Skip to main content

The Interplay Between Proteostasis Systems and Parkinson’s Disease

  • Chapter
  • First Online:
Proteostasis and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1233))

Abstract

The proteostasis network controls the balance between protein synthesis, folding, function, and degradation, and ensures proteins are recycled when they are no longer needed or become damaged, avoiding unwanted aggregation and accumulation. In various neurological disorders, such as Parkinson’s disease (PD) and other synucleinopathies, the accumulation of misfolded and aggregated alpha-synuclein (aSyn) is considered a central event in the onset and progression of disease. During aging, there is a decline in the activity of various degradation machineries, and the overall buffering capacity of the proteostasis network starts to decrease. Such decline is thought to play a pivotal role in PD, causing aSyn to build-up due to compromised clearance, which in turn contributes to further disease progression.

In this chapter, we summarize central findings related to aSyn accumulation and degradation, as well as to the consequences of the toxic effects caused by aSyn on proteostasis. We also highlight some of the factors and pathways that may be used as potential targets for therapeutic interventions in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balch WE, Morimoto RI, Dillin A, Kelly JW (2008) Adapting proteostasis for disease intervention. Science 319:916–919. https://doi.org/10.1126/science.1141448

    Article  CAS  PubMed  Google Scholar 

  2. Martinez G, Duran-Aniotz C, Cabral-Miranda F, Vivar JP, Hetz C (2017) Endoplasmic reticulum proteostasis impairment in aging. Aging Cell 16:615–623. https://doi.org/10.1111/acel.12599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Morimoto RI, Cuervo AM (2014) Proteostasis and the aging proteome in health and disease. J Gerontol A Biol Sci Med Sci 69(Suppl 1):S33–S38. https://doi.org/10.1093/gerona/glu049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. de Lau LM, Breteler MM (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5:525–535. https://doi.org/10.1016/S1474-4422(06)70471-9

    Article  PubMed  Google Scholar 

  5. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909

    Article  CAS  Google Scholar 

  6. Shults CW (2006) Lewy bodies. Proc Natl Acad Sci U S A 103:1661–1668. https://doi.org/10.1073/pnas.0509567103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840. https://doi.org/10.1038/42166

    Article  CAS  PubMed  Google Scholar 

  8. Khalaf O et al (2014) The H50Q mutation enhances alpha-synuclein aggregation, secretion, and toxicity. J Biol Chem 289:21856–21876. https://doi.org/10.1074/jbc.M114.553297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kruger R et al (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18:106–108. https://doi.org/10.1038/ng0298-106

    Article  CAS  PubMed  Google Scholar 

  10. Lesage S et al (2013) G51D alpha-synuclein mutation causes a novel parkinsonian-pyramidal syndrome. Ann Neurol 73:459–471. https://doi.org/10.1002/ana.23894

    Article  CAS  PubMed  Google Scholar 

  11. Pasanen P et al (2014) Novel alpha-synuclein mutation A53E associated with atypical multiple system atrophy and Parkinson’s disease-type pathology. Neurobiol Aging 35:2180 e2181–2180 e2185. https://doi.org/10.1016/j.neurobiolaging.2014.03.024

    Article  CAS  Google Scholar 

  12. Polymeropoulos MH et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047

    Article  CAS  Google Scholar 

  13. Zarranz JJ et al (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55:164–173. https://doi.org/10.1002/ana.10795

    Article  CAS  PubMed  Google Scholar 

  14. Holzmann C, Kruger R, Saecker AM, Schmitt I, Schols L, Berger K, Riess O (2003) Polymorphisms of the alpha-synuclein promoter: expression analyses and association studies in Parkinson’s disease. J Neural Transm 110:67–76. https://doi.org/10.1007/s00702-002-0769-5

    Article  CAS  PubMed  Google Scholar 

  15. Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–579. https://doi.org/10.1038/381571a0

    Article  CAS  PubMed  Google Scholar 

  16. Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324–332. https://doi.org/10.1038/nature10317

    Article  CAS  PubMed  Google Scholar 

  17. Klaips CL, Jayaraj GG, Hartl FU (2018) Pathways of cellular proteostasis in aging and disease. J Cell Biol 217:51–63. https://doi.org/10.1083/jcb.201709072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Outeiro TF, Tetzlaff J (2007) Mechanisms of disease II: cellular protein quality control. Semin Pediatr Neurol 14:15–25. https://doi.org/10.1016/j.spen.2006.11.005

    Article  PubMed  Google Scholar 

  19. Balchin D, Hayer-Hartl M, Hartl FU (2016) In vivo aspects of protein folding and quality control. Science 353:aac4354. https://doi.org/10.1126/science.aac4354

    Article  CAS  PubMed  Google Scholar 

  20. Diaz-Villanueva JF, Diaz-Molina R, Garcia-Gonzalez V (2015) Protein folding and mechanisms of Proteostasis. Int J Mol Sci 16:17193–17230. https://doi.org/10.3390/ijms160817193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. McLean PJ et al (2002) TorsinA and heat shock proteins act as molecular chaperones: suppression of alpha-synuclein aggregation. J Neurochem 83:846–854

    Article  CAS  Google Scholar 

  22. Outeiro TF et al (2006) Small heat shock proteins protect against alpha-synuclein-induced toxicity and aggregation. Biochem Biophys Res Commun 351:631–638. https://doi.org/10.1016/j.bbrc.2006.10.085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhou Y et al (2004) Analysis of alpha-synuclein-associated proteins by quantitative proteomics. J Biol Chem 279:39155–39164. https://doi.org/10.1074/jbc.M405456200

    Article  CAS  PubMed  Google Scholar 

  24. Gorenberg EL, Chandra SS (2017) The role of co-chaperones in synaptic proteostasis and neurodegenerative disease. Front Neurosci 11:248. https://doi.org/10.3389/fnins.2017.00248

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hasegawa T, Yoshida S, Sugeno N, Kobayashi J, Aoki M (2017) DnaJ/Hsp40 family and Parkinson’s disease. Front Neurosci 11:743. https://doi.org/10.3389/fnins.2017.00743

    Article  PubMed  Google Scholar 

  26. Zuiderweg ER, Hightower LE, Gestwicki JE (2017) The remarkable multivalency of the Hsp70 chaperones. Cell Stress Chaperones 22:173–189. https://doi.org/10.1007/s12192-017-0776-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Minami Y, Hohfeld J, Ohtsuka K, Hartl FU (1996) Regulation of the heat-shock protein 70 reaction cycle by the mammalian DnaJ homolog, Hsp40. J Biol Chem 271:19617–19624

    Article  CAS  Google Scholar 

  28. Kampinga HH, Craig EA (2010) The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 11:579–592. https://doi.org/10.1038/nrm2941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nillegoda NB et al (2017) Evolution of an intricate J-protein network driving protein disaggregation in eukaryotes. elife 6:e24560. https://doi.org/10.7554/eLife.24560

    Article  PubMed  PubMed Central  Google Scholar 

  30. Roodveldt C et al (2009) Chaperone proteostasis in Parkinson’s disease: stabilization of the Hsp70/alpha-synuclein complex by Hip. EMBO J 28:3758–3770. https://doi.org/10.1038/emboj.2009.298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Auluck PK, Chan HY, Trojanowski JQ, Lee VM, Bonini NM (2002) Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science 295:865–868. https://doi.org/10.1126/science.1067389

    Article  CAS  PubMed  Google Scholar 

  32. Klucken J, Shin Y, Masliah E, Hyman BT, McLean PJ (2004) Hsp70 reduces alpha-synuclein aggregation and toxicity. J Biol Chem 279:25497–25502. https://doi.org/10.1074/jbc.M400255200

    Article  CAS  PubMed  Google Scholar 

  33. Lindersson E, Beedholm R, Hojrup P, Moos T, Gai W, Hendil KB, Jensen PH (2004) Proteasomal inhibition by alpha-synuclein filaments and oligomers. J Biol Chem 279:12924–12934. https://doi.org/10.1074/jbc.M306390200

    Article  CAS  PubMed  Google Scholar 

  34. Hinault MP, Cuendet AF, Mattoo RU, Mensi M, Dietler G, Lashuel HA, Goloubinoff P (2010) Stable alpha-synuclein oligomers strongly inhibit chaperone activity of the Hsp70 system by weak interactions with J-domain co-chaperones. J Biol Chem 285:38173–38182. https://doi.org/10.1074/jbc.M110.127753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Weiss YG, Bromberg Z, Raj N, Raphael J, Goloubinoff P, Ben-Neriah Y, Deutschman CS (2007) Enhanced heat shock protein 70 expression alters proteasomal degradation of IkappaB kinase in experimental acute respiratory distress syndrome. Crit Care Med 35:2128–2138

    Article  CAS  Google Scholar 

  36. McClellan AJ, Xia Y, Deutschbauer AM, Davis RW, Gerstein M, Frydman J (2007) Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell 131:121–135. https://doi.org/10.1016/j.cell.2007.07.036

    Article  CAS  PubMed  Google Scholar 

  37. Taipale M, Jarosz DF, Lindquist S (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11:515–528. https://doi.org/10.1038/nrm2918

    Article  CAS  PubMed  Google Scholar 

  38. Neckers L (2002) Heat shock protein 90 inhibition by 17-allylamino-17- demethoxygeldanamycin: a novel therapeutic approach for treating hormone-refractory prostate cancer. Clin Cancer Res 8:962–966

    CAS  PubMed  Google Scholar 

  39. Uryu K et al (2006) Convergence of heat shock protein 90 with ubiquitin in filamentous alpha-synuclein inclusions of alpha-synucleinopathies. Am J Pathol 168:947–961

    Article  CAS  Google Scholar 

  40. Falsone SF, Kungl AJ, Rek A, Cappai R, Zangger K (2009) The molecular chaperone Hsp90 modulates intermediate steps of amyloid assembly of the Parkinson-related protein alpha-synuclein. J Biol Chem 284:31190–31199. https://doi.org/10.1074/jbc.M109.057240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pountney DL et al (2005) Alpha B-crystallin is a major component of glial cytoplasmic inclusions in multiple system atrophy. Neurotox Res 7:77–85

    Article  CAS  Google Scholar 

  42. Bruinsma IB et al (2011) Inhibition of alpha-synuclein aggregation by small heat shock proteins. Proteins 79:2956–2967. https://doi.org/10.1002/prot.23152

    Article  CAS  PubMed  Google Scholar 

  43. Cox D, Selig E, Griffin MD, Carver JA, Ecroyd H (2016) Small heat-shock proteins prevent alpha-synuclein aggregation via transient interactions and their efficacy is affected by the rate of aggregation. J Biol Chem 291:22618–22629. https://doi.org/10.1074/jbc.M116.739250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bhat SP, Nagineni CN (1989) Alpha B subunit of lens-specific protein alpha-crystallin is present in other ocular and non-ocular tissues. Biochem Biophys Res Commun 158:319–325

    Article  CAS  Google Scholar 

  45. Clark AR, Lubsen NH, Slingsby C (2012) sHSP in the eye lens: crystallin mutations, cataract and proteostasis. Int J Biochem Cell Biol 44:1687–1697. https://doi.org/10.1016/j.biocel.2012.02.015

    Article  CAS  PubMed  Google Scholar 

  46. Ousman SS et al (2007) Protective and therapeutic role for alphaB-crystallin in autoimmune demyelination. Nature 448:474–479. https://doi.org/10.1038/nature05935

    Article  CAS  PubMed  Google Scholar 

  47. Goldstein LE et al (2003) Cytosolic beta-amyloid deposition and supranuclear cataracts in lenses from people with Alzheimer’s disease. Lancet 361:1258–1265. https://doi.org/10.1016/S0140-6736(03)12981-9

    Article  CAS  PubMed  Google Scholar 

  48. Iwaki T, Kume-Iwaki A, Liem RK, Goldman JE (1989) Alpha B-crystallin is expressed in non-lenticular tissues and accumulates in Alexander’s disease brain. Cell 57:71–78

    Article  CAS  Google Scholar 

  49. Launay N, Tarze A, Vicart P, Lilienbaum A (2010) Serine 59 phosphorylation of {alpha}B-crystallin down-regulates its anti-apoptotic function by binding and sequestering Bcl-2 in breast cancer cells. J Biol Chem 285:37324–37332. https://doi.org/10.1074/jbc.M110.124388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. de Jong WW, Caspers GJ, Leunissen JA (1998) Genealogy of the alpha-crystallin--small heat-shock protein superfamily. Int J Biol Macromol 22:151–162

    Article  Google Scholar 

  51. Ecroyd H et al (2007) Mimicking phosphorylation of alphaB-crystallin affects its chaperone activity. Biochem J 401:129–141. https://doi.org/10.1042/BJ20060981

    Article  CAS  PubMed  Google Scholar 

  52. Peschek J et al (2013) Regulated structural transitions unleash the chaperone activity of alphaB-crystallin. Proc Natl Acad Sci U S A 110:E3780–E3789. https://doi.org/10.1073/pnas.1308898110

    Article  PubMed  PubMed Central  Google Scholar 

  53. Iwaki T, Wisniewski T, Iwaki A, Corbin E, Tomokane N, Tateishi J, Goldman JE (1992) Accumulation of alpha B-crystallin in central nervous system glia and neurons in pathologic conditions. Am J Pathol 140:345–356

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Renkawek K, Stege GJ, Bosman GJ (1999) Dementia, gliosis and expression of the small heat shock proteins hsp27 and alpha B-crystallin in Parkinson’s disease. Neuroreport 10:2273–2276

    Article  CAS  Google Scholar 

  55. Waudby CA et al (2010) The interaction of alphaB-crystallin with mature alpha-synuclein amyloid fibrils inhibits their elongation. Biophys J 98:843–851. https://doi.org/10.1016/j.bpj.2009.10.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rekas A et al (2004) Interaction of the molecular chaperone alphaB-crystallin with alpha-synuclein: effects on amyloid fibril formation and chaperone activity. J Mol Biol 340:1167–1183. https://doi.org/10.1016/j.jmb.2004.05.054

    Article  CAS  PubMed  Google Scholar 

  57. Liu Z et al (2018) Mechanistic insights into the switch of alphaB-crystallin chaperone activity and self-multimerization. J Biol Chem 293:14880–14890. https://doi.org/10.1074/jbc.RA118.004034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rekas A, Jankova L, Thorn DC, Cappai R, Carver JA (2007) Monitoring the prevention of amyloid fibril formation by alpha-crystallin. Temperature dependence and the nature of the aggregating species. FEBS J 274:6290–6304. https://doi.org/10.1111/j.1742-4658.2007.06144.x

    Article  CAS  PubMed  Google Scholar 

  59. Lu SZ et al (2019) Suppression of astrocytic autophagy by alphaB-crystallin contributes to alpha-synuclein inclusion formation. Transl Neurodegener 8:3. https://doi.org/10.1186/s40035-018-0143-7

    Article  PubMed  PubMed Central  Google Scholar 

  60. Toth ME, Gonda S, Vigh L, Santha M (2010) Neuroprotective effect of small heat shock protein, Hsp27, after acute and chronic alcohol administration. Cell Stress Chaperones 15:807–817. https://doi.org/10.1007/s12192-010-0188-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mehlen P, Schulze-Osthoff K, Arrigo AP (1996) Small stress proteins as novel regulators of apoptosis. Heat shock protein 27 blocks Fas/APO-1- and staurosporine-induced cell death. J Biol Chem 271:16510–16514

    Article  CAS  Google Scholar 

  62. Rogalla T et al (1999) Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor alpha by phosphorylation. J Biol Chem 274:18947–18956

    Article  CAS  Google Scholar 

  63. Wilhelmus MM, Otte-Holler I, Wesseling P, de Waal RM, Boelens WC, Verbeek MM (2006) Specific association of small heat shock proteins with the pathological hallmarks of Alzheimer’s disease brains. Neuropathol Appl Neurobiol 32:119–130. https://doi.org/10.1111/j.1365-2990.2006.00689.x

    Article  CAS  PubMed  Google Scholar 

  64. St Martin JL et al (2007) Dopaminergic neuron loss and up-regulation of chaperone protein mRNA induced by targeted over-expression of alpha-synuclein in mouse substantia nigra. J Neurochem 100:1449–1457. https://doi.org/10.1111/j.1471-4159.2006.04310.x

    Article  CAS  PubMed  Google Scholar 

  65. Zourlidou A, Payne Smith MD, Latchman DS (2004) HSP27 but not HSP70 has a potent protective effect against alpha-synuclein-induced cell death in mammalian neuronal cells. J Neurochem 88:1439–1448

    Article  CAS  Google Scholar 

  66. Cox D et al (2018) The small heat shock protein Hsp27 binds alpha-synuclein fibrils, preventing elongation and cytotoxicity. J Biol Chem 293:4486–4497. https://doi.org/10.1074/jbc.M117.813865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schmidt M, Finley D (2014) Regulation of proteasome activity in health and disease. Biochim Biophys Acta 1843:13–25. https://doi.org/10.1016/j.bbamcr.2013.08.012

    Article  CAS  PubMed  Google Scholar 

  68. Vilchez D, Saez I, Dillin A (2014) The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat Commun 5:5659. https://doi.org/10.1038/ncomms6659

    Article  CAS  PubMed  Google Scholar 

  69. Pickart CM, Fushman D (2004) Polyubiquitin chains: polymeric protein signals. Curr Opin Chem Biol 8:610–616. https://doi.org/10.1016/j.cbpa.2004.09.009

    Article  CAS  PubMed  Google Scholar 

  70. Tofaris GK, Kim HT, Hourez R, Jung JW, Kim KP, Goldberg AL (2011) Ubiquitin ligase Nedd4 promotes alpha-synuclein degradation by the endosomal-lysosomal pathway. Proc Natl Acad Sci U S A 108:17004–17009. https://doi.org/10.1073/pnas.1109356108

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kumar V et al (2018) Alpha-synuclein aggregation, ubiquitin proteasome system impairment, and L-Dopa response in zinc-induced parkinsonism: resemblance to sporadic Parkinson’s disease. Mol Cell Biochem 444:149–160. https://doi.org/10.1007/s11010-017-3239-y

    Article  CAS  PubMed  Google Scholar 

  72. Tofaris GK, Layfield R, Spillantini MG (2001) Alpha-synuclein metabolism and aggregation is linked to ubiquitin-independent degradation by the proteasome. FEBS Lett 509:22–26

    Article  CAS  Google Scholar 

  73. Bedford L et al (2008) Depletion of 26S proteasomes in mouse brain neurons causes neurodegeneration and Lewy-like inclusions resembling human pale bodies. J Neurosci 28:8189–8198. https://doi.org/10.1523/JNEUROSCI.2218-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wilkinson KD, Lee KM, Deshpande S, Duerksen-Hughes P, Boss JM, Pohl J (1989) The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science 246:670–673

    Article  CAS  Google Scholar 

  75. Liu Y, Fallon L, Lashuel HA, Liu Z, Lansbury PT Jr (2002) The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson’s disease susceptibility. Cell 111:209–218

    Article  CAS  Google Scholar 

  76. Leroy E et al (1998) The ubiquitin pathway in Parkinson’s disease. Nature 395:451–452. https://doi.org/10.1038/26652

    Article  CAS  PubMed  Google Scholar 

  77. Satoh J, Kuroda Y (2001) A polymorphic variation of serine to tyrosine at codon 18 in the ubiquitin C-terminal hydrolase-L1 gene is associated with a reduced risk of sporadic Parkinson’s disease in a Japanese population. J Neurol Sci 189:113–117

    Article  CAS  Google Scholar 

  78. Healy DG et al (2006) UCHL-1 is not a Parkinson’s disease susceptibility gene. Ann Neurol 59:627–633. https://doi.org/10.1002/ana.20757

    Article  CAS  PubMed  Google Scholar 

  79. Hutter CM et al (2008) Lack of evidence for an association between UCHL1 S18Y and Parkinson’s disease. Eur J Neurol 15:134–139. https://doi.org/10.1111/j.1468-1331.2007.02012.x

    Article  PubMed  Google Scholar 

  80. Rotin D, Kumar S (2009) Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol 10:398–409. https://doi.org/10.1038/nrm2690

    Article  CAS  PubMed  Google Scholar 

  81. Tardiff DF et al (2013) Yeast reveal a “druggable” Rsp5/Nedd4 network that ameliorates alpha-synuclein toxicity in neurons. Science 342:979–983. https://doi.org/10.1126/science.1245321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Davies SE et al (2014) Enhanced ubiquitin-dependent degradation by Nedd4 protects against alpha-synuclein accumulation and toxicity in animal models of Parkinson’s disease. Neurobiol Dis 64:79–87. https://doi.org/10.1016/j.nbd.2013.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mund T, Masuda-Suzukake M, Goedert M, Pelham HR (2018) Ubiquitination of alpha-synuclein filaments by Nedd4 ligases. PLoS One 13:e0200763. https://doi.org/10.1371/journal.pone.0200763

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ballinger CA, Connell P, Wu Y, Hu Z, Thompson LJ, Yin LY, Patterson C (1999) Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol Cell Biol 19:4535–4545

    Article  CAS  Google Scholar 

  85. McDonough H, Patterson C (2003) CHIP: a link between the chaperone and proteasome systems. Cell Stress Chaperones 8:303–308

    Article  CAS  Google Scholar 

  86. Edkins AL (2015) CHIP: a co-chaperone for degradation by the proteasome. Subcell Biochem 78:219–242. https://doi.org/10.1007/978-3-319-11731-7_11

    Article  CAS  PubMed  Google Scholar 

  87. Tetzlaff JE, Putcha P, Outeiro TF, Ivanov A, Berezovska O, Hyman BT, McLean PJ (2008) CHIP targets toxic alpha-Synuclein oligomers for degradation. J Biol Chem 283:17962–17968. https://doi.org/10.1074/jbc.M802283200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Shin Y, Klucken J, Patterson C, Hyman BT, McLean PJ (2005) The co-chaperone carboxyl terminus of Hsp70-interacting protein (CHIP) mediates alpha-synuclein degradation decisions between proteasomal and lysosomal pathways. J Biol Chem 280:23727–23734. https://doi.org/10.1074/jbc.M503326200

    Article  CAS  PubMed  Google Scholar 

  89. Petrucelli L et al (2004) CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Hum Mol Genet 13:703–714. https://doi.org/10.1093/hmg/ddh083

    Article  CAS  PubMed  Google Scholar 

  90. Shimura H, Schwartz D, Gygi SP, Kosik KS (2004) CHIP-Hsc70 complex ubiquitinates phosphorylated tau and enhances cell survival. J Biol Chem 279:4869–4876. https://doi.org/10.1074/jbc.M305838200

    Article  CAS  PubMed  Google Scholar 

  91. Miller VM et al (2005) CHIP suppresses polyglutamine aggregation and toxicity in vitro and in vivo. J Neurosci 25:9152–9161. https://doi.org/10.1523/JNEUROSCI.3001-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Al-Ramahi I et al (2006) CHIP protects from the neurotoxicity of expanded and wild-type ataxin-1 and promotes their ubiquitination and degradation. J Biol Chem 281:26714–26724. https://doi.org/10.1074/jbc.M601603200

    Article  CAS  PubMed  Google Scholar 

  93. Adachi H et al (2007) CHIP overexpression reduces mutant androgen receptor protein and ameliorates phenotypes of the spinal and bulbar muscular atrophy transgenic mouse model. J Neurosci 27:5115–5126. https://doi.org/10.1523/JNEUROSCI.1242-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kalia LV, Kalia SK, Chau H, Lozano AM, Hyman BT, McLean PJ (2011) Ubiquitinylation of alpha-synuclein by carboxyl terminus Hsp70-interacting protein (CHIP) is regulated by Bcl-2-associated athanogene 5 (BAG5). PLoS One 6:e14695. https://doi.org/10.1371/journal.pone.0014695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dimant H, Zhu L, Kibuuka LN, Fan Z, Hyman BT, McLean PJ (2014) Direct visualization of CHIP-mediated degradation of alpha-synuclein in vivo: implications for PD therapeutics. PLoS One 9:e92098. https://doi.org/10.1371/journal.pone.0092098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hershko A (2005) The ubiquitin system for protein degradation and some of its roles in the control of the cell division cycle. Cell Death Differ 12:1191–1197. https://doi.org/10.1038/sj.cdd.4401702

    Article  CAS  PubMed  Google Scholar 

  97. Zhu LN et al (2018) SUMOylation of alpha-synuclein influences on alpha-synuclein aggregation induced by methamphetamine. Front Cell Neurosci 12:262. https://doi.org/10.3389/fncel.2018.00262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Krumova P et al (2011) Sumoylation inhibits alpha-synuclein aggregation and toxicity. J Cell Biol 194:49–60. https://doi.org/10.1083/jcb.201010117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Vijayakumaran S, Wong MB, Antony H, Pountney DL (2015) Direct and/or indirect roles for SUMO in modulating alpha-synuclein toxicity. Biomol Ther 5:1697–1716. https://doi.org/10.3390/biom5031697

    Article  CAS  Google Scholar 

  100. Rott R et al (2017) SUMOylation and ubiquitination reciprocally regulate alpha-synuclein degradation and pathological aggregation. Proc Natl Acad Sci U S A 114:13176–13181. https://doi.org/10.1073/pnas.1704351114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Konig A, Vicente Miranda H, Outeiro TF (2018) Alpha-Synuclein Glycation and the action of anti-diabetic agents in Parkinson’s disease. J Parkinsons Dis 8:33–43. https://doi.org/10.3233/JPD-171285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Vicente Miranda H et al (2017) Glycation potentiates alpha-synuclein-associated neurodegeneration in synucleinopathies. Brain 140:1399–1419. https://doi.org/10.1093/brain/awx056

    Article  PubMed  Google Scholar 

  103. Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721

    Article  CAS  Google Scholar 

  104. Xilouri M, Brekk OR, Stefanis L (2013) Alpha-Synuclein and protein degradation systems: a reciprocal relationship. Mol Neurobiol 47:537–551. https://doi.org/10.1007/s12035-012-8341-2

    Article  CAS  PubMed  Google Scholar 

  105. Alvarez-Erviti L, Rodriguez-Oroz MC, Cooper JM, Caballero C, Ferrer I, Obeso JA, Schapira AH (2010) Chaperone-mediated autophagy markers in Parkinson disease brains. Arch Neurol 67:1464–1472. https://doi.org/10.1001/archneurol.2010.198

    Article  PubMed  Google Scholar 

  106. Crews L et al (2010) Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of alpha-synucleinopathy. PLoS One 5:e9313. https://doi.org/10.1371/journal.pone.0009313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D (2004) Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305:1292–1295. https://doi.org/10.1126/science.1101738

    Article  CAS  PubMed  Google Scholar 

  108. Xilouri M, Stefanis L (2015) Chaperone mediated autophagy to the rescue: a new-fangled target for the treatment of neurodegenerative diseases. Mol Cell Neurosci 66:29–36. https://doi.org/10.1016/j.mcn.2015.01.003

    Article  CAS  PubMed  Google Scholar 

  109. Mizushima N (2007) Autophagy: process and function. Genes Dev 21:2861–2873. https://doi.org/10.1101/gad.1599207

    Article  CAS  PubMed  Google Scholar 

  110. Cardenas ME, Cutler NS, Lorenz MC, Di Como CJ, Heitman J (1999) The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev 13:3271–3279

    Article  CAS  Google Scholar 

  111. Zeng X, Overmeyer JH, Maltese WA (2006) Functional specificity of the mammalian Beclin-Vps34 PI 3-kinase complex in macroautophagy versus endocytosis and lysosomal enzyme trafficking. J Cell Sci 119:259–270. https://doi.org/10.1242/jcs.02735

    Article  CAS  PubMed  Google Scholar 

  112. Poehler AM et al (2014) Autophagy modulates SNCA/alpha-synuclein release, thereby generating a hostile microenvironment. Autophagy 10:2171–2192. https://doi.org/10.4161/auto.36436

    Article  CAS  PubMed  Google Scholar 

  113. Minakaki G et al (2018) Autophagy inhibition promotes SNCA/alpha-synuclein release and transfer via extracellular vesicles with a hybrid autophagosome-exosome-like phenotype. Autophagy 14:98–119. https://doi.org/10.1080/15548627.2017.1395992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Martinez-Vicente M et al (2008) Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. J Clin Invest 118:777–788. https://doi.org/10.1172/JCI32806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Tenreiro S et al (2014) Phosphorylation modulates clearance of alpha-synuclein inclusions in a yeast model of Parkinson’s disease. PLoS Genet 10:e1004302. https://doi.org/10.1371/journal.pgen.1004302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hollerhage M, Fussi N, Rosler TW, Wurst W, Behrends C, Hoglinger GU (2019) Multiple molecular pathways stimulating macroautophagy protect from alpha-synuclein-induced toxicity in human neurons. Neuropharmacology 149:13–26. https://doi.org/10.1016/j.neuropharm.2019.01.023

    Article  CAS  PubMed  Google Scholar 

  117. Decressac M, Bjorklund A (2013) TFEB: pathogenic role and therapeutic target in Parkinson disease. Autophagy 9:1244–1246. https://doi.org/10.4161/auto.25044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Pena-Llopis S et al (2011) Regulation of TFEB and V-ATPases by mTORC1. EMBO J 30:3242–3258. https://doi.org/10.1038/emboj.2011.257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Settembre C et al (2011) TFEB links autophagy to lysosomal biogenesis. Science 332:1429–1433. https://doi.org/10.1126/science.1204592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Decressac M, Mattsson B, Weikop P, Lundblad M, Jakobsson J, Bjorklund A (2013) TFEB-mediated autophagy rescues midbrain dopamine neurons from alpha-synuclein toxicity. Proc Natl Acad Sci U S A 110:E1817–E1826. https://doi.org/10.1073/pnas.1305623110

    Article  PubMed  PubMed Central  Google Scholar 

  121. Pinho R et al (2019) Nuclear localization and phosphorylation modulate pathological effects of alpha-synuclein. Hum Mol Genet 28:31–50. https://doi.org/10.1093/hmg/ddy326

    Article  CAS  PubMed  Google Scholar 

  122. El-Agnaf OM et al (2003) Alpha-synuclein implicated in Parkinson’s disease is present in extracellular biological fluids, including human plasma. FASEB J 17:1945–1947. https://doi.org/10.1096/fj.03-0098fje

    Article  CAS  PubMed  Google Scholar 

  123. Emmanouilidou E et al (2010) Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J Neurosci 30:6838–6851. https://doi.org/10.1523/JNEUROSCI.5699-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Schorey JS, Bhatnagar S (2008) Exosome function: from tumor immunology to pathogen biology. Traffic 9:871–881. https://doi.org/10.1111/j.1600-0854.2008.00734.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Simpson RJ, Jensen SS, Lim JW (2008) Proteomic profiling of exosomes: current perspectives. Proteomics 8:4083–4099. https://doi.org/10.1002/pmic.200800109

    Article  CAS  PubMed  Google Scholar 

  126. Danzer KM et al (2012) Exosomal cell-to-cell transmission of alpha synuclein oligomers. Mol Neurodegener 7:42. https://doi.org/10.1186/1750-1326-7-42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Grey M, Dunning CJ, Gaspar R, Grey C, Brundin P, Sparr E, Linse S (2015) Acceleration of alpha-synuclein aggregation by exosomes. J Biol Chem 290:2969–2982. https://doi.org/10.1074/jbc.M114.585703

    Article  CAS  PubMed  Google Scholar 

  128. Lee HJ, Patel S, Lee SJ (2005) Intravesicular localization and exocytosis of alpha-synuclein and its aggregates. J Neurosci 25:6016–6024. https://doi.org/10.1523/JNEUROSCI.0692-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Alvarez-Erviti L, Seow Y, Schapira AH, Gardiner C, Sargent IL, Wood MJ, Cooper JM (2011) Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission. Neurobiol Dis 42:360–367. https://doi.org/10.1016/j.nbd.2011.01.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Dong H, Qin Y, Huang Y, Ji D, Wu F (2019) Poloxamer 188 rescues MPTP-induced lysosomal membrane integrity impairment in cellular and mouse models of Parkinson’s disease. Neurochem Int 126:178–186. https://doi.org/10.1016/j.neuint.2019.03.013

    Article  CAS  PubMed  Google Scholar 

  131. Loos B, du Toit A, Hofmeyr JH (2014) Defining and measuring autophagosome flux-concept and reality. Autophagy 10:2087–2096. https://doi.org/10.4161/15548627.2014.973338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Dehay B, Bove J, Rodriguez-Muela N, Perier C, Recasens A, Boya P, Vila M (2010) Pathogenic lysosomal depletion in Parkinson’s disease. J Neurosci 30:12535–12544. https://doi.org/10.1523/JNEUROSCI.1920-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Cadichon SB, Le Hoang M, Wright DA, Curry DJ, Kang U, Frim DM (2007) Neuroprotective effect of the surfactant poloxamer 188 in a model of intracranial hemorrhage in rats. J Neurosurg 106:36–40. https://doi.org/10.3171/ped.2007.106.1.36

    Article  PubMed  Google Scholar 

  134. Aharon-Peretz J, Rosenbaum H, Gershoni-Baruch R (2004) Mutations in the glucocerebrosidase gene and Parkinson’s disease in Ashkenazi Jews. N Engl J Med 351:1972–1977. https://doi.org/10.1056/NEJMoa033277

    Article  CAS  PubMed  Google Scholar 

  135. Gegg ME, Burke D, Heales SJ, Cooper JM, Hardy J, Wood NW, Schapira AH (2012) Glucocerebrosidase deficiency in substantia nigra of parkinson disease brains. Ann Neurol 72:455–463. https://doi.org/10.1002/ana.23614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Goker-Alpan O, Schiffmann R, LaMarca ME, Nussbaum RL, McInerney-Leo A, Sidransky E (2004) Parkinsonism among Gaucher disease carriers. J Med Genet 41:937–940. https://doi.org/10.1136/jmg.2004.024455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hertz E, Thornqvist M, Holmberg B, Machaczka M, Sidransky E, Svenningsson P (2019) First Clinicogenetic description of Parkinson’s disease related to GBA mutation S107L. Mov Disord Clin Pract 6:254–258. https://doi.org/10.1002/mdc3.12743

    Article  PubMed  PubMed Central  Google Scholar 

  138. Kumar KR et al (2013) Glucocerebrosidase mutations in a Serbian Parkinson’s disease population. Eur J Neurol 20:402–405. https://doi.org/10.1111/j.1468-1331.2012.03817.x

    Article  CAS  PubMed  Google Scholar 

  139. Sidransky E et al (2009a) Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med 361:1651–1661. https://doi.org/10.1056/NEJMoa0901281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Sidransky E, Samaddar T, Tayebi N (2009b) Mutations in GBA are associated with familial Parkinson disease susceptibility and age at onset. Neurology 73:1424–1425., author reply 1425-1426. https://doi.org/10.1212/WNL.0b013e3181b28601

    Article  PubMed  Google Scholar 

  141. Tsunemi T, Krainc D (2014) Zn(2)(+) dyshomeostasis caused by loss of ATP13A2/PARK9 leads to lysosomal dysfunction and alpha-synuclein accumulation. Hum Mol Genet 23:2791–2801. https://doi.org/10.1093/hmg/ddt572

    Article  CAS  PubMed  Google Scholar 

  142. Wang R et al (2019) ATP13A2 facilitates HDAC6 recruitment to lysosome to promote autophagosome-lysosome fusion. J Cell Biol 218:267–284. https://doi.org/10.1083/jcb.201804165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Klein AD, Mazzulli JR (2018) Is Parkinson’s disease a lysosomal disorder? Brain J Neurol 141:2255–2262. https://doi.org/10.1093/brain/awy147

    Article  Google Scholar 

  144. Lwin A, Orvisky E, Goker-Alpan O, LaMarca ME, Sidransky E (2004) Glucocerebrosidase mutations in subjects with parkinsonism. Mol Genet Metab 81:70–73

    Article  CAS  Google Scholar 

  145. Beavan MS, Schapira AH (2013) Glucocerebrosidase mutations and the pathogenesis of Parkinson disease. Ann Med 45:511–521. https://doi.org/10.3109/07853890.2013.849003

    Article  CAS  PubMed  Google Scholar 

  146. Guedes LC et al (2017) Serum lipid alterations in GBA-associated Parkinson’s disease. Parkinsonism Relat Disord 44:58–65. https://doi.org/10.1016/j.parkreldis.2017.08.026

    Article  PubMed  Google Scholar 

  147. Yap TL et al (2011) Alpha-synuclein interacts with Glucocerebrosidase providing a molecular link between Parkinson and Gaucher diseases. J Biol Chem 286:28080–28088. https://doi.org/10.1074/jbc.M111.237859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Ziegler SG et al (2007) Glucocerebrosidase mutations in Chinese subjects from Taiwan with sporadic Parkinson disease. Mol Genet Metab 91:195–200. https://doi.org/10.1016/j.ymgme.2007.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

TFO is supported by an EU Joint Programme—Neurodegenerative Disease Research (JPND) project (aSynProtec) and by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 721802. TFO and DFL are supported by a grant from ParkinsonFonds Deutschland (PD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago F. Outeiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lázaro, D.F., Outeiro, T.F. (2020). The Interplay Between Proteostasis Systems and Parkinson’s Disease. In: Barrio, R., Sutherland, J., Rodriguez, M. (eds) Proteostasis and Disease . Advances in Experimental Medicine and Biology, vol 1233. Springer, Cham. https://doi.org/10.1007/978-3-030-38266-7_9

Download citation

Publish with us

Policies and ethics