Skip to main content

CHIP: A Co-chaperone for Degradation by the Proteasome

  • Chapter
  • First Online:
The Networking of Chaperones by Co-chaperones

Part of the book series: Subcellular Biochemistry ((SCBI,volume 78))

Abstract

Protein homeostasis relies on a balance between protein folding and protein degradation. Molecular chaperones like Hsp70 and Hsp90 fulfil well-defined roles in protein folding and conformational stability via ATP dependent reaction cycles. These folding cycles are controlled by associations with a cohort of non-client protein co-chaperones, such as Hop, p23 and Aha1. Pro-folding co-chaperones facilitate the transit of the client protein through the chaperone mediated folding process. However, chaperones are also involved in ubiquitin-mediated proteasomal degradation of client proteins. Similar to folding complexes, the ability of chaperones to mediate protein degradation is regulated by co-chaperones, such as the C terminal Hsp70 binding protein (CHIP). CHIP binds to Hsp70 and Hsp90 chaperones through its tetratricopeptide repeat (TPR) domain and functions as an E3 ubiquitin ligase using a modified RING finger domain (U-box). This unique combination of domains effectively allows CHIP to network chaperone complexes to the ubiquitin-proteasome system. This chapter reviews the current understanding of CHIP as a co-chaperone that switches Hsp70/Hsp90 chaperone complexes from protein folding to protein degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi H, Waza M, Tokui K et al (2007) CHIP overexpression reduces mutant androgen receptor protein and ameliorates phenotypes of the spinal and bulbar muscular atrophy transgenic mouse model. J Neurosci 27:5115–5126

    CAS  PubMed  Google Scholar 

  • Agashe VR, Hartl FU (2000) Roles of molecular chaperones in cytoplasmic protein folding. Semin Cell Dev Biol 11:15–25

    CAS  PubMed  Google Scholar 

  • Ahmed SF, Deb S, Paul I et al (2012) The chaperone-assisted E3 ligase C terminus of Hsc70-interacting protein (CHIP) targets PTEN for proteasomal degradation. J Biol Chem 287:15996–16006

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alberti S, Demand J, Esser C et al (2002) Ubiquitylation of BAG-1 suggests a novel regulatory mechanism during the sorting of chaperone substrates to the proteasome. J Biol Chem 277:45920–45927

    CAS  PubMed  Google Scholar 

  • Alberti S, Esser C, Hohfeld J (2003) BAG-1–a nucleotide exchange factor of Hsc70 with multiple cellular functions. Cell Stress Chaperones 8:225–231

    PubMed Central  PubMed  Google Scholar 

  • Alberti S, Bohse K, Arndt V et al (2004) The cochaperone HspBP1 inhibits the CHIP ubiquitin ligase and stimulates the maturation of the cystic fibrosis transmembrane conductance regulator. Mol Biol Cell 15:4003–4010

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ali MM, Roe SM, Vaughan CK et al (2006) Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature 440:1013–1017

    CAS  PubMed  Google Scholar 

  • Allan RK, Ratajczak T (2011) Versatile TPR domains accommodate different modes of target protein recognition and function. Cell Stress Chaperones 16:353–367

    CAS  PubMed Central  PubMed  Google Scholar 

  • Amm I, Sommer T, Wolf DH (2014) Protein quality control and elimination of protein waste: the role of the ubiquitin-proteasome system. Biochim Biophys Acta 1843:182–196

    CAS  PubMed  Google Scholar 

  • Babbitt SE, Kiss A, Deffenbaugh AE et al (2005) ATP hydrolysis-dependent disassembly of the 26S proteasome is part of the catalytic cycle. Cell 121:553–565

    CAS  PubMed  Google Scholar 

  • Ballinger CA, Connell P, Wu Y et al (1999) Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol Cell Biol 19:4535–4545

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bedford L, Paine S, Sheppard PW et al (2010) Assembly, structure, and function of the 26S proteasome. Trends Cell Biol 20:391–401

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bercovich B, Stancovski I, Mayer A et al (1997) Ubiquitin-dependent degradation of certain protein substrates in vitro requires the molecular chaperone Hsc70. J Biol Chem 272:9002–9010

    CAS  PubMed  Google Scholar 

  • Blatch GL, Lassle M (1999) The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. Bioessays 21:932–939

    CAS  PubMed  Google Scholar 

  • Brinker A, Scheufler C, Von Der Mulbe F et al (2002) Ligand discrimination by TPR domains. Relevance and selectivity of EEVD-recognition in Hsp70 x Hop x Hsp90 complexes. J Biol Chem 277:19265–19275

    CAS  PubMed  Google Scholar 

  • Brychzy A, Rein T, Winklhofer KF et al (2003) Cofactor Tpr2 combines two TPR domains and a J domain to regulate the Hsp70/Hsp90 chaperone system. EMBO J 22:3613–3623

    CAS  PubMed Central  PubMed  Google Scholar 

  • Caplan AJ (2003) What is a co-chaperone? Cell Stress Chaperones 8:105–107

    PubMed Central  PubMed  Google Scholar 

  • Chang L, Thompson AD, Ung P et al (2010) Mutagenesis reveals the complex relationships between ATPase rate and the chaperone activities of Escherichia coli heat shock protein 70 (Hsp70/DnaK). J Biol Chem 285:21282–21291

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chapple JP, van der Spuy J, Poopalasundaram S et al (2004) Neuronal DnaJ proteins HSJ1a and HSJ1b: a role in linking the Hsp70 chaperone machine to the ubiquitin-proteasome system? Biochem Soc Trans 32:640–642

    CAS  PubMed  Google Scholar 

  • Cheetham ME, Jackson AP, Anderton BH (1994) Regulation of 70-kDa heat-shock-protein ATPase activity and substrate binding by human DnaJ-like proteins, HSJ1a and HSJ1b. Eur J Biochem 226:99–107

    CAS  PubMed  Google Scholar 

  • Chen ZJ, Sun LJ (2009) Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell 33:275–286

    CAS  PubMed  Google Scholar 

  • Chen L, Kong X, Fu J et al (2009) CHIP facilitates ubiquitination of inducible nitric oxide synthase and promotes its proteasomal degradation. Cell Immunol 258:38–43

    CAS  PubMed  Google Scholar 

  • Chen Z, Barbi J, Bu S et al (2013) The ubiquitin ligase Stub1 negatively modulates regulatory T cell suppressive activity by promoting degradation of the transcription factor Foxp3. Immunity 39:272–285

    CAS  PubMed  Google Scholar 

  • Choi YN, Lee SK, Seo TW et al (2014) C-terminus of Hsc70-interacting protein regulates profilin1 and breast cancer cell migration. Biochem Biophys Res Commun 446:1060–1066

    CAS  PubMed  Google Scholar 

  • Ciechanover A (1998) The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J 17:7151–7160

    CAS  PubMed Central  PubMed  Google Scholar 

  • Connell P, Ballinger CA, Jiang J et al (2001) The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat Cell Biol 3:93–96

    CAS  PubMed  Google Scholar 

  • Cook C, Gendron TF, Scheffel K et al (2012) Loss of HDAC6, a novel CHIP substrate, alleviates abnormal tau accumulation. Hum Mol Genet 21:2936–2945

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cortajarena AL, Regan L (2006) Ligand binding by TPR domains. Protein Sci 15:1193–1198

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cyr DM, Hohfeld J, Patterson C (2002) Protein quality control: U-box-containing E3 ubiquitin ligases join the fold. Trends Biochem Sci 27:368–375

    CAS  PubMed  Google Scholar 

  • da Fonseca PC, Morris EP (2008) Structure of the human 26S proteasome: subunit radial displacements open the gate into the proteolytic core. J Biol Chem 283:23305–23314

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dai Q, Zhang C, Wu Y et al (2003) CHIP activates HSF1 and confers protection against apoptosis and cellular stress. EMBO J 22:5446–5458

    CAS  PubMed Central  PubMed  Google Scholar 

  • Demand J, Alberti S, Patterson C et al (2001) Cooperation of a ubiquitin domain protein and an E3 ubiquitin ligase during chaperone/proteasome coupling. Curr Biol 11:1569–1577

    CAS  PubMed  Google Scholar 

  • Dickey CA, Kamal A, Lundgren K et al (2007) The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. J Clin Invest 117:648–658

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dickey CA, Koren J, Zhang YJ et al (2008) Akt and CHIP coregulate tau degradation through coordinated interactions. Proc Natl Acad Sci U S A 105:3622–3627

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ding X, Goldberg MS (2009) Regulation of LRRK2 stability by the E3 ubiquitin ligase CHIP. PLoS One 4:e5949

    PubMed Central  PubMed  Google Scholar 

  • Ehrlich ES, Wang T, Luo K et al (2009) Regulation of Hsp90 client proteins by a Cullin5-RING E3 ubiquitin ligase. Proc Natl Acad Sci U S A 106:20330–20335

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eisele F, Wolf DH (2008) Degradation of misfolded protein in the cytoplasm is mediated by the ubiquitin ligase Ubr1. FEBS Lett 582:4143–4146

    CAS  PubMed  Google Scholar 

  • Elliott E, Tsvetkov P, Ginzburg I (2007) BAG-1 associates with Hsc70.Tau complex and regulates the proteasomal degradation of Tau protein. J Biol Chem 282:37276–37284

    CAS  PubMed  Google Scholar 

  • Ellis RJ (1997) Molecular chaperones: avoiding the crowd. Curr Biol 7:R531–533

    CAS  PubMed  Google Scholar 

  • Esser C, Alberti S, Hohfeld J (2004) Cooperation of molecular chaperones with the ubiquitin/proteasome system. Biochim Biophys Acta 1695:171–188

    CAS  PubMed  Google Scholar 

  • Esser C, Scheffner M, Hohfeld J (2005) The chaperone-associated ubiquitin ligase CHIP is able to target p53 for proteasomal degradation. J Biol Chem 280:27443–27448

    CAS  PubMed  Google Scholar 

  • Fan M, Park A, Nephew KP (2005) CHIP (carboxyl terminus of Hsc70-interacting protein) promotes basal and geldanamycin-induced degradation of estrogen receptor-alpha. Mol Endocrinol 19:2901–2914

    CAS  PubMed  Google Scholar 

  • Fedorov AN, Baldwin TO (1997) Cotranslational protein folding. J Biol Chem 272:32715–32718

    CAS  PubMed  Google Scholar 

  • Frydman J, Hohfeld J (1997) Chaperones get in touch: the Hip-Hop connection. Trends Biochem Sci 22:87–92

    CAS  PubMed  Google Scholar 

  • Galigniana MD, Harrell JM, Housley PR et al (2004) Retrograde transport of the glucocorticoid receptor in neurites requires dynamic assembly of complexes with the protein chaperone hsp90 and is linked to the CHIP component of the machinery for proteasomal degradation. Brain Res Mol Brain Res 123:27–36

    CAS  PubMed  Google Scholar 

  • Gao Y, Han C, Huang H et al (2010) Heat shock protein 70 together with its co-chaperone CHIP inhibits TNF-alpha induced apoptosis by promoting proteasomal degradation of apoptosis signal-regulating kinase1. Apoptosis 15:822–833

    CAS  PubMed  Google Scholar 

  • Gao XC, Zhou CJ, Zhou ZR et al (2011) Co-chaperone HSJ1a dually regulates the proteasomal degradation of ataxin-3. PLoS One 6:e19763

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gao B, Wang Y, Xu W et al (2013) Inhibition of histone deacetylase activity suppresses IFN-gamma induction of tripartite motif 22 via CHIP-mediated proteasomal degradation of IRF-1. J Immunol 191:464–471

    CAS  PubMed  Google Scholar 

  • Gaude H, Aznar N, Delay A et al (2012) Molecular chaperone complexes with antagonizing activities regulate stability and activity of the tumor suppressor LKB1. Oncogene 31:1582–1591

    CAS  PubMed  Google Scholar 

  • Goldberg AL, Akopian TN, Kisselev AF et al (1997) New insights into the mechanisms and importance of the proteasome in intracellular protein degradation. Biol Chem 378:131–140

    CAS  PubMed  Google Scholar 

  • Graf C, Stankiewicz M, Nikolay R et al (2010) Insights into the conformational dynamics of the E3 ubiquitin ligase CHIP in complex with chaperones and E2 enzymes. Biochemistry 49:2121–2129

    CAS  PubMed  Google Scholar 

  • Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–579

    CAS  PubMed  Google Scholar 

  • Hatakeyama S, Yada M, Matsumoto M et al (2001) U box proteins as a new family of ubiquitin-protein ligases. J Biol Chem 276:33111–33120

    CAS  PubMed  Google Scholar 

  • Hatakeyama S, Matsumoto M, Kamura T et al (2004a) U-box protein carboxyl terminus of Hsc70-interacting protein (CHIP) mediates poly-ubiquitylation preferentially on four-repeat Tau and is involved in neurodegeneration of tauopathy. J Neurochem 91:299–307

    CAS  Google Scholar 

  • Hatakeyama S, Matsumoto M, Yada M et al (2004b) Interaction of U-box-type ubiquitin-protein ligases (E3s) with molecular chaperones. Genes Cells 9:533–548

    CAS  Google Scholar 

  • Heinemeyer W, Ramos PC, Dohmen RJ (2004) The ultimate nanoscale mincer: assembly, structure and active sites of the 20S proteasome core. Cell Mol Life Sci 61:1562–1578

    CAS  PubMed  Google Scholar 

  • Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    CAS  PubMed  Google Scholar 

  • Hiromura M, Yano M, Mori H et al (1998) Intrinsic ADP-ATP exchange activity is a novel function of the molecular chaperone, Hsp70. J Biol Chem 273:5435–5438

    CAS  PubMed  Google Scholar 

  • Hofmann RM, Pickart CM (1999) Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 96:645–653

    CAS  PubMed  Google Scholar 

  • Hohfeld J (1998) Regulation of the heat shock conjugate Hsc70 in the mammalian cell: the characterization of the anti-apoptotic protein BAG-1 provides novel insights. Biol Chem 379:269–274

    CAS  PubMed  Google Scholar 

  • Hohfeld J, Cyr DM, Patterson C (2001) From the cradle to the grave: molecular chaperones that may choose between folding and degradation. EMBO Rep 2:885–890

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hwang JR, Zhang C, Patterson C (2005) C-terminus of heat shock protein 70-interacting protein facilitates degradation of apoptosis signal-regulating kinase 1 and inhibits apoptosis signal-regulating kinase 1-dependent apoptosis. Cell Stress Chaperones 10:147–156

    CAS  PubMed Central  PubMed  Google Scholar 

  • Imai J, Yashiroda H, Maruya M et al (2003) Proteasomes and molecular chaperones: cellular machinery responsible for folding and destruction of unfolded proteins. Cell Cycle 2:585–590

    CAS  PubMed  Google Scholar 

  • Jacobson AD, Zhang NY, Xu P et al (2009) The lysine 48 and lysine 63 ubiquitin conjugates are processed differently by the 26 s proteasome. J Biol Chem 284:35485–35494

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jang KW, Lee JE, Kim SY et al (2011a) The C-terminus of Hsp70-interacting protein promotes Met receptor degradation. J Thorac Oncol 6:679–687

    Google Scholar 

  • Jang KW, Lee KH, Kim SH et al (2011b) Ubiquitin ligase CHIP induces TRAF2 proteasomal degradation and NF-kappaB inactivation to regulate breast cancer cell invasion. J Cell Biochem 112:3612–3620

    CAS  Google Scholar 

  • Jiang J, Ballinger CA, Wu Y et al (2001) CHIP is a U-box-dependent E3 ubiquitin ligase: identification of Hsc70 as a target for ubiquitylation. J Biol Chem 276:42938–42944

    CAS  PubMed  Google Scholar 

  • Johnson ES, Bartel B, Seufert W et al (1992) Ubiquitin as a degradation signal. EMBO J 11:497–505

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson ES, Ma PC, Ota IM et al (1995) A proteolytic pathway that recognizes ubiquitin as a degradation signal. J Biol Chem 270:17442–17456

    CAS  PubMed  Google Scholar 

  • Kabani M, McLellan C, Raynes DA et al (2002) HspBP1, a homologue of the yeast Fes1 and Sls1 proteins, is an Hsc70 nucleotide exchange factor. FEBS Lett 531:339–342

    CAS  PubMed  Google Scholar 

  • Kajiro M, Hirota R, Nakajima Y et al (2009) The ubiquitin ligase CHIP acts as an upstream regulator of oncogenic pathways. Nat Cell Biol 11:312–319

    CAS  PubMed  Google Scholar 

  • Kalia LV, Kalia SK, Chau H et al (2011) Ubiquitinylation of alpha-synuclein by carboxyl terminus Hsp70-interacting protein (CHIP) is regulated by Bcl-2-associated athanogene 5 (BAG5). PLoS One 6:e14695

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kastle M, Grune T (2012) Interactions of the proteasomal system with chaperones: protein triage and protein quality control. Prog Mol Biol Transl Sci 109:113–160

    PubMed  Google Scholar 

  • Kettern N, Dreiseidler M, Tawo R et al (2010) Chaperone-assisted degradation: multiple paths to destruction. Biol Chem 391:481–489

    CAS  PubMed  Google Scholar 

  • Knapp RT, Wong MJ, Kollmannsberger LK et al (2014) Hsp70 cochaperones HspBP1 and BAG-1M differentially regulate steroid hormone receptor function. PLoS One 9:e85415

    PubMed Central  PubMed  Google Scholar 

  • Ko HS, Bailey R, Smith WW et al (2009) CHIP regulates leucine-rich repeat kinase-2 ubiquitination, degradation, and toxicity. Proc Natl Acad Sci U S A 106:2897–2902

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ko HR, Kim CK, Lee SB et al (2014) P42 Ebp1 regulates the proteasomal degradation of the p85 regulatory subunit of PI3K by recruiting a chaperone-E3 ligase complex HSP70/CHIP. Cell Death Dis 5:e1131

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koegl M, Hoppe T, Schlenker S et al (1999) A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96:635–644

    CAS  PubMed  Google Scholar 

  • Kosik KS, Shimura H (2005) Phosphorylated tau and the neurodegenerative foldopathies. Biochim Biophys Acta 1739:298–310

    CAS  PubMed  Google Scholar 

  • Kriegenburg F, Ellgaard L, Hartmann-Petersen R (2012) Molecular chaperones in targeting misfolded proteins for ubiquitin-dependent degradation. FEBS J 279:532–542

    CAS  PubMed  Google Scholar 

  • Kundrat L, Regan L (2010a) Balance between folding and degradation for Hsp90-dependent client proteins: a key role for CHIP. Biochemistry 49:7428–7438

    CAS  Google Scholar 

  • Kundrat L, Regan L (2010b) Identification of residues on Hsp70 and Hsp90 ubiquitinated by the cochaperone CHIP. J Mol Biol 395:587–594

    CAS  Google Scholar 

  • Landry SJ, Gierasch LM (1994) Polypeptide interactions with molecular chaperones and their relationship to in vivo protein folding. Annu Rev Biophys Biomol Struct 23:645–669

    CAS  PubMed  Google Scholar 

  • Lecker SH, Goldberg AL, Mitch WE (2006) Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol 17:1807–1819

    CAS  PubMed  Google Scholar 

  • Lee I, Schindelin H (2008) Structural insights into E1-catalyzed ubiquitin activation and transfer to conjugating enzymes. Cell 134:268–278

    CAS  PubMed  Google Scholar 

  • Li F, Xie P, Fan Y et al (2009) C terminus of Hsc70-interacting protein promotes smooth muscle cell proliferation and survival through ubiquitin-mediated degradation of FoxO1. J Biol Chem 284:20090–20098

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li J, Soroka J, Buchner J (2012) The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones. Biochim Biophys Acta 1823:624–635

    CAS  PubMed  Google Scholar 

  • Loffek S, Woll S, Hohfeld J et al (2010) The ubiquitin ligase CHIP/STUB1 targets mutant keratins for degradation. Hum Mutat 31:466–476

    PubMed  Google Scholar 

  • Lotz GP, Lin H, Harst A et al (2003) Aha1 binds to the middle domain of Hsp90, contributes to client protein activation, and stimulates the ATPase activity of the molecular chaperone. J Biol Chem 278:17228–17235

    CAS  PubMed  Google Scholar 

  • Luders J, Demand J, Hohfeld J (2000) The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome. J Biol Chem 275:4613–4617

    CAS  PubMed  Google Scholar 

  • Luo W, Zhong J, Chang R et al (2010) Hsp70 and CHIP selectively mediate ubiquitination and degradation of hypoxia-inducible factor (HIF)-1alpha but Not HIF-2alpha. J Biol Chem 285:3651–3663

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mao Y, Deng A, Qu N et al (2006) ATPase domain of Hsp70 exhibits intrinsic ATP-ADP exchange activity. Biochemistry (Mosc) 71:1222–1229

    CAS  Google Scholar 

  • Marques C, Guo W, Pereira P et al (2006) The triage of damaged proteins: degradation by the ubiquitin-proteasome pathway or repair by molecular chaperones. FASEB J 20:741–743

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martin L, Latypova X, Terro F (2011) Post-translational modifications of tau protein: implications for Alzheimer's disease. Neurochem Int 58:458–471

    CAS  PubMed  Google Scholar 

  • Maruyama T, Kadowaki H, Okamoto N et al (2010) CHIP-dependent termination of MEKK2 regulates temporal ERK activation required for proper hyperosmotic response. EMBO J 29:2501–2514

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matsumura Y, Sakai J, Skach WR (2013) Endoplasmic reticulum protein quality control is determined by cooperative interactions between Hsp/c70 protein and the CHIP E3 ligase. J Biol Chem 288:31069–31079

    CAS  PubMed Central  PubMed  Google Scholar 

  • McDonough H, Patterson C (2003) CHIP: a link between the chaperone and proteasome systems. Cell Stress Chaperones 8:303–308

    CAS  PubMed Central  PubMed  Google Scholar 

  • McLaughlin SH, Smith HW, Jackson SE (2002) Stimulation of the weak ATPase activity of human hsp90 by a client protein. J Mol Biol 315:787–798

    CAS  PubMed  Google Scholar 

  • McLellan CA, Raynes DA, Guerriero V (2003) HspBP1, an Hsp70 cochaperone, has two structural domains and is capable of altering the conformation of the Hsp70 ATPase domain. J Biol Chem 278:19017–19022

    CAS  PubMed  Google Scholar 

  • Meacham GC, Patterson C, Zhang W et al (2001) The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat Cell Biol 3:100–105

    CAS  PubMed  Google Scholar 

  • Medeiros R, Baglietto-Vargas D, LaFerla FM (2011) The role of tau in Alzheimer’s disease and related disorders. CNS Neurosci Ther 17:514–524

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meimaridou E, Gooljar SB, Chapple JP (2009) From hatching to dispatching: the multiple cellular roles of the Hsp70 molecular chaperone machinery. J Mol Endocrinol 42:1–9

    CAS  PubMed  Google Scholar 

  • Morishima Y, Wang AM, Yu Z et al (2008) CHIP deletion reveals functional redundancy of E3 ligases in promoting degradation of both signaling proteins and expanded glutamine proteins. Hum Mol Genet 17:3942–3952

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muller P, Hrstka R, Coomber D et al (2008) Chaperone-dependent stabilization and degradation of p53 mutants. Oncogene 27:3371–3383

    CAS  PubMed  Google Scholar 

  • Muller P, Ruckova E, Halada P et al (2013) C-terminal phosphorylation of Hsp70 and Hsp90 regulates alternate binding to co-chaperones CHIP and HOP to determine cellular protein folding/degradation balances. Oncogene 32:3101–3110

    CAS  PubMed  Google Scholar 

  • Murata S, Minami Y, Minami M et al (2001) CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein. EMBO Rep 2:1133–1138

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murata S, Chiba T, Tanaka K (2003) CHIP: a quality-control E3 ligase collaborating with molecular chaperones. Int J Biochem Cell Biol 35:572–578

    CAS  PubMed  Google Scholar 

  • Murata S, Yashiroda H, Tanaka K (2009) Molecular mechanisms of proteasome assembly. Nat Rev Mol Cell Biol 10:104–115

    CAS  PubMed  Google Scholar 

  • Nillegoda NB, Theodoraki MA, Mandal AK et al (2010) Ubr1 and Ubr2 function in a quality control pathway for degradation of unfolded cytosolic proteins. Mol Biol Cell 21:2102–2116

    CAS  PubMed Central  PubMed  Google Scholar 

  • Odunuga OO, Hornby JA, Bies C et al (2003) Tetratricopeptide repeat motif-mediated Hsc70-mSTI1 interaction. Molecular characterization of the critical contacts for successful binding and specificity. J Biol Chem 278:6896–6904

    CAS  PubMed  Google Scholar 

  • Ohi MD, Vander Kooi CW, Rosenberg JA et al (2003) Structural insights into the U-box, a domain associated with multi-ubiquitination. Nat Struct Biol 10:250–255

    CAS  PubMed  Google Scholar 

  • Olsen SK, Lima CD (2013) Structure of a ubiquitin E1-E2 complex: insights to E1-E2 thioester transfer. Mol Cell 49:884–896

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ortega J, Heymann JB, Kajava AV et al (2005) The axial channel of the 20S proteasome opens upon binding of the PA200 activator. J Mol Biol 346:1221–1227

    CAS  PubMed  Google Scholar 

  • Panaretou B, Prodromou C, Roe SM et al (1998) ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. EMBO J 17:4829–4836

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paul I, Ahmed SF, Bhowmik A et al (2013) The ubiquitin ligase CHIP regulates c-Myc stability and transcriptional activity. Oncogene 32:1284–1295

    CAS  PubMed  Google Scholar 

  • Peng HM, Morishima Y, Jenkins GJ et al (2004) Ubiquitylation of neuronal Nitric-oxide synthase by CHIP, a chaperone-dependent E3 ligase. J Biol Chem 279:52970–52977

    CAS  PubMed  Google Scholar 

  • Petrucelli L, Dickson D, Kehoe K et al (2004) CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Hum Mol Genet 13:703–714

    CAS  PubMed  Google Scholar 

  • Prodromou C, Roe SM, O’Brien R et al (1997) Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90:65–75

    CAS  PubMed  Google Scholar 

  • Prodromou C, Siligardi G, O’Brien R et al (1999) Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones. EMBO J 18:754–762

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prodromou C, Panaretou B, Chohan S et al (2000) The ATPase cycle of Hsp90 drives a molecular ‘clamp’ via transient dimerization of the N-terminal domains. EMBO J 19:4383–4392

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qian SB, McDonough H, Boellmann F et al (2006) CHIP-mediated stress recovery by sequential ubiquitination of substrates and Hsp70. Nature 440:551–555

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raynes DA, Guerriero V Jr (1998) Inhibition of Hsp70 ATPase activity and protein renaturation by a novel Hsp70-binding protein. J Biol Chem 273:32883–32888

    CAS  PubMed  Google Scholar 

  • Ronnebaum SM, Wu Y, McDonough H et al (2013) The ubiquitin ligase CHIP prevents SirT6 degradation through noncanonical ubiquitination. Mol Cell Biol 33:4461–4472

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roos-Mattjus P, Sistonen L (2004) The ubiquitin-proteasome pathway. Ann Med 36:285–295

    CAS  PubMed  Google Scholar 

  • Ruckova E, Muller P, Nenutil R et al (2012) Alterations of the Hsp70/Hsp90 chaperone and the HOP/CHIP co-chaperone system in cancer. Cell Mol Biol Lett 17:446–458

    CAS  PubMed  Google Scholar 

  • Saeki Y, Kudo T, Sone T et al (2009) Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome. EMBO J 28:359–371

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sahara N, Murayama M, Mizoroki T et al (2005) In vivo evidence of CHIP up-regulation attenuating tau aggregation. J Neurochem 94:1254–1263

    CAS  PubMed  Google Scholar 

  • Salminen A, Ojala J, Kaarniranta K et al (2011) Hsp90 regulates tau pathology through co-chaperone complexes in Alzheimer’s disease. Prog Neurobiol 93:99–110

    CAS  PubMed  Google Scholar 

  • Sarkar S, Brautigan DL, Parsons SJ et al (2014) Androgen receptor degradation by the E3 ligase CHIP modulates mitotic arrest in prostate cancer cells. Oncogene 33:26–33

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scheffner M, Nuber U, Huibregtse JM (1995) Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature 373:81–83

    CAS  PubMed  Google Scholar 

  • Shang Y, Zhao X, Tian B et al (2014) CHIP/Stub1 interacts with eIF5A and mediates its degradation. Cell Signal 26:1098–1104

    CAS  PubMed  Google Scholar 

  • Shimura H, Schwartz D, Gygi SP et al (2004) CHIP-Hsc70 complex ubiquitinates phosphorylated tau and enhances cell survival. J Biol Chem 279:4869–4876

    CAS  PubMed  Google Scholar 

  • Shin Y, Klucken J, Patterson C et al (2005) The co-chaperone carboxyl terminus of Hsp70-interacting protein (CHIP) mediates alpha-synuclein degradation decisions between proteasomal and lysosomal pathways. J Biol Chem 280:23727–23734

    CAS  PubMed  Google Scholar 

  • Siligardi G, Hu B, Panaretou B et al (2004) Co-chaperone regulation of conformational switching in the Hsp90 ATPase cycle. J Biol Chem 279:51989–51998

    CAS  PubMed  Google Scholar 

  • Sisoula C, Trachana V, Patterson C et al (2011) CHIP-dependent p53 regulation occurs specifically during cellular senescence. Free Radic Biol Med 50:157–165

    CAS  PubMed  Google Scholar 

  • Sledz P, Unverdorben P, Beck F et al (2013) Structure of the 26S proteasome with ATP-gammaS bound provides insights into the mechanism of nucleotide-dependent substrate translocation. Proc Natl Acad Sci U S A 110:7264–7269

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith HT (1988) A “new” protein: ubiquitin. Science 242:787–788

    CAS  PubMed  Google Scholar 

  • Smith MC, Scaglione KM, Assimon VA et al (2013) The E3 ubiquitin ligase CHIP and the molecular chaperone Hsc70 form a dynamic, tethered complex. Biochemistry 52:5354–5364

    CAS  PubMed  Google Scholar 

  • Spratt DE, Wu K, Kovacev J et al (2012) Selective recruitment of an E2~ubiquitin complex by an E3 ubiquitin ligase. J Biol Chem 287:17374–17385

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stankiewicz M, Nikolay R, Rybin V et al (2010) CHIP participates in protein triage decisions by preferentially ubiquitinating Hsp70-bound subtrates. FEBS J 277:3353–3367

    CAS  PubMed  Google Scholar 

  • Strickland E, Qu BH, Millen L et al (1997) The molecular chaperone Hsc70 assists the in vitro folding of the N-terminal nucleotide-binding domain of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 272:25421–25424

    CAS  PubMed  Google Scholar 

  • Su CH, Wang CY, Lan KH et al (2011) Akt phosphorylation at Thr308 and Ser473 is required for CHIP-mediated ubiquitination of the kinase. Cell Signal 23:1824–1830

    CAS  PubMed  Google Scholar 

  • Sun L, Chen ZJ (2004) The novel functions of ubiquitination in signaling. Curr Opin Cell Biol 16:119–126

    CAS  PubMed  Google Scholar 

  • Tanaka K (2009) The proteasome: overview of structure and functions. Proc Jpn Acad Ser B Phys Biol Sci 85:12–36

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tastan Bishop O, Edkins AL, Blatch GL (2014) Sequence and domain conservation of the coelacanth Hsp40 and Hsp90 chaperones suggests conservation of function. J Exp Zool B Mol Dev Evol 322(6):359–378 doi:10.1002/jez.b.22541

    Google Scholar 

  • Tsukahara F, Maru Y (2010) Bag1 directly routes immature BCR-ABL for proteasomal degradation. Blood 116:3582–3592

    CAS  PubMed  Google Scholar 

  • Tsvetkov P, Adamovich Y, Elliott E et al (2011) E3 ligase STUB1/CHIP regulates NAD(P)H:quinone oxidoreductase 1 (NQO1) accumulation in aged brain, a process impaired in certain Alzheimer disease patients. J Biol Chem 286:8839–8845

    CAS  PubMed Central  PubMed  Google Scholar 

  • Unverdorben P, Beck F, Sledz P et al (2014) Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome. Proc Natl Acad Sci U S A 111:5544–5549

    CAS  PubMed Central  PubMed  Google Scholar 

  • Van Der Spuy J, Kana BD, Dirr HW et al (2000) Heat shock cognate protein 70 chaperone-binding site in the co-chaperone murine stress-inducible protein 1 maps to within three consecutive tetratricopeptide repeat motifs. Biochem J 345(Pt 3):645–651

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wagner SA, Beli P, Weinert BT et al (2011) A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol Cell Proteomics 10:M 111 013284

    Google Scholar 

  • Walz J, Erdmann A, Kania M et al (1998) 26S proteasome structure revealed by three-dimensional electron microscopy. J Struct Biol 121:19–29

    CAS  PubMed  Google Scholar 

  • Wang X, DeFranco DB (2005) Alternative effects of the ubiquitin-proteasome pathway on glucocorticoid receptor down-regulation and transactivation are mediated by CHIP, an E3 ligase. Mol Endocrinol 19:1474–1482

    CAS  PubMed  Google Scholar 

  • Wang J, Zhao Q, Qi Q et al (2011) Gambogic acid-induced degradation of mutant p53 is mediated by proteasome and related to CHIP. J Cell Biochem 112:509–519

    CAS  PubMed  Google Scholar 

  • Wang Y, Guan S, Acharya P et al (2012) Multisite phosphorylation of human liver cytochrome P450 3A4 enhances its gp78- and CHIP-mediated ubiquitination: a pivotal role of its Ser-478 residue in the gp78-catalyzed reaction. Mol Cell Proteomics 11:M 111 010132

    Google Scholar 

  • Wang S, Li Y, Hu YH et al (2013) STUB1 is essential for T-cell activation by ubiquitinating CARMA1. Eur J Immunol 43:1034–1041

    CAS  PubMed  Google Scholar 

  • Wegele H, Muller L, Buchner J (2004) Hsp70 and Hsp90–a relay team for protein folding. Rev Physiol Biochem Pharmacol 151:1–44

    CAS  PubMed  Google Scholar 

  • Welch WJ, Brown CR (1996) Influence of molecular and chemical chaperones on protein folding. Cell Stress Chaperones 1:109–115

    CAS  PubMed Central  PubMed  Google Scholar 

  • Westhoff B, Chapple JP, van der Spuy J et al (2005) HSJ1 is a neuronal shuttling factor for the sorting of chaperone clients to the proteasome. Curr Biol 15:1058–1064

    CAS  PubMed  Google Scholar 

  • Whitesell L, Cook P (1996) Stable and specific binding of heat shock protein 90 by geldanamycin disrupts glucocorticoid receptor function in intact cells. Mol Endocrinol 10:705–712

    CAS  PubMed  Google Scholar 

  • Whitesell L, Sutphin PD, Pulcini EJ et al (1998) The physical association of multiple molecular chaperone proteins with mutant p53 is altered by geldanamycin, an hsp90-binding agent. Mol Cell Biol 18:1517–1524

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wiederkehr T, Bukau B, Buchberger A (2002) Protein turnover: a CHIP programmed for proteolysis. Curr Biol 12:R26–28

    CAS  PubMed  Google Scholar 

  • Wilkinson KD (2000) Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. Semin Cell Dev Biol 11:141–148

    CAS  PubMed  Google Scholar 

  • Willmer T, Contu L, Blatch GL et al (2013) Knockdown of Hop downregulates RhoC expression, and decreases pseudopodia formation and migration in cancer cell lines. Cancer Lett 328:252–260

    CAS  PubMed  Google Scholar 

  • Wolf DH, Sommer T, Hilt W (2004) Death gives birth to life: the essential role of the ubiquitin-proteasome system in biology. Biochim Biophys Acta 1695:1–2

    CAS  PubMed  Google Scholar 

  • Xu W, Marcu M, Yuan X et al (2002) Chaperone-dependent E3 ubiquitin ligase CHIP mediates a degradative pathway for c-ErbB2/Neu. Proc Natl Acad Sci U S A 99:12847–12852

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu Z, Devlin KI, Ford MG et al (2006) Structure and interactions of the helical and U-box domains of CHIP, the C terminus of HSP70 interacting protein. Biochemistry 45:4749–4759

    CAS  PubMed  Google Scholar 

  • Xu Z, Kohli E, Devlin KI et al (2008) Interactions between the quality control ubiquitin ligase CHIP and ubiquitin conjugating enzymes. BMC Struct Biol 8:26

    PubMed Central  PubMed  Google Scholar 

  • Yang SW, Oh KH, Park E et al (2013) USP47 and C terminus of Hsp70-interacting protein (CHIP) antagonistically regulate katanin-p60-mediated axonal growth. J Neurosci 33:12728–12738

    CAS  PubMed  Google Scholar 

  • Younger JM, Ren HY, Chen L et al (2004) A foldable CFTRΔF508 biogenic intermediate accumulates upon inhibition of the Hsc70-CHIP E3 ubiquitin ligase. J Cell Biol 167:1075–1085

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang C, Xu Z, He XR et al (2005a) CHIP, a cochaperone/ubiquitin ligase that regulates protein quality control, is required for maximal cardioprotection after myocardial infarction in mice. Am J Physiol Heart Circ Physiol 288:H2836–2842

    CAS  Google Scholar 

  • Zhang M, Windheim M, Roe SM et al (2005b) Chaperoned ubiquitylation–crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex. Mol Cell 20:525–538

    CAS  Google Scholar 

  • Zhou P, Fernandes N, Dodge IL et al (2003) ErbB2 degradation mediated by the co-chaperone protein CHIP. J Biol Chem 278:13829–13837

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support for research activities in the laboratory of the author from the South African National Research Foundation (NRF), Medical Research Council (MRC) South Africa, Rhodes University and Cancer Association of South Africa (CANSA) is gratefully acknowledged. The views reflected in this document are those of the author and should in no way be attributed to the NRF, MRC, Rhodes University or CANSA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrienne L. Edkins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Edkins, A. (2015). CHIP: A Co-chaperone for Degradation by the Proteasome. In: Blatch, G., Edkins, A. (eds) The Networking of Chaperones by Co-chaperones. Subcellular Biochemistry, vol 78. Springer, Cham. https://doi.org/10.1007/978-3-319-11731-7_11

Download citation

Publish with us

Policies and ethics