Skip to main content

Advertisement

Log in

Galectin-1 induces vascular permeability through the neuropilin-1/vascular endothelial growth factor receptor-1 complex

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Galectin-1 (Gal-1) is a β-galactoside-binding lectin that regulates endothelial cell migration, proliferation, and adhesion. However, the effect of Gal-1 on vascular permeability and the underlying mechanisms are unclear. We found that high Gal-1 expression was associated with elevated tumor vascular permeability in specimens of oral squamous cell carcinoma. Using transendothelial passage of FITC-dextran and a Miles assay, we demonstrated that Gal-1 increased vascular permeability extracellularly through its carbohydrate recognition domain. Mechanism dissection revealed that the neuropilin (NRP)-1/vascular endothelial growth factor receptor- (VEGFR)-1 complex was required for Gal-1-regulated vascular permeability. Activation of VEGFR-1 triggered activation of Akt which led to a reduction in vascular endothelial-cadherin at cell–cell junctions and resulted in cytoskeletal rearrangement. Both inhibition of Gal-1 secreted from cancer cells and administration of an anti-Gal-1 antibody in the tumor microenvironment suppressed tumor growth and vascular permeability in xenograft models. In conclusion, our results demonstrate a novel function of Gal-1 of increasing vascular permeability through the NRP-1/VEGFR1 and Akt signaling pathway and indicate that targeting Gal-1 by an anti-Gal-1 antibody is a feasible therapy for vascular hyperpermeability and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dvorak HF, Nagy JA, Dvorak JT, Dvorak AM (1988) Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am J Pathol 133:95–109

    PubMed  CAS  PubMed Central  Google Scholar 

  2. Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, Jain RK, McDonald DM (2000) Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 156:1363–1380

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Dvorak HF, Nagy JA, Feng D, Brown LF, Dvorak AM (1999) Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr Top Microbiol Immunol 237:97–132

    PubMed  CAS  Google Scholar 

  4. Petreaca ML, Yao M, Liu Y, Defea K, Martins-Green M (2007) Transactivation of vascular endothelial growth factor receptor-2 by interleukin-8 (IL-8/CXCL8) is required for IL-8/CXCL8-induced endothelial permeability. Mol Biol Cell 18:5014–5023

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Nwariaku FE, Liu Z, Zhu X, Turnage RH, Sarosi GA, Terada LS (2002) Tyrosine phosphorylation of vascular endothelial cadherin and the regulation of microvascular permeability. Surgery 132:180–185

    Article  PubMed  Google Scholar 

  6. Roberts HC, Roberts TP, Brasch RC, Dillon WP (2000) Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade. Am J Neuroradiol 21:891–899

    PubMed  CAS  Google Scholar 

  7. Daldrup H, Shames DM, Wendland M, Okuhata Y, Link TM, Rosenau W, Lu Y, Brasch RC (1998) Correlation of dynamic contrast-enhanced MR imaging with histologic tumor grade: comparison of macromolecular and small-molecular contrast media. Am J Roentgenol 171:941–949

    Article  CAS  Google Scholar 

  8. Gratton JP, Lin MI, Yu J, Weiss ED, Jiang ZL, Fairchild TA, Iwakiri Y, Groszmann R, Claffey KP, Cheng YC, Sessa WC (2003) Selective inhibition of tumor microvascular permeability by cavtratin blocks tumor progression in mice. Cancer Cell 4:31–39

    Article  PubMed  CAS  Google Scholar 

  9. Satchi-Fainaro R, Mamluk R, Wang L, Short SM, Nagy JA, Feng D, Dvorak AM, Dvorak HF, Puder M, Mukhopadhyay D, Folkman J (2005) Inhibition of vessel permeability by TNP-470 and its polymer conjugate, caplostatin. Cancer Cell 7:251–261

    Article  PubMed  CAS  Google Scholar 

  10. Leffler H, Carlsson S, Hedlund M, Qian Y, Poirier F (2004) Introduction to galectins. Glycoconj J 19:433–440

    Article  PubMed  Google Scholar 

  11. Camby I, Le Mercier M, Lefranc F, Kiss R (2006) Galectin-1: a small protein with major functions. Glycobiology 16:137R–157R

    Article  PubMed  CAS  Google Scholar 

  12. Salatino M, Croci DO, Bianco GA, Ilarregui JM, Toscano MA, Rabinovich GA (2008) Galectin-1 as a potential therapeutic target in autoimmune disorders and cancer. Expert Opin Biol Ther 8:45–57

    Article  PubMed  CAS  Google Scholar 

  13. Wu MH, Hong TM, Cheng HW, Pan SH, Liang YR, Hong HC, Chiang WF, Wong TY, Shieh DB, Shiau AL, Jin YT, Chen YL (2009) Galectin-1-mediated tumor invasion and metastasis, up-regulated matrix metalloproteinase expression, and reorganized actin cytoskeletons. Mol Cancer Res 7:311–318

    Article  PubMed  CAS  Google Scholar 

  14. Clausse N, van den Brule F, Waltregny D, Garnier F, Castronovo V (1999) Galectin-1 expression in prostate tumor-associated capillary endothelial cells is increased by prostate carcinoma cells and modulates heterotypic cell–cell adhesion. Angiogenesis 3:317–325

    Article  PubMed  CAS  Google Scholar 

  15. Thijssen VL, Postel R, Brandwijk RJ, Dings RP, Nesmelova I, Satijn S, Verhofstad N, Nakabeppu Y, Baum LG, Bakkers J, Mayo KH, Poirier F, Griffioen AW (2006) Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy. Proc Natl Acad Sci USA 103:15975–15980

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Chiang WF, Liu SY, Fang LY, Lin CN, Wu MH, Chen YC, Chen YL, Jin YT (2008) Overexpression of galectin-1 at the tumor invasion front is associated with poor prognosis in early-stage oral squamous cell carcinoma. Oral Oncol 44:325–334

    Article  PubMed  CAS  Google Scholar 

  17. Hsieh SH, Ying NW, Wu MH, Chiang WF, Hsu CL, Wong TY, Jin YT, Hong TM, Chen YL (2008) Galectin-1, a novel ligand of neuropilin-1, activates VEGFR-2 signaling and modulates the migration of vascular endothelial cells. Oncogene 27:3746–3753

    Article  PubMed  CAS  Google Scholar 

  18. Bagri A, Tessier-Lavigne M, Watts RJ (2009) Neuropilins in tumor biology. Clin Cancer Res 15:1860–1864

    Article  PubMed  CAS  Google Scholar 

  19. Becker PM, Waltenberger J, Yachechko R, Mirzapoiazova T, Sham JS, Lee CG, Elias JA, Verin AD (2005) Neuropilin-1 regulates vascular endothelial growth factor-mediated endothelial permeability. Circ Res 96:1257–1265

    Article  PubMed  CAS  Google Scholar 

  20. Goshima Y, Ito T, Sasaki Y, Nakamura F (2002) Semaphorins as signals for cell repulsion and invasion. J Clin Investig 109:993–998

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Nagy JA, Benjamin L, Zeng H, Dvorak AM, Dvorak HF (2008) Vascular permeability, vascular hyperpermeability and angiogenesis. Angiogenesis 11:109–119

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Fukuhara S, Sakurai A, Sano H, Yamagishi A, Somekawa S, Takakura N, Saito Y, Kangawa K, Mochizuki N (2005) Cyclic AMP potentiates vascular endothelial cadherin-mediated cell–cell contact to enhance endothelial barrier function through an Epac-Rap1 signaling pathway. Mol Cell Biol 25:136–146

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Wu MH, Hong HC, Hong TM, Chiang WF, Jin YT, Chen YL (2011) Targeting galectin-1 in carcinoma-associated fibroblasts inhibits oral squamous cell carcinoma metastasis by downregulating MCP-1/CCL2 expression. Clin Cancer Res 17:1306–1316

    Article  PubMed  CAS  Google Scholar 

  24. Wu YY, Chen YL, Jao YC, Hsieh IS, Chang KC, Hong TM (2014) miR-320 regulates tumor angiogenesis driven by vascular endothelial cells in oral cancer by silencing neuropilin 1. Angiogenesis 17:247–260

    Article  PubMed  CAS  Google Scholar 

  25. Wu MH, Ma WL, Hsu CL, Chen YL, Ou JH, Ryan CK, Hung YC, Yeh S, Chang C (2010) Androgen receptor promotes hepatitis B virus-induced hepatocarcinogenesis through modulation of hepatitis B virus RNA transcription. Sci Transl Med 2:32ra35

    PubMed  PubMed Central  Google Scholar 

  26. Dvorak HF, Senger DR, Dvorak AM, Harvey VS, McDonagh J (1985) Regulation of extravascular coagulation by microvascular permeability. Science 227:1059–1061

    Article  PubMed  CAS  Google Scholar 

  27. Di Lorenzo A, Fernandez-Hernando C, Cirino G, Sessa WC (2009) Akt1 is critical for acute inflammation and histamine-mediated vascular leakage. Proc Natl Acad Sci USA 106:14552–14557

    Article  PubMed  PubMed Central  Google Scholar 

  28. Six I, Kureishi Y, Luo Z, Walsh K (2002) Akt signaling mediates VEGF/VPF vascular permeability in vivo. FEBS Lett 532:67–69

    Article  PubMed  CAS  Google Scholar 

  29. Kim DD, Kleinman DM, Kanetaka T, Gerritsen ME, Nivaggioli T, Weber D, Duran WN (2010) Rapamycin inhibits VEGF-induced microvascular hyperpermeability in vivo. Microcirculation 17:128–136

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Claesson-Welsh L, Welsh M (2013) VEGFA and tumour angiogenesis. J Intern Med 273:114–127

    Article  PubMed  CAS  Google Scholar 

  31. Spindler V, Schlegel N, Waschke J (2010) Role of GTPases in control of microvascular permeability. Cardiovasc Res 87:243–253

    Article  PubMed  CAS  Google Scholar 

  32. Wojciak-Stothard B, Potempa S, Eichholtz T, Ridley AJ (2001) Rho and Rac but not Cdc42 regulate endothelial cell permeability. J Cell Sci 114:1343–1355

    PubMed  CAS  Google Scholar 

  33. Thijssen VL, Barkan B, Shoji H, Aries IM, Mathieu V, Deltour L, Hackeng TM, Kiss R, Kloog Y, Poirier F, Griffioen AW (2010) Tumor cells secrete galectin-1 to enhance endothelial cell activity. Cancer Res 70:6216–6224

    Article  PubMed  CAS  Google Scholar 

  34. Adams L, Scott GK, Weinberg CS (1996) Biphasic modulation of cell growth by recombinant human galectin-1. Biochim Biophys Acta 1312:137–144

    Article  PubMed  Google Scholar 

  35. Krall JA, Beyer EM, MacBeath G (2011) High- and low-affinity epidermal growth factor receptor-ligand interactions activate distinct signaling pathways. PLoS ONE 6:e15945

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Fulcher JA, Chang MH, Wang S, Almazan T, Hashimi ST, Eriksson AU, Wen X, Pang M, Baum LG, Singh RR, Lee B (2009) Galectin-1 co-clusters CD43/CD45 on dendritic cells and induces cell activation and migration through Syk and protein kinase C signaling. J Biol Chem 284(39):26860–26870

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Camby I, Belot N, Lefranc F, Sadeghi N, de Launoit Y, Kaltner H, Musette S, Darro F, Danguy A, Salmon I, Gabius HJ, Kiss R (2002) Galectin-1 modulates human glioblastoma cell migration into the brain through modifications to the actin cytoskeleton and levels of expression of small GTPases. J Neuropathol Exp Neurol 61:585–596

    PubMed  CAS  Google Scholar 

  38. Jung TY, Jung S, Ryu HH, Jeong YI, Jin YH, Jin SG, Kim IY, Kang SS, Kim HS (2008) Role of galectin-1 in migration and invasion of human glioblastoma multiforme cell lines. J Neurosurg 109:273–284

    Article  PubMed  CAS  Google Scholar 

  39. He J, Baum LG (2006) Endothelial cell expression of galectin-1 induced by prostate cancer cells inhibits T-cell transendothelial migration. Lab Investig 86:578–590

    PubMed  CAS  Google Scholar 

  40. Croci DO, Salatino M, Rubinstein N, Cerliani JP, Cavallin LE, Leung HJ, Ouyang J, Ilarregui JM, Toscano MA, Domaica CI, Croci MC, Shipp MA, Mesri EA, Albini A, Rabinovich GA (2012) Disrupting galectin-1 interactions with N-glycans suppresses hypoxia-driven angiogenesis and tumorigenesis in Kaposi’s sarcoma. J Exp Med 209:1985–2000

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

RNAi reagents were obtained from the National RNAi Core Facility, Institute of Molecular Biology/Genomic Research Center, Academia Sinica, which was supported by a grant (NSC97-3112-B-001-016) from the National Research Program for Genomic Medicine Grants of National Science Council (Taipei, Taiwan). Thanks for the human samples from the Tissue Bank and Bioinformatics Core Lab, Research Center of Clinical Medicine, National Cheng Kung University Hospital, (Tainan, Taiwan), and Human Tumor Tissue Bank, Chi-Mei Medical Center (Liouying, Taiwan). We thank Mr. C. Changou from Image Core of Taipei Medical University providing the assistance of the confocal microscopy. This work was supported by grants NSC101-2320-B-006-026-MY3, NSC102-2325-B-006-016, and NSC102-2320-B-038-004 from the National Science Council, Taiwan; grants TMU101-AE1-B42 and TMU101-AE3-Y20 from Taipei Medical University.

Conflict of interest

No potential conflicts of interest are declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuh-Ling Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 214 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, MH., Ying, NW., Hong, TM. et al. Galectin-1 induces vascular permeability through the neuropilin-1/vascular endothelial growth factor receptor-1 complex. Angiogenesis 17, 839–849 (2014). https://doi.org/10.1007/s10456-014-9431-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-014-9431-8

Keywords

Navigation