Skip to main content
Log in

Neuroprotective effect of small heat shock protein, Hsp27, after acute and chronic alcohol administration

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Alcohol induces degeneration of neurons and inhibits neurogenesis in the brain. Small heat shock proteins are able to protect neurons in cerebral ischemia and oxidative stress. In this study, we investigated the neuroprotective effect of small heat shock protein, Hsp27, after acute and chronic ethanol administrations using transgenic mice overexpressing the human Hsp27 protein. Transgenic mice and wild-type littermates were injected with 2 g/kg ethanol intraperitoneally, and then motor coordination and muscle strength were analyzed using different behavioral tests, such as footprint analysis, balance beam, and inverted screen tests. Ethanol-injected transgenic mice showed similar footprints to control saline-injected mice, did not fall of the beam, and were able to climb to the top of the inverted screen, while wild-type mice showed ataxia and incoordination after ethanol injection. The effect of Hsp27 on chronic ethanol consumption was also investigated. Drinking water of mice was replaced by a 20% ethanol solution for 5 weeks, and then brain sections were stained with Fluoro Jade C staining. We found significantly lesser amount of degenerating neurons in the brain of ethanol-drinking transgenic mice compared to wild-type mice. We conclude that Hsp27 can protect neurons against the acute and chronic toxic effects of ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akbar MT, Lundberg AM, Liu K, Vidyadaran S, Wells KE, Dolatshad H, Wynn S, Wells DJ, Latchman DS, de Belleroche J (2003) The neuroprotective effects of heat shock protein 27 overexpression in transgenic animals against kainate-induced seizures and hippocampal cell death. J Biol Chem 278:19956–19965

    Article  CAS  PubMed  Google Scholar 

  • An JJ, Lee YP, Kim SY, Lee SH, Lee MJ, Jeong MS, Kim DW, Jang SH, Yoo KY, Won MH, Kang TC, Kwon OS, Cho SW, Lee KS, Park J, Eum WS, Choi SY (2008) Transduced human PEP-1-heat shock protein 27 efficiently protects against brain ischemic insult. FEBS J 275:1296–1308

    Article  CAS  PubMed  Google Scholar 

  • Arrigo AP, Suhan JP, Welch WJ (1988) Dynamic changes in the structure and intracellular locale of the mammalian low-molecular-weight heat shock protein. Mol Cell Biol 8:5059–5071

    CAS  PubMed  Google Scholar 

  • Balogh G, Horváth I, Nagy E, Hoyk Z, Benkõ S, Bensaude O, Vígh L (2005) The hyperfluidization of mammalian cell membranes acts as a signal to initiate the heat shock protein response. FEBS J 272:6077–6086

    Article  CAS  PubMed  Google Scholar 

  • Balogi Z, Török Z, Balogh G, Jósvay K, Shigapova N, Vierling E, Vígh L, Horváth (2005) "Heat shock lipid" in cyanobacteria during heat/light-acclimation. Arch Biochem Biophys 436:346–354

    Article  CAS  PubMed  Google Scholar 

  • Cobb BA, Petrash JM (2000) Characterization of alpha-crystallin-plasma membrane binding. J Biol Chem 275:6664–6672

    Article  CAS  PubMed  Google Scholar 

  • Coucheney F, Gal L, Beney L, Lherminier J, Gervais P, Guzzo J (2005) A small HSP, Lo18, interacts with the cell membrane and modulates lipid physical state under heat shock conditions in a lactic acid bacterium. Biochim Biophys Acta 1720:92–98

    Article  CAS  PubMed  Google Scholar 

  • Crabbe JC, Metten P, Yu CH, Schlumbohm JP, Cameron AP, Wahlsten D (2003) Genotypic differences in ethanol sensitivity in two tests of motor incoordination. J Appl Physiol 95:1338–1351

    CAS  PubMed  Google Scholar 

  • Fadda F, Rossetti ZL (1998) Chronic ethanol consumption: from neuroadaptation to neurodegeneration. Prog Neurobiol 56:385–431

    Article  CAS  PubMed  Google Scholar 

  • Ficker E, Dennis AT, Wang L, Brown AM (2003) Role of the cytosolic chaperones Hsp70 and Hsp90 in maturation of the cardiac potassium channel HERG. Circ Res 92:e87–e100

    Article  PubMed  Google Scholar 

  • Horváth I, Multhoff G, Sonnleitner A, Vígh L (2008) Membrane-associated stress proteins: more than simply chaperones. Biochim Biophys Acta 1778:1653–1564

    Article  PubMed  Google Scholar 

  • Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, Cheetham ME, Chen B, Hightower LE (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14:105–111

    Article  CAS  PubMed  Google Scholar 

  • Kashlan OB, Mueller GM, Qamar MZ, Poland PA, Ahner A, Rubenstein RC, Hughey RP, Brodsky JL, Kleyman TR (2007) Small heat shock protein alphaA-crystallin regulates epithelial sodium channel expression. J Biol Chem 282:28149–28156

    Article  CAS  PubMed  Google Scholar 

  • Krieger A, Radhakrishnan K, Pereverzev A, Siapich SA, Banat M, Kamp MA, Leroy J, Klöckner U, Hescheler J, Weiergräber M, Schneider T (2006) The molecular chaperone hsp70 interacts with the cytosolic II–III loop of the Cav2.3 E-type voltage-gated Ca2+ channel. Cell Physiol Biochem 17:97–110

    Article  CAS  PubMed  Google Scholar 

  • Lu A, Ran R, Parmentier-Batteur S, Nee A, Sharp FR (2002) Geldanamycin induces heat shock proteins in brain and protects against focal cerebral ischemia. J Neurochem 81:355–364

    Article  CAS  PubMed  Google Scholar 

  • Matchett JA, Erickson CK (1977) Alteration of ethanol-induced changes in locomotor activity by adrenergic blockers in mice. Psychopharmacology 52:201–206

    Article  CAS  PubMed  Google Scholar 

  • Mehlen P, Schulze-Osthoff K, Arrigo AP (1996) Small stress proteins as novel regulators of apoptosis. Heat shock protein 27 blocks Fas/APO-1- and staurosporine-induced cell death. J Biol Chem 271:16510–16514

    Article  CAS  PubMed  Google Scholar 

  • Muchowski PJ, Wacker JL (2005) Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 6:11–22

    Article  CAS  PubMed  Google Scholar 

  • Nagy E, Balogi Z, Gombos I, Akerfelt M, Björkbom A, Balogh G, Török Z, Maslyanko A, Fiszer-Kierzkowska A, Lisowska K, Slotte PJ, Sistonen L, Horváth I, Vígh L (2007) Hyperfluidization-coupled membrane microdomain reorganization is linked to activation of the heat shock response in a murine melanoma cell line. Proc Natl Acad Sci U S A 104:7945–7950

    Article  CAS  PubMed  Google Scholar 

  • Nakamoto H, Vígh L (2007) The small heat shock proteins and their clients. Cell Mol Life Sci 64:294–306

    Article  CAS  PubMed  Google Scholar 

  • Schmued LC, Stowers CC, Scallet AC, Xu L (2005) Fluoro-Jade C results in ultra high resolution and contrast labeling of degenerating neurons. Brain Res 1035:24–31

    Article  CAS  PubMed  Google Scholar 

  • Smoothy R, Berry MS (1984) Alcohol increases both locomotion and immobility in mice: an ethological analysis of spontaneous motor activity. Psychopharmacology 83:272–276

    Article  CAS  PubMed  Google Scholar 

  • Stokoe D, Engel K, Campbell DG, Cohen P, Gaestel M (1992) Identification of MAPKAP kinase 2 as a major enzyme responsible for the phosphorylation of the small mammalian heat shock proteins. FEBS Lett 313:307–313

    Article  CAS  PubMed  Google Scholar 

  • Sun GY, Xia J, Draczynska-Lusiak B, Simonyi A, Sun AY (1999) Grape polyphenols protect neurodegenerative changes induced by chronic ethanol administration. Neuroreport 10:93–96

    Article  CAS  PubMed  Google Scholar 

  • Török Z, Horváth I, Goloubinoff P, Kovács E, Glatz A, Balogh G, Vígh L (1997) Evidence for a lipochaperonin: association of active protein-folding GroESL oligomers with lipids can stabilize membranes under heat shock conditions. Proc Natl Acad Sci U S A 94:2192–2197

    Article  PubMed  Google Scholar 

  • Török Z, Goloubinoff P, Horváth I, Tsvetkova NM, Glatz A, Balogh G, Varvasovszki V, Los DA, Vierling E, Crowe JH, Vigh L (2001) Synechocystis HSP17 is an amphitropic protein that stabilizes heat-stressed membranes and binds denatured proteins for subsequent chaperone-mediated refolding. Proc Natl Acad Sci U S A 98:3098–3103

    Article  PubMed  Google Scholar 

  • Tsvetkova NM, Horváth I, Török Z, Wolkers WF, Balogi Z, Shigapova N, Crowe LM, Tablin F, Vierling E, Crowe JH, Vigh L (2002) Small heat-shock proteins regulate membrane lipid polymorphism. Proc Natl Acad Sci U S A 99:13504–13509

    Article  CAS  PubMed  Google Scholar 

  • Wagstaff MJ, Collaço-Moraes Y, Smith J, de Belleroche JS, Coffin RS, Latchman DS (1999) Protection of neuronal cells from apoptosis by Hsp27 delivered with a herpes simplex virus-based vector. J Biol Chem 274:5061–5069

    Article  CAS  PubMed  Google Scholar 

  • Yeo M, Kim DK, Cho SW, Hong HD (2008) Ginseng, the root of Panax ginseng C.A. Meyer, protects ethanol-induced gastric damages in rat through the induction of cytoprotective heat-shock protein 27. Dig Dis Sci 53:606–613

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Hungarian Scientific Research Fund grant (OTKA NN -76716).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miklos Santha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toth, M.E., Gonda, S., Vigh, L. et al. Neuroprotective effect of small heat shock protein, Hsp27, after acute and chronic alcohol administration. Cell Stress and Chaperones 15, 807–817 (2010). https://doi.org/10.1007/s12192-010-0188-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-010-0188-8

Keywords

Navigation