 expression. Neoplasia 11:485–496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Ozawa K, Tsukamoto Y, Hori O et al (2001) Regulation of tumor angiogenesis by oxygen-regulated protein 150, an inducible endoplasmic reticulum chaperone. Cancer Res 61:4206–4213

    CAS  PubMed  Google Scholar 

  92. Soker S, Takashima S, Miao HQ et al (1998) Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92:735–745

    Article  CAS  PubMed  Google Scholar 

  93. Wu M-H, Ying N-W, Hong T-M et al (2014) Galectin-1 induces vascular permeability through the neuropilin-1/vascular endothelial growth factor receptor-1 complex. Angiogenesis 17:839–849

    Article  CAS  PubMed  Google Scholar 

  94. D’Haene N, Sauvage S, Maris C et al (2013) VEGFR1 and VEGFR2 involvement in extracellular galectin-1- and galectin-3-induced angiogenesis. PLoS One 8:e67029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Etulain J, Negrotto S, Tribulatti MV et al (2014) Control of angiogenesis by galectins involves the release of platelet-derived proangiogenic factors. PLoS One 9:e96402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Berger BJ, Müller TS, Buschmann IR et al (2003) High levels of the molecular chaperone Mdg1/ERdj4 reflect the activation state of endothelial cells. Exp Cell Res 290:82–92

    Article  CAS  PubMed  Google Scholar 

  97. Storti P, Marchica V, Airoldi I et al (2016) Galectin-1 suppression delineates a new strategy to inhibit myeloma-induced angiogenesis and tumoral growth in vivo. Leukemia 30:2351–2363

    Article  CAS  PubMed  Google Scholar 

  98. Lehr JE, Pienta KJ (1998) Preferential adhesion of prostate cancer cells to a human bone marrow endothelial cell line. J Natl Cancer Inst 90:118–123

    Article  CAS  PubMed  Google Scholar 

  99. Thijssen VLJL, Poirier F, Baum LG, Griffioen AW (2007) Galectins in the tumor endothelium: opportunities for combined cancer therapy. Blood 110:2819–2827

    Article  CAS  PubMed  Google Scholar 

  100. Büchel G, Schulte JH, Harrison L et al (2016) Immune response modulation by Galectin-1 in a transgenic model of neuroblastoma. Oncoimmunology 5:e1131378

    Google Scholar 

  101. Huang C-S, Tang S-J, Chung L-Y et al (2014) Galectin-1 upregulates CXCR4 to promote tumor progression and poor outcome in kidney cancer. J Am Soc Nephrol 25:1486–1495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bousseau S, Marchand M, Soleti R et al (2019) Phostine 3.1a as a pharmacological compound with antiangiogenic properties against diseases with excess vascularization. FASEB J 33:5864–5875

    Article  CAS  PubMed  Google Scholar 

  103. Koonce NA, Griffin RJ, Dings RPM (2017) Galectin-1 inhibitor OTX008 induces tumor vessel normalization and tumor growth inhibition in human head and neck squamous cell carcinoma models. Int J Mol Sci 18:E2671

    Article  PubMed Central  CAS  Google Scholar 

  104. Astorgues-Xerri L, Riveiro ME, Tijeras-Raballand A et al (2014b) OTX008, a selective small-molecule inhibitor of galectin-1, downregulates cancer cell proliferation, invasion and tumour angiogenesis. Eur J Cancer 50:2463–2477

    Article  CAS  PubMed  Google Scholar 

  105. Zucchetti M, Bonezzi K, Frapolli R et al (2013) Pharmacokinetics and antineoplastic activity of galectin-1-targeting OTX008 in combination with sunitinib. Cancer Chemother Pharmacol 72:879–887

    Article  CAS  PubMed  Google Scholar 

  106. Jaworski FM, Gentilini LD, Gueron G et al (2017) In vivo hemin conditioning targets the vascular and immunologic compartments and restrains prostate tumor development. Clin Cancer Res 23:5135–5148

    Article  CAS  PubMed  Google Scholar 

  107. Wu X, Li J, Connolly EM et al (2017b) Combined anti-VEGF and anti–CTLA-4 therapy elicits humoral immunity to galectin-1 which is associated with favorable clinical outcomes. Cancer Immunol Res 5:446–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Rabinovich GA, Toscano MA (2009) Turning “sweet” on immunity: galectin-glycan interactions in immune tolerance and inflammation. Nat Rev Immunol 9:338–352

    Article  CAS  PubMed  Google Scholar 

  109. Stillman BN, Hsu DK, Pang M et al (2006) Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death. J Immunol 176:778–789

    Article  CAS  PubMed  Google Scholar 

  110. Pérez CV, Gómez LG, Gualdoni GS et al (2015) Dual roles of endogenous and exogenous galectin-1 in the control of testicular immunopathology. Sci Rep 5:12259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Ridano ME, Subirada PV, Paz MC et al (2017) Galectin-1 expression imprints a neurovascular phenotype in proliferative retinopathies and delineates responses to anti-VEGF. Oncotarget 8:32505–32522

    Article  PubMed  PubMed Central  Google Scholar 

  112. Blois SM, Ilarregui JM, Tometten M et al (2007) A pivotal role for galectin-1 in fetomaternal tolerance. Nat Med 13:1450–1457

    Article  CAS  PubMed  Google Scholar 

  113. Cooper D, Norling LV, Perretti M (2008) Novel insights into the inhibitory effects of Galectin-1 on neutrophil recruitment under flow. J Leukoc Biol 83:1459–1466

    Article  CAS  PubMed  Google Scholar 

  114. Iqbal AJ, Sampaio ALF, Maione F et al (2011) Endogenous galectin-1 and acute inflammation. Am J Pathol 178:1201–1209

    Article  PubMed  PubMed Central  Google Scholar 

  115. Stowell SR, Karmakar S, Arthur CM et al (2009) Galectin-1 induces reversible phosphatidylserine exposure at the plasma membrane. Mol Biol Cell 20:1408–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Correa SG, Sotomayor CE, Aoki MP et al (2003) Opposite effects of galectin-1 on alternative metabolic pathways of L-arginine in resident, inflammatory, and activated macrophages. Glycobiology 13:119–128

    Article  CAS  PubMed  Google Scholar 

  117. Barrionuevo P, Beigier-Bompadre M, Ilarregui JM et al (2007) A novel function for galectin-1 at the crossroad of innate and adaptive immunity: galectin-1 regulates monocyte/macrophage physiology through a nonapoptotic ERK-dependent pathway. J Immunol 178:436–445

    Article  CAS  PubMed  Google Scholar 

  118. Rostoker R, Yaseen H, Schif-Zuck S et al (2013) Galectin-1 induces 12/15-lipoxygenase expression in murine macrophages and favors their conversion toward a pro-resolving phenotype. Prostaglandins Other Lipid Mediat 107:85–94

    Article  CAS  PubMed  Google Scholar 

  119. Fulcher JA, Chang MH, Wang S et al (2009) Galectin-1 co-clusters CD43/CD45 on dendritic cells and induces cell activation and migration through Syk and protein kinase C signaling. J Biol Chem 284:26860–26870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Fulcher JA, Hashimi ST, Levroney EL et al (2006) Galectin-1-matured human monocyte-derived dendritic cells have enhanced migration through extracellular matrix. J Immunol 177:216–226

    Article  CAS  PubMed  Google Scholar 

  121. Thiemann S, Man JH, Chang MH et al (2015) Galectin-1 regulates tissue exit of specific dendritic cell populations. J Biol Chem 290:22662–22677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ilarregui JM, Croci DO, Bianco GA et al (2009) Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10. Nat Immunol 10:981–991

    Article  CAS  PubMed  Google Scholar 

  123. Tsai C-M, Wu H-Y, Su T-H et al (2014) Phosphoproteomic analyses reveal that galectin-1 augments the dynamics of B-cell receptor signaling. J Proteome 103:241–253

    Article  CAS  Google Scholar 

  124. Baum LG, Pang M, Perillo NL et al (1995a) Human thymic epithelial cells express an endogenous lectin, galectin-1, which binds to core 2 O-glycans on thymocytes and T lymphoblastoid cells. J Exp Med 181:877–887

    Article  CAS  PubMed  Google Scholar 

  125. Blaser C, Kaufmann M, Muller C et al (1998) Beta-galactoside-binding protein secreted by activated T cells inhibits antigen-induced proliferation of T cells. Eur J Immunol 28:2311–2319

    Article  CAS  PubMed  Google Scholar 

  126. Rabinovich GA, Iglesias MM, Modesti NM et al (1998) Activated rat macrophages produce a galectin-1-like protein that induces apoptosis of T cells: biochemical and functional characterization. J Immunol 160:4831–4840

    CAS  PubMed  Google Scholar 

  127. Rabinovich GA, Ramhorst RE, Rubinstein N et al (2002) Induction of allogenic T-cell hyporesponsiveness by galectin-1-mediated apoptotic and non-apoptotic mechanisms. Cell Death Differ 9:661–670

    Article  CAS  PubMed  Google Scholar 

  128. He J, Baum LG (2004) Presentation of galectin-1 by extracellular matrix triggers T cell death. J Biol Chem 279:4705–4712

    Article  CAS  PubMed  Google Scholar 

  129. Rabinovich GA, Daly G, Dreja H et al (1999b) Recombinant galectin-1 and its genetic delivery suppress collagen-induced arthritis via T cell apoptosis. J Exp Med 190:385–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Toscano MA, Bianco GA, Ilarregui JM et al (2007) Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death. Nat Immunol 8:825–834

    Article  CAS  PubMed  Google Scholar 

  131. Toscano MA, Commodaro AG, Ilarregui JM et al (2006) Galectin-1 suppresses autoimmune retinal disease by promoting concomitant Th2- and T regulatory-mediated anti-inflammatory responses. J Immunol 176:6323–6332

    Article  CAS  PubMed  Google Scholar 

  132. Chung CD, Patel VP, Moran M et al (2000) Galectin-1 induces partial TCR zeta-chain phosphorylation and antagonizes processive TCR signal transduction. J Immunol 165:3722–3729

    Article  CAS  PubMed  Google Scholar 

  133. Cedeno-Laurent F, Watanabe R, Teague JE et al (2012c) Galectin-1 inhibits the viability, proliferation, and Th1 cytokine production of nonmalignant T cells in patients with leukemic cutaneous T-cell lymphoma. Blood 119:3534–3538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Rabinovich GA, Ariel A, Hershkoviz R et al (1999a) Specific inhibition of T-cell adhesion to extracellular matrix and proinflammatory cytokine secretion by human recombinant galectin-1. Immunology 97:100–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Santucci L, Fiorucci S, Rubinstein N et al (2003) Galectin-1 suppresses experimental colitis in mice. Gastroenterology 124:1381–1394

    Article  CAS  PubMed  Google Scholar 

  136. de la Fuente H, Cruz-Adalia A, Martinez del Hoyo G et al (2014) The leukocyte activation receptor CD69 controls T cell differentiation through its interaction with galectin-1. Mol Cell Biol 34:2479–2487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. He J, Baum LG (2006) Endothelial cell expression of galectin-1 induced by prostate cancer cells inhibits T-cell transendothelial migration. Lab Investig 86:578–590

    Article  CAS  PubMed  Google Scholar 

  138. Norling LV, Sampaio AL, Cooper D, Perretti M (2008) Inhibitory control of endothelial galectin-1 on in vitro and in vivo lymphocyte trafficking. FASEB J 22:682–690

    Article  CAS  PubMed  Google Scholar 

  139. Baatar D, Olkhanud PB, Wells V et al (2009) Tregs utilize beta-galactoside-binding protein to transiently inhibit PI3K/p21ras activity of human CD8+ T cells to block their TCR-mediated ERK activity and proliferation. Brain Behav Immun 23:1028–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Garín MI, Chu C-C, Golshayan D et al (2007) Galectin-1: a key effector of regulation mediated by CD4+CD25+ T cells. Blood 109:2058–2065

    Article  PubMed  CAS  Google Scholar 

  141. Cedeno-Laurent F, Opperman M, Barthel SR et al (2012a) Galectin-1 triggers an immunoregulatory signature in Th cells functionally defined by IL-10 expression. J Immunol 188:3127–3137

    Article  CAS  PubMed  Google Scholar 

  142. Poncini CV, Ilarregui JM, Batalla EI et al (2015) Trypanosoma cruzi infection imparts a regulatory program in dendritic cells and T cells via galectin-1–dependent mechanisms. J Immunol 195:3311–3324

    Article  CAS  PubMed  Google Scholar 

  143. Rubinstein N, Alvarez M, Zwirner NW et al (2004) Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection; a potential mechanism of tumor-immune privilege. Cancer Cell 5:241–251

    Article  CAS  PubMed  Google Scholar 

  144. Kuo P-L, Huang M-S, Cheng D-E et al (2012) Lung cancer-derived galectin-1 enhances tumorigenic potentiation of tumor-associated dendritic cells by expressing heparin-binding EGF-like growth factor. J Biol Chem 287:9753–9764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Tesone AJ, Rutkowski MR, Brencicova E et al (2016) Satb1 overexpression drives tumor-promoting activities in cancer-associated dendritic cells. Cell Rep 14:1774–1786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Baker GJ, Chockley P, Zamler D et al (2016) Natural killer cells require monocytic Gr-1(+)/CD11b(+) myeloid cells to eradicate orthotopically engrafted glioma cells. Oncoimmunology 5:e1163461

    Google Scholar 

  147. Chen Q, Han B, Meng X et al (2019) Immunogenomic analysis reveals LGALS1 contributes to the immune heterogeneity and immunosuppression in glioma. Int J Cancer 145:517–530

    Article  CAS  PubMed  Google Scholar 

  148. Van Woensel M, Mathivet T, Wauthoz N et al (2017) Sensitization of glioblastoma tumor micro-environment to chemo- and immunotherapy by Galectin-1 intranasal knock-down strategy. Sci Rep 7:1217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Tang D, Gao J, Wang S et al (2015) Apoptosis and anergy of T cell induced by pancreatic stellate cells-derived galectin-1 in pancreatic cancer. Tumor Biol 36:5617–5626

    Article  CAS  Google Scholar 

  150. Banh A, Zhang J, Cao H et al (2011) Tumor galectin-1 mediates tumor growth and metastasis through regulation of T-cell apoptosis. Cancer Res 71:4423–4431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Soldati R, Berger E, Zenclussen AC et al (2012) Neuroblastoma triggers an immunoevasive program involving galectin-1-dependent modulation of T cell and dendritic cell compartments. Int J Cancer 131:1131–1141

    Article  CAS  PubMed  Google Scholar 

  152. Rutkowski MRR, Stephen TLL, Svoronos N et al (2015) Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation. Cancer Cell 27:27–40

    Article  CAS  PubMed  Google Scholar 

  153. Cedeno-Laurent F, Opperman MJ, Barthel SR et al (2012b) Metabolic inhibition of galectin-1-binding carbohydrates accentuates antitumor immunity. J Invest Dermatol 132:410–420

    Article  CAS  PubMed  Google Scholar 

  154. Croci DO, Morande PE, Dergan-Dylon S et al (2013) Nurse-like cells control the activity of chronic lymphocytic leukemia B cells via galectin-1. Leukemia 27:1413–1416

    Article  CAS  PubMed  Google Scholar 

  155. Juszczynski P, Ouyang J, Monti S et al (2007) The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma. Proc Natl Acad Sci U S A 104:13134–13139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Verschuere T, Toelen J, Maes W et al (2014) Glioma-derived galectin-1 regulates innate and adaptive antitumor immunity. Int J Cancer 134:873–884

    Article  CAS  PubMed  Google Scholar 

  157. Stannard KA, Collins PM, Ito K et al (2010) Galectin inhibitory disaccharides promote tumour immunity in a breast cancer model. Cancer Lett 299:95–110

    Article  CAS  PubMed  Google Scholar 

  158. Lykken JM, Horikawa M, Minard-Colin V et al (2016) Galectin-1 drives lymphoma CD20 immunotherapy resistance: validation of a preclinical system to identify resistance mechanisms. Blood 127:1886–1895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Cerliani JP, Blidner AG, Toscano MA et al (2017) Translating the “sugar code” into immune and vascular signaling programs. Trends Biochem Sci 42:255–273

    Article  CAS  PubMed  Google Scholar 

  160. Méndez-Huergo SP, Blidner AG, Rabinovich GA (2017) Galectins: emerging regulatory checkpoints linking tumor immunity and angiogenesis. Curr Opin Immunol 45:8–15

    Article  PubMed  CAS  Google Scholar 

  161. Bänfer S, Schneider D, Dewes J et al (2018) Molecular mechanism to recruit galectin-3 into multivesicular bodies for polarized exosomal secretion. Proc Natl Acad Sci U S A 115:E4396–E4405

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Popa SJ, Stewart SE, Moreau K (2018) Unconventional secretion of annexins and galectins. Semin Cell Dev Biol 83:42–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Logullo AF, Lopes ABG, Nonogaki S et al (2007) C-erbB-2 expression is a better predictor for survival than galectin-3 or p53 in early-stage breast cancer. Oncol Rep 18:121–126

    PubMed  Google Scholar 

  164. Henderson NC, Mackinnon AC, Farnworth SL et al (2006) Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proc Natl Acad Sci U S A 103:5060–5065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Li L, Li J, Gao J (2014) Functions of galectin-3 and its role in fibrotic diseases. J Pharmacol Exp Ther 351:336–343

    Article  PubMed  CAS  Google Scholar 

  166. Filer A, Bik M, Parsonage GN et al (2009) Galectin 3 induces a distinctive pattern of cytokine and chemokine production in rheumatoid synovial fibroblasts via selective signaling pathways. Arthritis Rheum 60:1604–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Zhao W, Ajani JA, Sushovan G et al (2018) Galectin-3 mediates tumor cell–stroma interactions by activating pancreatic stellate cells to produce cytokines via integrin signaling. Gastroenterology 154:1524–1537.e6

    Article  CAS  PubMed  Google Scholar 

  168. Funasaka T, Raz A, Nangia-Makker P (2014) Galectin-3 in angiogenesis and metastasis. Glycobiology 24:886–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Markowska AI, Liu F-T, Panjwani N (2010) Galectin-3 is an important mediator of VEGF- and bFGF-mediated angiogenic response. J Exp Med 207:1981–1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Nangia-Makker P, Conklin J, Hogan V, Raz A (2002a) Carbohydrate-binding proteins in cancer, and their ligands as therapeutic agents. Trends Mol Med 8:187–192

    Article  CAS  PubMed  Google Scholar 

  171. Nangia-Makker P, Hogan V, Honjo Y et al (2002b) Inhibition of human cancer cell growth and metastasis in nude mice by oral intake of modified citrus pectin. J Natl Cancer Inst 94:1854–1862

    Article  CAS  PubMed  Google Scholar 

  172. Nangia-Makker P, Honjo Y, Sarvis R et al (2000) Galectin-3 induces endothelial cell morphogenesis and angiogenesis. Am J Pathol 156:899–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Markowska AI, Jefferies KC, Panjwani N (2011) Galectin-3 protein modulates cell surface expression and activation of vascular endothelial growth factor receptor 2 in human endothelial cells. J Biol Chem 286:29913–29921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. dos Santos SN, Sheldon H, Pereira JX et al (2017) Galectin-3 acts as an angiogenic switch to induce tumor angiogenesis via Jagged-1/Notch activation. Oncotarget 8:49484–49501

    Article  PubMed  PubMed Central  Google Scholar 

  175. Machado CML, Andrade LNS, Teixeira VR et al (2014) Galectin-3 disruption impaired tumoral angiogenesis by reducing VEGF secretion from TGF β 1-induced macrophages. Cancer Med 3:201–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Shekhar MPV, Nangia-Makker P, Tait L et al (2004) Alterations in galectin-3 expression and distribution correlate with breast cancer progression. Am J Pathol 165:1931–1941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Delgado VMC, Nugnes LG, Colombo LL et al (2011) Modulation of endothelial cell migration and angiogenesis: a novel function for the “tandem-repeat” lectin galectin-8. FASEB J 25:242–254

    Article  CAS  PubMed  Google Scholar 

  178. Troncoso MF, Ferragut F, Bacigalupo ML et al (2014) Galectin-8: a matricellular lectin with key roles in angiogenesis. Glycobiology 24:907–914

    Article  CAS  PubMed  Google Scholar 

  179. Heusschen R, Schulkens IA, van Beijnum J et al (2014) Endothelial LGALS9 splice variant expression in endothelial cell biology and angiogenesis. Biochim Biophys Acta Mol basis Dis 1842:284–292

    Article  CAS  Google Scholar 

  180. Fukumori T, Takenaka Y, Yoshii T et al (2003) CD29 and CD7 mediate galectin-3-induced type II T-cell apoptosis. Cancer Res 63:8302–8311

    CAS  PubMed  Google Scholar 

  181. Peng W, Wang HY, Miyahara Y et al (2008) Tumor-associated galectin-3 modulates the function of tumor-reactive T cells. Cancer Res 68:7228–7236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Tsuboi S, Sutoh M, Hatakeyama S et al (2011) A novel strategy for evasion of NK cell immunity by tumours expressing core2 O-glycans. EMBO J 30:3173–3185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Wang W, Guo H, Geng J et al (2014) Tumor-released Galectin-3, a soluble inhibitory ligand of human NKp30, plays an important role in tumor escape from NK cell attack. J Biol Chem 289:33311–33319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Kouo T, Huang L, Pucsek AB et al (2015) Galectin-3 shapes antitumor immune responses by suppressing CD8+ T cells via LAG-3 and inhibiting expansion of plasmacytoid dendritic cells. Cancer Immunol Res 3:412–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Melero I, Berman DM, Aznar MA et al (2015) Evolving synergistic combinations of targeted immunotherapies to combat cancer. Nat Rev Cancer 15:457–472

    Article  CAS  PubMed  Google Scholar 

  186. Zhu C, Anderson AC, Schubart A et al (2005) The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol 6:1245–1252

    Article  CAS  PubMed  Google Scholar 

  187. Zhou G, Sprengers D, Boor PPC et al (2017) Antibodies against immune checkpoint molecules restore functions of tumor-infiltrating T cells in hepatocellular carcinomas. Gastroenterology 153:1107–1119.e10

    Article  CAS  PubMed  Google Scholar 

  188. Norambuena A, Metz C, Vicuña L et al (2009) Galectin-8 induces apoptosis in Jurkat T cells by phosphatidic acid-mediated ERK1/2 activation supported by protein kinase A down-regulation. J Biol Chem 284:12670–12679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Paclik D, Berndt U, Guzy C et al (2008) Galectin-2 induces apoptosis of lamina propria T lymphocytes and ameliorates acute and chronic experimental colitis in mice. J Mol Med (Berl) 86:1395–1406

    Article  CAS  Google Scholar 

  190. Tribulatti MV, Mucci J, Cattaneo V et al (2007) Galectin-8 induces apoptosis in the CD4(high)CD8(high) thymocyte subpopulation. Glycobiology 17:1404–1412

    Article  CAS  PubMed  Google Scholar 

  191. Pereira JX, Azeredo MCB, Martins FS et al (2016) The deficiency of galectin-3 in stromal cells leads to enhanced tumor growth and bone marrow metastasis. BMC Cancer 16:636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Hsu Y-L, Hung J-Y, Chiang S-Y et al (2016) Lung cancer-derived galectin-1 contributes to cancer associated fibroblast-mediated cancer progression and immune suppression through TDO2/kynurenine axis. Oncotarget 7:27584–27598

    Article  PubMed  PubMed Central  Google Scholar 

  193. He J, Baum LG (2006a) Galectin interactions with extracellular matrix and effects on cellular function. Methods Enzymol 417:247–256

    Article  CAS  PubMed  Google Scholar 

  194. Hanahan D, Weinberg RAA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  195. Cuoco JA, Benko MJ, Busch CM et al (2018) Vaccine-based immunotherapeutics for the treatment of glioblastoma: advances, challenges, and future perspectives. World Neurosurg 120:302–315

    Article  PubMed  Google Scholar 

  196. Degroote H, Van Dierendonck A, Geerts A et al (2018) Preclinical and clinical therapeutic strategies affecting tumor-associated macrophages in hepatocellular carcinoma. J Immunol Res 2018:1–9

    Article  CAS  Google Scholar 

  197. EBioMedicine (2018) The tumor microenvironment: a druggable target for metastatic disease? EBioMedicine 31:1–2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Roma-Rodrigues C, Mendes R, Baptista P, Fernandes A (2019) Targeting tumor microenvironment for cancer therapy. Int J Mol Sci 20:840

    Article  CAS  PubMed Central  Google Scholar 

  199. van Mackelenbergh MG, Stroes CI, Spijker R et al (2019) Clinical trials targeting the stroma in pancreatic cancer: a systematic review and meta-analysis. Cancers (Basel) 11:588

    Article  CAS  Google Scholar 

  200. Zandberg DP, Ferris RL (2018) Window studies in squamous cell carcinoma of the head and neck: values and limits. Curr Treat Options Oncol 19:68

    Article  PubMed  PubMed Central  Google Scholar 

  201. Dings R, Miller M, Griffin R, Mayo K (2018) Galectins as molecular targets for therapeutic intervention. Int J Mol Sci 19:905

    Article  PubMed Central  CAS  Google Scholar 

  202. Ingrassia L, Camby I, Lefranc F et al (2006) Anti-galectin compounds as potential anti-cancer drugs. Curr Med Chem 13:3513–3527

    Article  CAS  PubMed  Google Scholar 

  203. Wdowiak K, Francuz T, Gallego-Colon E et al (2018) Galectin targeted therapy in oncology: current knowledge and perspectives. Int J Mol Sci 19:E210 https://doi.org/10.3390/ijms19010210

  204. Astorgues-Xerri L, Riveiro ME, Tijeras-Raballand A et al (2014a) Unraveling galectin-1 as a novel therapeutic target for cancer. Cancer Treat Rev 40:307–319

    Article  CAS  PubMed  Google Scholar 

  205. Ito K, Stannard K, Gabutero E et al (2012) Galectin-1 as a potent target for cancer therapy: role in the tumor microenvironment. Cancer Metastasis Rev 31:763–778

    Article  CAS  PubMed  Google Scholar 

  206. Richmond A, Su Y (2008) Mouse xenograft models vs GEM models for human cancer therapeutics. Dis Model Mech 1:78–82

    Article  PubMed  PubMed Central  Google Scholar 

  207. Sharpless NE, Depinho RA (2006) The mighty mouse: genetically engineered mouse models in cancer drug development. Nat Rev Drug Discov 5:741–754

    Article  CAS  PubMed  Google Scholar 

  208. Weeber F, Ooft SN, Dijkstra KK, Voest EE (2017) Tumor organoids as a pre-clinical cancer model for drug discovery. Cell Chem Biol 24:1092–1100

    Article  CAS  PubMed  Google Scholar 

  209. Williams J (2018) Using PDX for preclinical cancer drug discovery: the evolving field. J Clin Med 7:41

    Article  PubMed Central  CAS  Google Scholar 

  210. De La Rochere P, Guil-Luna S, Decaudin D et al (2018) Humanized mice for the study of immuno-oncology. Trends Immunol 39:748–763

    Article  CAS  Google Scholar 

  211. Jenkins RW, Aref AR, Lizotte PH et al (2018) Ex Vivo profiling of PD-1 blockade using organotypic tumor spheroids. Cancer Discov 8:196–215

    Article  CAS  PubMed  Google Scholar 

  212. Saussez S, Glinoer D, Chantrain G et al (2008) Serum galectin-1 and galectin-3 levels in benign and malignant nodular thyroid disease. Thyroid 18:705–712

    Article  CAS  PubMed  Google Scholar 

  213. Watanabe M, Takemasa I, Kaneko N et al (2011) Clinical significance of circulating galectins as colorectal cancer markers. Oncol Rep 25:1217–1226

    PubMed  Google Scholar 

  214. Ouyang J, Plutschow A, von Strandmann EP et al (2013) Galectin-1 serum levels reflect tumor burden and adverse clinical features in classical Hodgkin lymphoma. Blood 121:3431–3433

    Article  CAS  PubMed  Google Scholar 

  215. Verschuere T, Van Woensel M, Fieuws S et al (2013) Altered galectin-1 serum levels in patients diagnosed with high-grade glioma. J Neuro-Oncol 115:9–17

    Article  CAS  Google Scholar 

  216. Aggarwal S, Sharma SC, Das SN (2015) Galectin-1 and galectin-3: plausible tumour markers for oral squamous cell carcinoma and suitable targets for screening high-risk population. Clin Chim Acta 442:13–21

    Article  CAS  PubMed  Google Scholar 

  217. Chong Y, Tang D, Gao J et al (2016) Galectin-1 induces invasion and the epithelial-mesenchymal transition in human gastric cancer cells via non-canonical activation of the hedgehog signaling pathway. OncotargetOncotarget 7:83611–83626

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Spanish Ministry of Economy and Competitiveness/ISCIII-FEDER (PI17/00199), the Carmen Delgado/ Miguel Pérez-Mateo AESPANC-ACANPAN 2016 grant, and the Generalitat de Catalunya (2017-SGR-225) to P.N. We are also grateful to A. Flotats for help in graphic design and V. Raker for English proofreading and editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pilar Navarro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martínez-Bosch, N., Navarro, P. (2020). Galectins in the Tumor Microenvironment: Focus on Galectin-1. In: Birbrair, A. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1259. Springer, Cham. https://doi.org/10.1007/978-3-030-43093-1_2

Download citation

Publish with us

Policies and ethics