Skip to main content

The Nexus Approach to Managing Water, Soil and Waste under Changing Climate and Growing Demands on Natural Resources

  • Chapter
  • First Online:
Governing the Nexus

Abstract

The human population has increased more than a thousand times from 2–20 million at the dawn of settled agriculture about 10–12 millennia ago to 7.2 billion in 2013. It is projected to reach 9.6 billion by 2050 and ~11 billion by 2100 (UN in World population prospects: The 2012 revision. UN Department of Economic and Projection Section, New York, 2012)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For more information, see http://www.instructables.com/id/Build-an-Aztec-Water-Garden/.

  2. 2.

    For more information, visit http://www.mnm.com/your-home/organic-farming-gardening/blogs/ ; http://www.plantchicago.com.

  3. 3.

    For more information, visit http://www.growingpower.org/verticalfarm.html.

  4. 4.

    For more information, visit http.//gizmodo.com/this-downtown-tokyo-office-tower-contained-a-vibrant-ver-1140007476.

  5. 5.

    For more information, visit http://skygreens.appsfly.com/media.

  6. 6.

    For more information, visit http://www.amusingplanet.com/2013108/singapores-vertical-farms.html.

  7. 7.

    For more information, visit http://www.greenprophet.com/2010/05areofarms_vertical-farming/.

References

  • Allan, J. A. (1994). Overall perspectives on countries and regions. In P. Rogers & P. Lydon (Eds.), Water in the Arab world: Perspectives and prognoses (pp. 65–100). Cambridge: Harvard University.

    Google Scholar 

  • Allan, J. A. (2006a). Beyond the watershed: Avoiding the dangers of hydro-centricity and informing public policy. In H. Shuval & H. Dweik (Eds.), Water resources in the middle East: Israel-Palestinian water issues—from conflict to cooperation (pp. 33–40). Berlin: Springer.

    Google Scholar 

  • Allan, J. A. (2006b). Virtual water-part of an invisible synergy that ameliorates water scarcity. In L. Martínez-Cortina, P. Rogers, & M. Llamas (Eds.), Water crisis—myth or reality? (pp. 131–150). London: Taylor and Francis.

    Google Scholar 

  • Allan, T. (1993). Fortunately there are substitutes for water—otherwise our hydropolitical futures would be impossible. In Proceedings of the conference on priorities for water resources allocation and management, pp. 13–26.

    Google Scholar 

  • Anonymous. (2012). Combating climate change: net benefits. The economist, pp. 89–90 17th March 2012.

    Google Scholar 

  • Aydogan-Cremaschi, S., Orcun, S., Blau, G., Pekny, J. F., & Reklaitis, G. V. (2009). A novel approach for life-support-system design for manned space missions. Acta Astronautica, 65, 330–346.

    Article  CAS  Google Scholar 

  • Ayers, J. M., & Huq, S. (2009). The value of linking mitigation and adaptation: A case study of Bangladesh. Environmental Management, 43(5), 753–764.

    Article  Google Scholar 

  • Babayan, M., Javaheri, M., Tavassoli, A., & Esmaeilian, Y. (2012). Effects of using wastewater in agricultural production. African Journal Pharmacy Pharmaco, 6(1), 1–6.

    Article  Google Scholar 

  • Bai, A., Stunde, L., Barsony, P., Feher, M., Jobbagy, P., Herpergel, Z., et al. (2012). Algae production on pig sludge. Agronomy Sustainable Development, 32, 611–618.

    Article  Google Scholar 

  • Bai, Z. G., Dent, D. L., Olsson, L., & Schaepman, M. E. (2008). Proxy global assessment of land degradation. Soil Use and Management, 24, 223–234.

    Article  Google Scholar 

  • Balmer, A. & Martin, P. (2008). Synthetic biology: Social and ethical challenges. University of Nottingham, Nottingham, UK Institute for Science and Society. Retrieved Oct 1, 2013, from http://www.bbsrc.ac.uk/web/files/reviews/0806_synthetic_biology.pdf

  • Baziliana, M., Rognerb, H., Mark Howellsc, M., et al. (2011). Considering the energy, water and food nexus: Towards an integrated modelling approach. Energy Policy, 39(12), 7896–7906.

    Article  Google Scholar 

  • Beal, C. D., Bertone, E., & Stewart, R. A. (2012). Evaluating the energy and carbon reductions resulting from resource-efficient household stock. Energy Buildings, 55, 422–432.

    Article  Google Scholar 

  • Beddington, J. R., Asaduzzaman, M., Clark, M. E., Fernández Bremauntz, A., Guillou, M. D., Howlett, D. J. B., et al. (2012). What next for agriculture after Durban? Science, 335, 289–290.

    Article  CAS  Google Scholar 

  • Bertol, D. (2006). Farming the land and sky: Art meets cosmology in a sustainable environment. Leonardo, 39(2), 125–130.

    Article  Google Scholar 

  • Bingham, G. E., Jones, S. B., Or, D., Podolski, I. G., Levinskikh, M. A., Dandolov, I., et al. (2000). Microgravity effects on water supply and substrate properties in porous matrix root support systems. Acta Astronautica, 47, 839–848.

    Article  CAS  Google Scholar 

  • Carter, M. S., Hauggaard-Nielsen, H., Heiske, S., Jensen, M., Thomsen, S. T., Schmidt, J. E., et al. (2012). Consequences of field N2O emissions for the environmental sustainability of plant-based biofuels produced within an organic farming system. Global Change Biology Bioenergy, 4(4), 435–452.

    Article  CAS  Google Scholar 

  • CEC (California Energy Commission). (2005). California’s water-energy relationship, final staff report (Sacramento: CEC). Retrieved Oct 1, 2013, from http://www.energy.ca.gov/2005publications/CEC-700-2005-011/CEC-700-2005-011-SF.PDF

  • Charawatchai, N., Nuengjamnog, C., Rachdawong, P., & Otterpohl, R. (2008). Potential study of using earthworms as an enhancement to treat high strength wastewater. Thai Journal Veterinary Medicine, 37, 25–32.

    Google Scholar 

  • Cheong, L. R. N., Kwong, K. F. N. K., Ah Koona, P. D., & Du Preezb, C. C. (2009). Changes in an inceptisol of mauritius after rock removal for sugar cane production. Soil and Tillage Research, 104(1), 88–96.

    Article  Google Scholar 

  • Cowie, A., Eckard, R., & Eady, S. (2012). Greenhouse gas accounting for inventory, emissions trading and life cycle assessment in the land-based sector: A review. Crop Pasture Science, 63(3), 284–296.

    Article  CAS  Google Scholar 

  • Dasgupta, S., Deichmann, U., Meisner, C., & Wheeler, D. (2001). Where is the poverty-environment nexus? Evidence from Cambodia, Lao PDR, and Vietnam. World Development, 33(4), 617–638.

    Article  Google Scholar 

  • Davidson, O., Halsnaes, K., Huq, S., Kok, M., Metz, Sokona, Y., & Verhagen, J. (2003). The development and climate nexus: the case of sub-Saharan Africa. Climate Policy, 3SI, S97–S113.

    Google Scholar 

  • Despomer, D. (2009). The rise of vertical farms. Scientific American, 301, 80–87.

    Article  Google Scholar 

  • Diamond, J. M. (2005). Collapse: How societies choose to fail or succeed?. New York: Viking Press.

    Google Scholar 

  • Dinuccio, E., Gioelli, F., Balsari, P., & Dorno, N. (2012). Ammonia losses from the storage and application of raw and chemo-mechanically separated slurry. Agro Ecosystem Environment, 153, 16–23.

    Article  Google Scholar 

  • FAO. (2012). The state of food insecurity in the World 2012. Rome, Italy: FAO. Retrieved Oct 1, 2013, from http://www.fao.org/publications/sofi/en/

  • Finstein, M. S., Hogan, J. A., Sager, J. C., Cowan, R. M., & Strom, P. F. (1999a). Composting on Mars or the moon: II. Temperature feedback control with top-wise introduction of waste material and air. Life Support & Biosphere Science, 6, 181–191.

    CAS  Google Scholar 

  • Finstein, M. S., Strom, P. F., Hogan, J. A., & Cowan, R. M. (1999b). Composting on Mars or the moon: I. comparative evaluation of process design alternatives. Life Support Biosphere Science, 6, 169–179.

    CAS  Google Scholar 

  • Fischetti, M. (2008). Cruise ships: How they sail skyscrapers around the world. Scientific American, 229(1), 94–95.

    Article  Google Scholar 

  • Foley, J. A. Foley, Ramankutty, N., Brauman, K. A., et al. (2011). Solutions for a cultivated planet. Nature, 478, 337–342. DOI: 10.1038/nature10452

  • Garcia-Ruiz, R., Ochoa, M. V., Belén Hinojosa, M., & Gómez-Muñoz, B. (2012). Improved soil quality after 16 years of olive mill pomace application in olive oil groves. Agronomy for Sustain Development, 32(3), 803–810.

    Article  CAS  Google Scholar 

  • Gentleman, D. J. (2011). Water|energy energy|water. Environment Science Technology, 45(10), 4194.

    Article  CAS  Google Scholar 

  • Gerbens-Leenes, P. W., Hoekstra, A. Y., & van der Meer, Th. (2009). The water footprint of energy from biomass: A quantitative assessment and consequences of an increasing share of bio-energy in energy supply. Ecological Economics, 684, 1052–1060.

    Article  Google Scholar 

  • Germer, J., Sauerborn, J., Folkard Asch, F., et al. (2011). Skyfarming an ecological innovation to enhance global food security. Journal für Verbraucherschutz und Lebensmittelsicherheit, 6(2), 237–251.

    Article  Google Scholar 

  • Grotzinger, J. (2009). Beyond water on Mars. Nature Geoscience, 2, 231–233.

    Article  CAS  Google Scholar 

  • Hall, M. R., West, J., Sherman, B., Lane, J., & de Haas, D. (2011). Long-term trends and opportunities for managing regional water supply and wastewater greenhouse gas emissions. Environment Science Technology, 45(12), 5434–5440.

    Article  CAS  Google Scholar 

  • Hamdy, A., Ragab, R., & Scarascia-Mugnozza, E. (2003). Coping with water scarcity: Water saving and increasing water productivity. Irrigation and Drainage: Special issue: 18th ICID international congress, Montreal, 2002 52(1), 3–20.

    Google Scholar 

  • Hand, E. (2009). Lunar impact tosses up water and stranger stuff. Nature. DOI: 10.1038/news.(2009)1087

  • Hanjra, M. A., Blackwell, J., Carr, G., Zhang, F., & Jackson, T. M. (2012). Wastewater irrigation and environmental health: Implications for water governance and public policy. International Journal of Hygiene Environment Health, 215(3), 255–269.

    Article  Google Scholar 

  • Haq, A. H. M. R., & Nawaz, K. W. (2009). Soil-less agriculture gains ground. LEISA Magazine, 25(1), 34–35.

    Google Scholar 

  • Hardy, L., Garrido, A., & Juana, L. (2012). Evaluation of Spain’s water-energy nexus. International Journal Water Resource Development, 28(1), 151–170.

    Article  Google Scholar 

  • Harmel, R. D., Smith, D. R., Haney, R. L., & Dozier, M. (2009). Nitrogen and phosphorus runoff from cropland and pasture fields fertilized with poultry litter. Journal of Soil and Water Conservation, 64(6), 400–412.

    Article  Google Scholar 

  • Helnse, R., Jones, S. B., Steinberg, S. L., Tuller, M., & Or, D. (2007). Measurements and modeling of variable gravity effects in water distribution and flow in unsaturated porous media. Soil Science Social Am, 6, 713–724.

    Google Scholar 

  • Hightower, M. (2011). Energy meets water. Mechanical Engineering., pp. 34–39 Jul 2011.

    Google Scholar 

  • Hirai, H., & Kitaya, Y. (2009). Effects of gravity on transpiration of plant leaves. Annals of the New York Academy of Science, 1161, 166–172.

    Article  Google Scholar 

  • Hoekstra, A. Y., & Chapagain, A. K. (2007). Water footprints of nations: Water use by people as a function of their consumption pattern. Water Resource Management, 21(1), 35–48.

    Article  Google Scholar 

  • Hoson, P. I., Kamisaka, C. I., Wakabayashi, K., Soga, K., Tabuchi, A., Tokumoto, H., et al. (2000). Growth regulation mechanisms in higher plants under microgravity conditions- changes in cell wall metabolism. Biology Science Space, 14, 75–96.

    Article  CAS  Google Scholar 

  • Hossner, L. R., Ming, D. W., Henninger, D. L., & Allen, E. R. (1991). Lunar outpost agriculture. Endeavour (New Series), 15, 79–85.

    Article  CAS  Google Scholar 

  • Hussey, K., & Pittock, J. (2012). The energy-water nexus: managing the links between energy and water for a sustainable future. Ecology Social, 17, 31.

    Article  Google Scholar 

  • Irfanullah, H. M., Azad, M. A. K., Wahed, M. K., & Wahed, M. A. (2011). Floating gardening in Bangladesh: A means to rebuild lives after devastating flood. Indian Journal of Traditional Knowledge, 10(1), 31–38.

    Google Scholar 

  • Ivanova, T. N., Bercovich, Y. A., Mashinskiy, A. L., & Meleshko, G. I. (1992). The first “space” vegetables have been grown in the “SVET” greenhouse by means of controlled environmental conditions. Microgravity Quartely, 2, 109–114.

    CAS  Google Scholar 

  • Jacobsen, S.E., Sorensen, M., Pedersen, S.M., & Weiner, J. (2013). Feeding the world: Genetically modified crops verses agricultural biodiversity. Agronomy Sustainable Devlopment DOI: 10.1007/s13593-013-0138-9

  • Johnson, H., Hochmuth, G.J., & Maynard, M.N. (1985). Soilless culture of greenhouse vegetables. Florida cooperative extension bulletin 218.

    Google Scholar 

  • Jones, S. B., & Or, D. (1998). A capillary-driven root module for plant growth in microgravity. Advances in Space Research, 22, 1407–1412.

    Article  CAS  Google Scholar 

  • Jones, S. B., & Or, D. (1999). Microgravity effects on water flow and distribution in unsaturated porous media: analyses of flight experiments. Water Resources Research, 35, 929–942.

    Article  CAS  Google Scholar 

  • Kanazawa, S., Ishikawa, Y., Tomita-Yokotani, K., Hashimoto, H., Kitaya, Y., Yamashita, M., et al. (2008). Space agriculture for habitation on Mars with hyper-thermophilic aerobic composting bacteria. Advances in Space Research, 41, 696–700.

    Article  Google Scholar 

  • Khan, S., Rana, T., Hanjra, M. A., & Zirilli, J. (2009). Water markets and soil salinity nexus: Can minimum irrigation intensities address the issue? Agriculture Water Management, 96(3), 493–503.

    Article  Google Scholar 

  • Kintisch, E. (2013). U.S. Carbon plan relies on uncertain capture technology. Science, 341, 1438–1439.

    Article  CAS  Google Scholar 

  • Kong, D., Shan, J., Iacoboni, M., & Maguin, S. R. (2012). Evaluating greenhouse gas impacts of organic waste management options using life cycle assessment. Waste Management Resource, 30(8), 800–812.

    Article  CAS  Google Scholar 

  • Kumar, M. D., & Singh, O. P. (2005). Virtual water in global food and water policy making: Is there a need for rethinking. Water Resource Management, 19(6), 759–789.

    Article  Google Scholar 

  • Lackner, K. S., & Brennan, S. (2009). Envisioning carbon capture and storage: Expanded possibilities due to air capture, leakage insurance, and C-14 monitoring. Climatic Change, 96(3), 357–378.

    Article  CAS  Google Scholar 

  • Lal, R. (2008). Laws of sustainable soil management. Agronomy of Sustainable Development, 29, 7–9.

    Article  Google Scholar 

  • Lal, R., & Augustine, B. (2011). Carbon sequestration in Urban ecosystems. Dordrecht, Netherlands: Springer.

    Google Scholar 

  • Lal, R. (2013). Beyond sustainable intensification. In SSSA conference, Tampa, FL 3–6 November 2013.

    Google Scholar 

  • Laurenson, S., Bolan, N. S., Smith, E., & McCarthy, M. (2012). Review: Use of recycled wastewater for irrigating grapevines. Australian Journal of Grape and Wine Research, 18(1), 1–10.

    Article  CAS  Google Scholar 

  • Li, F., Behrendt, J., Wichmann, K., & Otterpohl, R. (2008). Resources and nutrients oriented grey water treatment for non-potable reuses. Water Science and Technology, 57, 1901–1907.

    Article  CAS  Google Scholar 

  • Li, F., Wichmann, K., & Otterpohl, R. (2009a). Evaluation of appropriate technologies for grey water treatments and reuses. Water Science and Technology, 59, 249–260.

    Article  CAS  Google Scholar 

  • Li, F., Wichmann, K., & Otterpohl, R. (2009b). Review of the technological approached for grey water treatment and reuses. Science of the Total Environment, 407, 3439–3449.

    Article  CAS  Google Scholar 

  • Lin, H. (2003). Hydropedology: Bridging disciplines, scales and data. Vadose Zone Journal, 2, 1–11.

    CAS  Google Scholar 

  • Lin, H. S., Kogelmann, W., Walker, C., & Bruns, M. A. (2005). Soil moisture patterns in a forested catchment: A hydropedological perspective. Geoderma, 131(3–4), 345–368.

    Google Scholar 

  • Lin, H. S., Bouma, J., Pachepsky, Y., Western, A., Thompson, J., Van Genuchten, R., et al. (2006). Hydropedology: Synergistic integration of pedology and hydrology. Water Resources Research, 42, W05301. doi:10.1029/2005WR004085.

    Article  Google Scholar 

  • Lindstrom, A., Granit, J., & Weinberg, J. (2012). Large-scale water storage in the water, energy and food nexus: perspectives on benefits, risks, and best practices. SIWI Paper 21. Stockholm: SIWI.

    Google Scholar 

  • Loucks, D. P., & Jia, H. F. (2012). Managing water for life. Front. Environ. Sci. Engin., 6(2), 255–264.

    Article  Google Scholar 

  • Maggi, F., & Pallud, C. (2010a). Martian base agriculture: The effect of low gravity on water flow: nutrient cycles, and microbial biomass dynamics. Advances in Space Research, 46, 1257–1265.

    Article  CAS  Google Scholar 

  • Maggi, F., & Pallud, C. (2010b). Space agriculture in micro- and hypo-gravity: A comparative study of soil hydraulics and biogeochemistry in a cropping unit on Earth, Mars, the Moon and the space station. Planetary and Space Science, 58, 1996–2007.

    Article  CAS  Google Scholar 

  • McKinsey & Company. (2009). Charting our water future: economic frameworks to inform decision-making. Retrieved Oct 1, 2013, from http://www.mckinsey.com/App_Media/Reports/Water/Charting_Our_Water_Future_Exec%20Summary_001.pdf.

  • Mekonnen, M. M., & Hoekstra, A. Y. (2012). A global assessment of the water footprint of farm animal products. Ecosystems, 15, 401–415.

    Article  CAS  Google Scholar 

  • Morrow, R. C., Bula, R. J., Tibbitts, T. W., & Dinauer, W. R. (1994). The astroculture flight experiment series, validating technologies for growing plants in space. Advances in Space Research, 14, 29–37.

    Article  CAS  Google Scholar 

  • Mu, J., & Khan, S. (2009). The effect of climate change on the water and food nexus in China. Food Security, 1(4), 413–430.

    Article  Google Scholar 

  • Munnoli, P. M., & Bhosle, S. (2011). Water-holding capacity of earthworms’ vermicompost made of sugar industry waste (press mud) in mono- and polyculture vermireactors. Environmentalist, 31, 394–400.

    Article  Google Scholar 

  • Musee, N. (2011). Nanotechnology risk assessment from a waste management perspective: Are the current tools adequate? Human and Experimental Toxicology, 30(8), 820–835.

    Article  CAS  Google Scholar 

  • Nelson, M., Dempster, W. F., & Allen, J. P. (2008). Integration of lessons from recent research for “Earth to Mars” life support systems. Advances in Space Research, 41, 675–683.

    Article  Google Scholar 

  • Novotny, V. (2011). Water and energy link in the cities of the future—achieving net zero carbon and pollution emissions footprint. Water Science and Technology, 63(1), 184–190.

    Article  CAS  Google Scholar 

  • OECD. (2010). Sustainable management of water resources in agriculture. France: OECD. Retrieved Oct 1, 2013, from http://www.oecd.org/greengrowth/sustainable-agriculture/49040929.pdf

  • Palhares, J. C. P., Guidoni, A. L., Steinmetz, R. L. R., Mulinari, M. R., & Sigua, G. G. (2012). Impacts of mixed farms on water quality of Pinhal river sub-basin, Santa Catarina Brazil. Archivos de Zootecnia, 61, 493–504.

    Article  CAS  Google Scholar 

  • Podolsky, I., & Mashinsky, A. (1994). Peculiarities of moisture transfer in capillary-porous soil substitutes during space flight. Advances in Space Research, 14, 39–46.

    Article  CAS  Google Scholar 

  • Porterfield, D. M. (2002). The biophysical limitations in physiological transport and exchange in plants grown in microgravity. Journal of Plant Growth Regulation, 21, 177–190.

    Article  CAS  Google Scholar 

  • Pretty, J., Toulmin, C., & Williams, S. (2011). Sustainable intensification in African agriculture. International Journal of Agricultural Sustainability, 9(1), 5–24.

    Article  Google Scholar 

  • Puget, P., Lal, R., Izaurralde, C., et al. (2005). Stock and distribution of total and corn-derived soil organic carbon in aggregate and primary particle fractions for different land use and soil management practices. Soil Science, 170(4), 256–279.

    Article  CAS  Google Scholar 

  • Qadir, M., Sharma, B. R., Bruggeman, A., Choukr-Allah, R., & Karejeh, F. (2007). Non-conventional water resources and opportunities for water augmentation to achieve food security in water scarce countries. Agricultural Water Management, 87(1), 2–22.

    Article  Google Scholar 

  • Rahman M. Z. & Mikuni H. (1999). Agricultural development and sustainability. An Inevitable Nexus. Journal of Faculty Applied Biology Science, 38(1), 1–23. Hiroshima University.

    Google Scholar 

  • Rockström, J., Steffen, W., Noone, K., et al. (2009). Planetary boundaries: Exploring the safe operating space for humanity. Ecology Social, 14(2). Retrieved Oct 1, 2013, from http://www.ecologyandsociety.org/vol14/iss2/art32/

  • Rosegrant, M. W., & Cai, X. (2001). Water scarcity and food security: Alternative futures for the 21st century. Water Science and Technology, 43(4), 61–70.

    CAS  Google Scholar 

  • Salisbury, F. B. (1992). Some challenges in designing a lunar, Martian, or microgravity CELSS. Acta Astronautica, 27, 211–217.

    Article  CAS  Google Scholar 

  • Schnoor, J. L. (2011). Water-energy nexus. Environmental Science Technology, 45(12), 5065.

    Article  CAS  Google Scholar 

  • Schoeneberger, P. J., & Wysocki, D. A. (2005). Hydrology of soils and deep regolith: A nexus between soil geography, ecosystems and land management. Geoderma, 126(1–2), 117–128.

    Article  Google Scholar 

  • Schwalb, M., Rosevear, C., Chin, R., & Barrington, S. (2011). Food waste treatment in a community center. Waste Management, 31(7), 1570–1575.

    Article  Google Scholar 

  • Scott, C. A., Pierce, S. A., Pasqualetti, M. J., Jones, A. L., Montz, B. E., & Hoover, J. H. (2011). Policy and institutional dimensions of the water-energy nexus. Energy Policy, 39(10), 6622–6630.

    Article  Google Scholar 

  • Shi, A. Z., Koh, L. P., & Tan, H. T. W. (2009). The biofuel potential of municipal solid waste. Global Change Biology Bioenergy, 1(5), 317–320.

    Article  CAS  Google Scholar 

  • Silalertruksa, T., & Gheewala, S. H. (2011). Long-term bioethanol system and its implications on GHG emissions: A case study of Thailand. Environmental Science Technology, 45(11), 4920–4928.

    Article  CAS  Google Scholar 

  • Silverstone, S., Nelson, M., Alling, A., & Allen, J. (2003). Development and research program for a soil-based bioregenerative agriculture system to feed a four person crew at a Mars base. Advances in Space Research, 31, 69–75.

    Article  CAS  Google Scholar 

  • Small Planet Institute. (2013). Measuring hunger: A response to the FAO. Retrieved Oct 1, 2013, from http://www.ase.tufts.edu/gdae/Pubs/rp/GC60June21Wise.pdf

  • Smit, W., & Parnell, S. (2012). Urban sustainability and human health: An African perspective. Current Opinion Environment Sustainable, 4(4), 443–450.

    Article  Google Scholar 

  • Squier, A. M. (1851). Serpent symbol: Reciprocal principles of nature in America. New York: George Putnam.

    Google Scholar 

  • Sweat, M., Tyson, R., & Hochmuth, R. (2013). Building a floating hydroponic garden. IFAS Extension, University of Florida. Retrieved Oct 1, 2013, from http://edis.ifas.ufl.edu

  • Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. PNAS, 108, 20260–20264.

    Article  CAS  Google Scholar 

  • Twomlow, S., Love, D., & Walker, S. (2008). The nexus between integrated natural resources management and integrated water resources management in southern Africa. Physics and Chemistry of the Earth, 33(8–13), 889–898.

    Article  Google Scholar 

  • UN. (2012). World population prospects: The 2012 revision. New York: UN Department of Economic and Projection Section.

    Google Scholar 

  • Vaseashta, A. (2009). Nanomaterials nexus in environmental, human health, and sustainability. In Y. Magarshak, S. Kozyrev, & A. K. Vaseashta (Eds.), Silicon versus carbon (pp. 105–118). Dordrecht, Netherlands: Springer.

    Chapter  Google Scholar 

  • Velázques, E., Madrid, C., & Beltrán, M. J. (2011). Rethinking the concepts of virtual water and water footprint in relation to the production-consumption binomial and the water-energy nexus. Water Resource Management, 25(2), 743–761.

    Article  Google Scholar 

  • Venkatesh, G., & Dhakal, S. (2012). An international look at the water-energy nexus. Journal American Water Works Association, 104(5), 93–96.

    Article  CAS  Google Scholar 

  • Volk, T., & Rummel, J. D. (1987). Mass balances for a biological life support system simulation model. Advances in Space Research, 4, 141–148.

    Article  Google Scholar 

  • Wald, M.L. (2013). Carbon capture project in reverse. The New York Times Oct 13 2013.

    Google Scholar 

  • Washbourne, C. L., Renforth, P., & Manning, D. A. (2012). Investigating carbonate formation in urban soils as a method for capture and storage of atmospheric carbon. Science of the Total Environment, 431, 166–175.

    Article  CAS  Google Scholar 

  • Wendland, C., Al Baz, I., Akcim, G. A., Kanat, G., & Otterpohl, R. (2007). Waste water treatment in the mediterranean countries. In M. K. Zaidi (Ed.), Wastewater reuse: Risk assessment, decision-making and environmental security. Dordrecht, Netherlands: Springer Publishing.

    Google Scholar 

  • Wheeler, R. M. (2003). Carbon balance in bioregenerative life support systems: Some effects of system closure, waste management, and crop harvest index. Advances in Space Research, 31, 169–175.

    Article  CAS  Google Scholar 

  • WHO. (2013). Micronutrient deficiencies: program and projects. Ottawa, ON, Canada: Micronutrient Initiative.

    Google Scholar 

  • Wikipedia. (2013). Floating gardens, Dhul Lake- Srinagar, Kashmir. Retrieved Oct 1, 2013, from http://commons.wikipedia.org/wiki/File:floating_gardens

  • World Economic Forum. (2011). Global risks 2011, 6th Edn: An initiative of the risk response network. Retrieved Oct 1, 2013, from http://reports.weforum.org/global-risks-2011/

  • Yamashita, M., Ishikawa, Y., Kitaya, Y., Goto, E., Arai, M., Hashimoto, H., et al. (2006). An overview of challenges in modeling heat and mass transfer for living on Mars. Annual New York Academy Science, 1077, 232–243.

    Article  Google Scholar 

  • Zaidi, M. K. (2007). Wastewater reuse: Risk assessment, decision-making and environmental security. Dordrecht, Netherlands: Springer Publishing.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rattan Lal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lal, R. (2015). The Nexus Approach to Managing Water, Soil and Waste under Changing Climate and Growing Demands on Natural Resources. In: Kurian, M., Ardakanian, R. (eds) Governing the Nexus. Springer, Cham. https://doi.org/10.1007/978-3-319-05747-7_3

Download citation

Publish with us

Policies and ethics