Skip to main content

Metal-Based Nanoparticles’ Interactions with Plants

  • Chapter
  • First Online:
Plant Responses to Nanomaterials

Abstract

Continuously growing stream of nanoparticles being released to environment rises a fundamental question concerning interactions with living organisms and fate. They are being discharged in variety of forms, starting from simple isolated nanostructures and ending up with very complex species often embedded into diverse matrix components. Metal based nanoparticles (MNPs) are a major group of nanospecies with production approaching one third of the global nano-market. They exhibit plethora of shapes and chemical compositions and tend to induce remarkable divergent effects on plants. Any reliable examination of the latter should take into consideration major environmental factors like, soil texture, temperature, pH, osmotic pressure, content and composition of organic matter, redox status of the soil environment, ionic strength, cation exchange capacity, mineral composition, interaction with others elements as present in the soil matrix and in root exudates. The uptake of MNPs by roots occurs simultaneously with the physical and chemical reactions ongoing in rhizosphere and can influenced the nutrient absorption processes. The latter should be of a special importance when nanosized materials are being introduced to environment with either agrochemicals or substances used in soil or water remediation technologies. Despite numerous studies, the impact of nanoparticles on plants is not entirely recognized as yet. In particular, the problem of full comparability and transferability of experimental results is not to be neglected. Therefore, the proper implementation of methodologies standardization and cultivation conditions are issues which cannot be dismissed. The future rise of production and usage of nanoparticles in agriculture and protection of environment should be obviously preceded by the development of trustful safety rules and protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    According to Lindow and Brandl (2003) phyllosphere is defined as the system containing the shoots, leaves and other above-grounds organs of plants together with coexisting bacteria, yeasts and fungi colonies.

References

  • Achari GA, Kowshik M (2018) Recent developments on nanotechnology in agriculture: plant mineral nutrition, health and interactions with soil microflora. J Agr Food Chem 66:8647–8661

    Article  CAS  Google Scholar 

  • Adamczyk-Szabela D, Markiewicz J, Wolf WM (2015) Heavy metal uptake by herbs. IV. Influence of soil pH on the content of heavy metals in Valeriana officinalis L. Water Air Soil Pollut 226:106–114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aitken RJ, Chaudhry MQ, Boxall ABA, Hull M (2006) Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med 56:300–306

    Article  CAS  Google Scholar 

  • Ali A, Zafar H, Zia M, ul Haq I, Phull AR, Ali JS, Hussain A (2016) Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotech Sci Appl 9:49–67

    Article  CAS  Google Scholar 

  • Almeida MP, Pereira E, Baptista P, Gomes I, Figueiredo S, Soares L, Franco R (2014) Gold nanoparticles as (bio)chemical sensors. In: Valcárcel M, López-Lorente AI (eds) Comprehensive analytical chemistry. Elsevier, Amsterdam

    Google Scholar 

  • Amde M, Liu J-F, Tana Z-Q, Bekana D (2017) Transformation and bioavailability of metal oxide nanoparticles in aquatic and terrestrial environments. A review. Environ Pollut 230:250–267

    Article  CAS  PubMed  Google Scholar 

  • Arif N, Yadav V, Singh S, Tripathi DK, Dubey NK, Chauhan DK, Giorgetti L (2018) Interaction of copper oxide nanoparticles with plants: uptake, accumulation, and toxicity. In: Nanomaterials in plants, algae, and microorganisms. Academic Press, London, pp 297–310

    Google Scholar 

  • Baker S, Volova T, Prudnikova SV, Satish S, Prasad NMN (2017) Nanoagroparticles emerging trends and future prospect in modern agriculture system. Environ Toxic Phar 53:10–17

    Article  CAS  Google Scholar 

  • Briat J-F, Lebrun M (1999) Plant responses to metal toxicity. Plant Biol Pathol 322:43–54

    CAS  Google Scholar 

  • Buesser B, Pratsinis SE (2012) Design of nanomaterial synthesis by aerosol processes. Annu Rev Chem Biomol Eng 3:103–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bundschuh M, Filser J, Lüderwald S, McKee MS, Metreveli G, Schaumann GE, Schulz R, Wagner S (2018) Nanoparticles in the environment: where do we come from, where do we go to? Environ Sci Eur 30:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Byrappa K, Ohara S, Adschiria T (2008) Nanoparticles synthesis using supercritical fluid technology – towards biomedical applications. Adv Drug Deliver Rev 60(3):299–327

    Article  CAS  Google Scholar 

  • Cao Z, Rossi L, Stowers C, Zhang W, Lombardidni L, Ma X (2018) The impact of cerium oxide nanoparticles on the physiology of soybean (Glycine max (L.) Merr.) under different soil moisture conditions. Environ Sci Pollut res 25:930–939

    Article  CAS  Google Scholar 

  • Charitidis CA, Georgiou P, Koklioti MA, Trompeta A-F, Markakis V (2014) Manufacturing nanomaterials: from research to industry. Manuf Rev 1:11–19

    Google Scholar 

  • Chen X, Zhang C, Tan L, Wang J (2018a) Toxicity of Co nanoparticles on three species of marine microalgae. Environ Pollut 236:454–461

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Yao Y, Lin H, Hu Z, Hu W, Zang Z, Tang X (2018b) Synthesis of CuInZnS quantum dots for cell labelling applications. Ceram Int 44:S34–S37

    Article  CAS  Google Scholar 

  • Chen Y, Liang W, Li Y, Wu Y, Chen Y, Xiao W, Zhao L, Zhang J, Li H (2019) Modification, application and reaction mechanisms of nano-sized iron sulfide particles for pollutant removal from soil and water: a review. Chem Eng J 362:144–159

    Article  CAS  Google Scholar 

  • Ciprian M, Xu P, Chaemchuen S, Tu R, Zhuiykov S, Heynderickx PM, Verpoort F (2018) MoO3 nanoparticle formation on zeolitic imidazolate framework-8 by rotary chemical vapor deposition. Micropor Mesopor Mat 267:185–191

    Article  CAS  Google Scholar 

  • Clemens S (2001) Molecular mechanism of plant metal tolerance and homeostasis. Planta 212:475–486

    Article  CAS  PubMed  Google Scholar 

  • Consumer Product Inventory (2018) An inventory of nanotechnology-based consumer products introduced on the market. http://www.nanotechproject.org/cpi/. Accessed 1 Feb 2020

  • Cui D, Zhang P, Ma Y, He X, Li Y, Zhang J, Zhao Y, Zhang (2014) Effect of cerium oxide nanoparticles on asparagus lettuce cultured in an agar medium. Environ Sci Nano 1:459–465

    Article  CAS  Google Scholar 

  • D’Amato R, Falconieri M, Gagliardi S, Popovici E, Serra E, Terranova G, Borsella E (2013) Synthesis of ceramic nanoparticles by laser pyrolysis: from research to applications. J Anal Appl Pyrol 104:461–469

    Article  CAS  Google Scholar 

  • DalCorso G, Manara A, Furini A (2013) An overview of heavy metal challenge in plants: from roots to shoots. Metallomics 5:1117–1132

    Article  CAS  PubMed  Google Scholar 

  • Dasgupta N, Ranjan S, Mundekkad D, Ramalingman C (2015) Nanotechnology in agro-food: from field to plate. Food Res Int 69:381–400

    Article  Google Scholar 

  • De Nicola F, Maisto G, Prati MV, Alfani A (2008) Leaf accumulation of trace elements and polycyclic aromatic hydrocarbons (PAHs) in Quercus ilex L. Environ Pollut 153:376–383

    Article  PubMed  CAS  Google Scholar 

  • Deng Y-Q, White JC, Xing B-S (2014) Interactions between engineered nanomaterials and agricultural crops: implications for food safety. J Zhejiang Univ-Sci A (Appl Phys Eng) 15(8):552–572

    Article  CAS  Google Scholar 

  • Dhand C, Dwivedi N, Loh XJ, Ying ANJ, Verma NK, Beuerman RW, Lakshminarayanan R, Ramakrishna S (2015) Methods and strategies for the synthesis of diverse nanoparticles and their applications: a comprehensive overview. RSC Adv 5:105003–105037

    Article  CAS  Google Scholar 

  • Dimkpa CO (2018) Soil properties influence the response of terriestrial plants to metallic nanoparticle exposure. Curr Opin Environ Sci Health 6:1–8

    Article  Google Scholar 

  • Dimkpa CO, McLean JE, Latta DE, Manangón E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) Cuo and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14:1–15

    Article  CAS  Google Scholar 

  • Duhan JS, Kumar R, Kumar N, Kaur P, Nehra N, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep (Amst) 15:11–23

    Article  Google Scholar 

  • Dwivedi AD, Dubey SP, Sillanpää M, Kwon Y-N, Lee C, Varma RS (2015) Fate of engineered nanoparticles: implications in the environment. Coordin Chem Rev 287:64–78

    Article  CAS  Google Scholar 

  • Ealias AM, Saravanakumar MP (2017) A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf Ser: Mater Sci Eng 263:032019

    Google Scholar 

  • Edelstein M, Ben-Hur M (2018) Heavy metals and metalloids: sources, risks and strategies to reduce their accumulation in horticultural crops. Sci Hortic-Amsterdam 234:431–444

    Article  CAS  Google Scholar 

  • Elmer W, Ma C, White J (2018) Nanoparticles for plant disease management. Curr Opin Environ Sci Health 6:66–70

    Article  Google Scholar 

  • European Commission, Commission Staff Working Paper: Types and Uses of Nanomaterials, Including Safety Aspects (2012). https://publications.europa.eu/en/publication-detail/-/publication/be32dfc7-1499-4328-b54f-a9f024805f59/language-en

  • Feizi H, Kamali M, Jafari L, Moghaddam PR (2013) Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). Chemosphere 91:506–511

    Article  CAS  PubMed  Google Scholar 

  • Feregrino-Perez AA, Magaña-López E, Guzmán C, Esquivel K (2018) A general overview of the benefits and possible negative effects of the nanotechnology in horticulture. Sci Hortic-Amstardam 238:126–138

    Article  Google Scholar 

  • Francisco EV, García-Estepa RM (2018) Nanotechnology in the agrofood industry. J Food Eng 238:1–11

    Article  CAS  Google Scholar 

  • Gao X, Lowry GV (2018) Progress towards standardized and validated characterizations for measuring physicochemical properties of manufactured nanomaterials relevant to nano health and safety risks. NanoImpact 9:14–30

    Article  CAS  Google Scholar 

  • Gao F, Liu C, Qu C, Zheng L, Yang F, Su M, Hong F (2008) Was improvement of spinach growth by nano-TiO2 treatment related to the changes of Rubisco activase? Biometals 21:211–217

    Article  CAS  PubMed  Google Scholar 

  • García-Gómez C, Obrador A, González D, Babín M, Fernández MD (2018) Comparative study of the phytotoxicity of ZnO nanoparticles and Zn accumulation in nine crops grown in a calcareous soil and an acidic soil. Sci Tot Environ 644:770–780

    Article  CAS  Google Scholar 

  • Gautam PK, Singh A, Misra K, Sahoo AK, Samanta SK (2019) Synthesis and applications of biogenic nanomaterials in drinking and wastewater treatment. J Environ Manage 231:734–748

    Article  CAS  PubMed  Google Scholar 

  • Goodwin SM, Jenks MA (2005) Plant cuticle function as a barrier to water loss. In: Jenks MA, Hasegava PM (eds) Plant abiotic stress. Blackwell Publishing Ltd, Oxford, p 2005

    Google Scholar 

  • Guerinot ML (2000) The ZIP family of metal transporters. Biochim Biophys Acta 1465:190–198

    Article  CAS  PubMed  Google Scholar 

  • Hawthorne J, Musante C, Sinha SK, White JC (2012) Accumulation and phytotoxicity of engineered nanoparticles to Cucurbita pepo. Int J Phytoremediation 14:429–442

    Article  CAS  PubMed  Google Scholar 

  • Hendren CO, Mesnard X, Dröge J, Wiesner MR (2011) Estimating production data for five engineered nanomaterials as a basis for exposure assessment. Environ Sci Technol 45:2562–2569

    Article  CAS  PubMed  Google Scholar 

  • Hlongwane GN, Sekoai PT, Meyyappan M, Moothi K (2019) Simultaneous removal of pollutants from water using nanoparticles: a shift from single pollutant control to multiple pollutant control. Sci Total Environ 656:808–833

    Article  CAS  PubMed  Google Scholar 

  • Hossain Z, Mustafa G, Sakata K, Komatsu S (2016) Insights into the proteomic response of soybean towards Al2O3, ZnO and Ag nanoparticles stress. J Hazard Mater 304:291–305

    Article  CAS  PubMed  Google Scholar 

  • Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: A review. J Hazard Mater 211-212:317–331

    Article  CAS  PubMed  Google Scholar 

  • Hussain D, Haydon MJ, Wang Y, Wong E, Sherson SM, Young J, Camakaris J, Harper JF, Cobbett CS (2004) P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 16:1327–1339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang J, Lee D, Seo Y, Son J, Jo Y, Lee K, Park C, Choi J (2018) Engineered nanomaterials for their applications in theragnostics. J Ind Eng Chem 66:20–28

    Article  CAS  Google Scholar 

  • Ianoș R, Moacă E-A, Căpraru A, Lazău R, Păcurariu C (2018) Maghemite, γ-Fe2O3, nanoparticles preparation via carbon-templated solution combustion synthesis. Ceram Int 44:14090–14094

    Article  CAS  Google Scholar 

  • Jia Y-P, Ma B-Y, Wei X-W, Qian Z-Y (2017) The in vitro and in vivo toxicity of gold nanoparticles. Chinese Chem Lett 28:691–702

    Article  CAS  Google Scholar 

  • Jośko I, Oleszczuk P, Skwarek E (2017) Toxicity of combined mixtures of nanoparticles to plants. J Hazard Mater 331:200–209

    Article  PubMed  CAS  Google Scholar 

  • Kabir E, Kumar V, Kim K-H, Yip ACK, Sohn JR (2018) Environmental impacts of nanomaterials. J Environ Manage 225:261–271

    Article  CAS  PubMed  Google Scholar 

  • Kang J, Park J, Choi H, Burla B, Kretzschmar T, Lee Y, Martinoia E (2011) Plant ABC transporters. American Society of Plant Biologists, BioOne, Washington, pp 2–25

    Google Scholar 

  • Karthikeyan J, Berndt CC, Tikkanen J, Reddy S, Herman H (1997) Plasma spray synthesis of nanomaterial powders and deposits. Mater Sci Eng: A 238:275–286

    Article  Google Scholar 

  • Keller AA, Lazareva A (2014) Predicted releases of eengineered nanomaterials: From global to regional to local. Environ Sci Technol Lett 1:65–70

    Article  CAS  Google Scholar 

  • Khalil M, Jan BM, Tong CW, Berawi MA (2017) Advanced nanomaterials in oil and gas industry: design, application and challenges. Appl Energ 191:287–310

    Article  CAS  Google Scholar 

  • Khodama F, Amani-Ghadimb AR, Aber S (2019) Preparation of CdS quantum dot sensitized solar cell based on ZnTi-layered double hydroxide photoanode to enhance photovoltaic properties. Solar Energy 181:325–332

    Article  CAS  Google Scholar 

  • Kibbey TCG, Strevett KA (2019) The effect of nanoparticles on soil and rhizosphere bacteria and plant growth in lettuce seedlings. Chemosphere 221:703–707

    Article  CAS  PubMed  Google Scholar 

  • Kim YY, Yang YY, Lee Y (2002) Pb and Cd uptake in rice roots. Physiol Plantarum 3(116):368–372

    Article  Google Scholar 

  • Kong B, Seog Ji H, Graham LM, Lee SB (2011) Experimental considerations on the cytotoxicity of nanoparticles. Nanomedicine (Lond) 6(5):929–941

    Article  CAS  Google Scholar 

  • Koul A, Kumar A, Singh VK, Tripathi DK, Mallubhotla S (2018) Exploring plant-mediated copper, iron, titanium, and cerium oxide nanoparticles and their impacts. In: Nanomaterials in plants, algae, and microorganisms. Academic Press, London, pp 175–194

    Google Scholar 

  • Krämer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638

    Article  Google Scholar 

  • Kuhlbusch TAJ, Wijnhoven SWP, Haase A (2018) Nanomaterial exposures for worker, consumer and the general public. NanoImpact 10:11–25

    Article  Google Scholar 

  • Kumar S, Nehra M, Dilbaghi N, Marrazza G, Hassan AA, Kim K-H (2019) Nano-based smart pesticide formulations: Emerging opportunities for agriculture. J Control Release 294:131–153

    Article  CAS  PubMed  Google Scholar 

  • Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of Ag nanoparticles in Allium cepa. Sci Total Environ 407:5243–5246

    Article  CAS  PubMed  Google Scholar 

  • Küpper H, Andersen E (2016) Mechanisms of metal toxicity in plants. Metallomics 8:269–285

    Article  PubMed  Google Scholar 

  • Kusior A, Kollbek K, Kowalski K, Borysiewicz M, Wojciechowski T, Adamczyk A, Trenczek-Zajac A, Radecka M, Zakrzewska K (2016) Sn and Cu oxide nanoparticles deposited on TiO2 nanoflower 3D substrates by Inert Gas Condensation technique. Appl Surf Sci 380:193–202

    Article  CAS  Google Scholar 

  • Kwapuliński J, Michalewska A, Rochel R, Dunat J (2010) Heavy metals uptake by plants from soil. Probl Ecol 14(2):66–71

    Google Scholar 

  • Landa P, Vankova R, Andrlova J, Hodek J, Marsik P, Storchova H, White JC, Vanek T (2012) Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot. J Hazard Mater 241–242:55–62

    Article  PubMed  CAS  Google Scholar 

  • Layet C, Auffan M, Santaella C, Chevassus-Rosset C, Montes M, Ortet P, Barakat M, Collin B, Legros S, Bravin MN, Angeletti B, Kieffer I, Proux O, Hazemann J-L, Doelsch E (2017) Evidence that soil properties and organic coating drive the phytoavailability of cerium oxide nanoparticles. Environ Sci Technol 51:9756–9764

    Article  CAS  PubMed  Google Scholar 

  • Lead JR, Smith E (2009) Environmental and human health impact of nanotechnology. Wiley-Blackwell, Chichester

    Book  Google Scholar 

  • Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarezb PJ (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29:669–675

    Article  CAS  PubMed  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Article  CAS  PubMed  Google Scholar 

  • Lin C-Y, Trinh NN, Fu S-F, Hsiung Y-C, Chia L-C, Lin C-W, Huang H-J (2013) Comparison of early transcriptome responses to copper and cadmium in rice roots. Plant Mol Biol 81:507–522

    Article  CAS  PubMed  Google Scholar 

  • Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69(4):1875–1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu R, Lal R (2015) Potential of engineered nanoparticles as fertilizers for increasing agronomic production. Sci Total Environ 514:131–139

    Article  CAS  PubMed  Google Scholar 

  • Long R, Zhou S, Wiley BJ, Xiong Y (2014) Oxidative etching for controlled synthesis of metal nanocrystals: atomic addition and subtraction. Chem Soc Rev 43:6288–6310

    Article  CAS  PubMed  Google Scholar 

  • López-Moreno ML, de la Rosa G, Hernández-Viezcas JA, Peralta-Videa JR, Gardea-Torresde JL (2010) X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem 58:3689–3693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu C, Zhang C, Wen J, Wu G, Tao M (2001) Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci 21:168–171

    Google Scholar 

  • Luque R, Varma RS (eds) (2013) Sustainable preparation of metal nanoparticles methods and applications, RSC Green Chemistry No. 19. RSC, Croydon

    Google Scholar 

  • Lux A, Martinka M, Vaculik M, White P (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62(1):21–37

    Article  CAS  PubMed  Google Scholar 

  • Lv J, Christie P, Zhang S (2019) Uptake, translocation, and transformation of metal-based nanoparticles in plants: recent advances and methodological challenges. Environmental Science Nano 6:41–59

    Article  CAS  Google Scholar 

  • Ma X, Yan J (2018) Plant uptake and accumulation of engineered metallic nanoparticles from lab to field conditions. Curr Opin Environ Sci Health 6:16–20

    Article  Google Scholar 

  • Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010a) Interaction between nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053–3061

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Kuang L, He X, Bai W, Ding Y, Zhang Z, Zhao Y, Chai Z (2010b) Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 78:273–279

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Williams PL, Diamond SA (2013) Ecotoxicity of manufactured ZnO nanoparticles – a review. Env Poll 172:76–85

    Article  CAS  Google Scholar 

  • Ma C, White JC, Dhankher OM, Xing B (2015) Metal-based nanotoxicity and detoxification pathways in higher plants. Environ Sci Technol 49:7109–7122

    Article  CAS  PubMed  Google Scholar 

  • Ma C, Liu H, Guo H, Musante C, Coskun SH, Nelson BC, White JC, Xing B, Dhankher OP (2016) Defense mechanisms and nutrient displacement in Arabidopsis thaliana upon exposure to CeO2 and In2O3 nanoparticles. Environ Sci: Nano 3:1369–1379

    CAS  Google Scholar 

  • Majumdar S, Peralta-Videa JR, Trujillo-Reyes J, Sun Y, Barrios AC, Niu G, Flores-Margez JP, Gardea-Torresdey JL (2016) Soil organic matter influences cerium translocation and physiological processes in kidney bean plants exposed to cerium oxide nanoparticles. Sci Tot Environ 569–570:201–211

    Article  CAS  Google Scholar 

  • Makarenko N, Rudnytska L, Bodnar V (2016) Peculiarities of ecotoxicological assessment nanoagrochemicals used in crop production. Ann Agr Sci 14:35–41

    Google Scholar 

  • Manna I, Bandyopadhyay M (2019) A review on the biotechnological aspects of utilizing engineered nanoparticles as delivery systems in plants. Plant Gene 17:100167

    Article  CAS  Google Scholar 

  • Maynard AD (2006) Nanotechnology: a research strategy for addressing risk. Project on Emerging Nanotechnologies, Woodraw Wilson International Center for Scholars, Washington, DC

    Google Scholar 

  • Mignot A, Truillet C, Lux F, Sancey L, Louis C, Denat F, Boschetti F, Bocher L, Gloter A, Støphan O, Antoine R, Dugourd P, Luneau D, Novitchi G, Figueiredo LC, de Morais PC, Bonneviot L, Albela B, Ribot F, van Lokeren L, Døchamps-Olivier I, Chuburu F, Lemercier G, Villiers C, Marche PN, Le Duc G, Roux S, Tillement O, Perriat P (2013) A Top-Down synthesis route to ultrasmall multifunctional Gd-based silica nanoparticles for theranostic applications. Chem-Eur J 19:6122–6136

    Article  CAS  PubMed  Google Scholar 

  • Miranda A, Malheiro E, Skiba E, Quaresma P, Carvalho PA, Eaton P, de Castro B, Shelnutt JA, Pereira E (2010) One-pot synthesis of triangular gold nanoplates allowing broad and fine tuning of edge length. Nanoscale 2(10):2209–2216

    Article  CAS  PubMed  Google Scholar 

  • Montes A, Bisson MA, Gardella JA Jr, Aga DS (2017) Uptake and transformations of engineered nanomaterials: Critical responses observed in terrestrial plants and the model plant Arabidopsis thaliana. Sci Total Environ 607–608:1497–1516

    Article  PubMed  CAS  Google Scholar 

  • Morsomme P, Boutry M (2000) The plant plasma membrane H.-ATPase: structure, function and Regulation. Biochim Biophys Acta 1465:1–16

    Article  CAS  PubMed  Google Scholar 

  • Mousavi SM, Motesharezadeh B, Hosseini HM, Alikhani H, Zolfaghari AA (2018) Root-induced changes of Zn and Pb dynamics in the rhizosphere of sunflower with different plant growth promoting treatments in a heavily contaminated soil. Ecotox Environ Safe 147:206–216

    Article  CAS  Google Scholar 

  • Naasz S, Altenburger R, Kühnel D (2018) Environmental mixtures of nanomaterials and chemicals: the Trojan-horse phenomenon and its relevance for ecotoxicity. Sci Total Environ 635:1170–1181

    Article  CAS  PubMed  Google Scholar 

  • Nair PMG, Kim SH, Chung M (2014) Cu oxide nanoparticle toxicity in mung bean (Vigna radiata L.) seedlings: physiological and molecular level responses of in vitro grown plants. Acta Physiol Plant 36:2947–2958

    Article  CAS  Google Scholar 

  • Navarro DA, Bisson MA, Aga DS (2012) Investigating uptake of water-dispersible CdSe/ZnS quantum dot nanoparticles by Arabidopsis thaliana plants. J Hazard Mat 211-212:427–435

    Article  CAS  Google Scholar 

  • Nguyen NT, McInturf SA, Mendoza-Cózatl DG (2016) Hydroponics: a versatile systems to study nutrient allocation and plant responses to nutrient availability and exposure to toxic elements. J Visualized Exp (113). https://doi.org/10.3791/54317

  • Niska K, Zielinska E, Radomski MW, Inkielewicz-Stepniak I (2018) Metal nanoparticles in dermatology and cosmetology: interactions with human skin cells. Chem-Biol Interact 295:38–51

    Article  CAS  PubMed  Google Scholar 

  • Núñez EV, De la Rosa-Alvarez G (2018) Environmental behavior of engineered nanomaterials in terrestrial ecosystems: uptake, transformation and trophic transfer. Curr Opin Environ Sci Health 6:42–46

    Article  Google Scholar 

  • Oberdürster G (2000) Toxicology of ultrafine particles: in vivo studies. Philos Trans Roy Soc London A Math Phys Eng Sci 358:2719–2740

    Article  Google Scholar 

  • Özer EO, Özcan M, Didin M (2014) Nanotechnology in food and agriculture industry in: food engineering series food processing, Strategies for quality assessment. Springer, New York

    Book  Google Scholar 

  • Pagano L, Maestri E, White JC, Marmiroli N, Marmiroli M (2018) Quantum dots exposure in plants: minimizing the adverse response. Cur Opinion Env Stud Health 6:71–77

    Article  Google Scholar 

  • Palmer C, Guerinot ML (2009) A question of balance: facing the challenges of Cu, Fe and Zn homeostasis. Nat Chem Biol 5(5):333–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patil AB, Bhange BM (2016) Greener synthesis: greener aspects in the synthesis of metal and metal oxide nanoparticles. In: Kharisov BI, Khrissova OV, Ortiz-Mendez U (eds) CRC concise encyclopedia of nanotechnology. CRC Press, London

    Google Scholar 

  • Pérez-de-Luque A (2017) Interaction of nanomaterials with plants: what do we need for real applications in agriculture? Front Environ Sci 5:12

    Article  Google Scholar 

  • Philippot G, Elissalde C, Maglione M, Aymonier C (2014) Supercritical fluid technology: a reliable process for high quality BaTiO3 based nanomaterials. Adv Powder Technol 25(5):1415–1429

    Article  CAS  Google Scholar 

  • Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res 14:1109–1120

    Article  Google Scholar 

  • Pich A, Scholz G (1996) Translocation of copper and other micronutrients in tomato plants (Lycopersicon esculentum Mill.): nicotianamine-stimulated copper transport in the xylem. J Exp Bot 47:41–47

    Article  CAS  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2018) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014

    Article  Google Scholar 

  • Raliya R, Franke C, Chavalmane S, Nair R, Reed N, Biswas P (2016) Quantitative understanding of nanoparticle uptake in watermelon plants. Front Plant Sci 7:1288

    Article  PubMed  PubMed Central  Google Scholar 

  • Rawat S, Pullagurala VLR, Adisa IO, Wang Y, Peralta-videa JR, Gardea-Torresdey JL (2018) Factors affecting fate and transport of engineered nanomaterials in terrestrial environments. Curr Opin Environ Sci Health 6:47–53

    Article  Google Scholar 

  • Reddy PVL, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2016) Lessons learned: are engineered nanomaterials toxic to terrestrial plants? Sci Tot Environ 568:470–479

    Article  CAS  Google Scholar 

  • Ricachenevsky FK, Menguer PK, Sperotto RA, Williams LE, Fett JP (2013) Roles of plant metal tolerance proteins (MTP) in metal storage and potential use in biofortification strategies. Fron Plant Scien 4(144):1–16

    Google Scholar 

  • Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rico CM, Lee SC, Rubenecia R, Mukherjee A, Hong J, Peralta-Videa JR, Gardea-Torresdey JL (2014) Cerium oxide nanoparticles impact yield and modify nutritional parameters in wheat (Triticum aestivum L.). J Agric Food Chem 62:9669–9675

    Article  CAS  PubMed  Google Scholar 

  • Rizwan M, Ali S, Qayyum MF, Ok YS, Adrees M, Ibrahim M, Zia-ur-Rehmand M, Farid M, Abbas F (2017) Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: a critical review. J Hazard Mat 322:2–16

    Article  CAS  Google Scholar 

  • Ruttkay-Nedecky B, Krystofova O, Nejdl L, Adam V (2017) Nanoparticles based on essential metals and their phytotoxicity. J Nanobiotechnol 15:33

    Article  CAS  Google Scholar 

  • Sangeetha J, Thangadurai D, Hospet R, Purushotham P, Karekalammanavar G, Mundaragi AC, David M, Shinge MR, Thimmappa SC, Prasad R, Harish ER (2017) Agricultural nanotechnology: concepts, benefits, and risks. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology: an agricultural paradigm. Springer, Singapore

    Google Scholar 

  • Sanita di Toppi L, Gabrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Servin AD, Morales MI, Castillo-Michel H, Hernandez-Viezcas JA, Munoz B, Zhao L, Nunez JE, Peralta-Videa JR, Gardea-Torresdey JL (2013) Synchrotron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ Sci Technol 47:11592–11598

    Article  CAS  PubMed  Google Scholar 

  • Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ (2015) Green synthesis of metallic nanoparticles via biological entities. Materials 8:7278–7308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahid M, Dumat C, Khalid S, Schreck E, Xiong T, Niazi NK (2017) Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. J Hazard Mater 325:36–58

    Article  CAS  PubMed  Google Scholar 

  • Sharifi M, Avadi MR, Attar F, Dashtestanic F, Ghorchian H, Rezayat SM, Saboury AA, Falahati M (2018) Cancer diagnosis using nanomaterials based electrochemical nanobiosensors. Biosens Bioelectron 103:113–129

    CAS  Google Scholar 

  • Sharma VP, Sharma U, Chattopadhyay M, Shukla VN (2018) Advance applications of nanomaterials: a review. Mater Today-Proc 5:6376–6380

    Article  CAS  Google Scholar 

  • Shaw AK, Hossain Z (2013) Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere 93:906–915

    Article  CAS  PubMed  Google Scholar 

  • Shweta, Tripathi DK, Chauhan DK, Peralta-Videa JR (2018) Availability and risk assessment of nanoparticles in living systems: a virtue or a peril? In: Nanomaterials in plants, algae, and microorganisms. Academic Press, London, pp 1–31

    Google Scholar 

  • Sillen WMA, Thijs S, Abbamondi GR, Janssen J, Weyens N, White JC, Vangronsveld J (2015) Effects of silver nanoparticles on soil microorganisms and maize biomass are linked in the rhizosphere. Soil Biol Biochem 91:14–22

    Article  CAS  Google Scholar 

  • Singh S, Vishwakarma K, Singh S, Sharma S, Dubey NK, Singh VK, Liu S, Tripathi DK, Chauhan DK (2017) Understanding the plant and nanoparticle interface at transcriptomic and proteomic level: a concentric overview. Plant Gene 11:265–272

    Article  CAS  Google Scholar 

  • Skiba E, Wolf WM (2019) Cerium oxide nanoparticles affect heavy metals uptake by pea in a divergent way than their ionic and bulk counterparts. Water Air Soil Pollut 230: 248. https://doi.org/10.1007/s11270-019-4296-5

    Google Scholar 

  • Socas-Rodríguez B, González-Sálamo J, Hernández-Borges J, Rodríguez-Delgado MA (2017) Recent applications of nanomaterials in food safety. TrAC 96:172–200

    Google Scholar 

  • Song U, Jun H, Waldman B, Roh J, Kim Y, Yi J, Lee EJ (2013) Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicol Environ Saf 93:60–67

    Article  CAS  PubMed  Google Scholar 

  • Song W-Y, Park J, Eisenach C, Maeshima M, Lee Y, Martinoia E (2014) ABC transporters and heavy metals. In: Geisler M (ed) Plant ABC transporters, signaling and communication in plants. Springer, Cham

    Google Scholar 

  • Sruthi S, Ashtami J, Mohanan PV (2018) Biomedical application and hidden toxicity of zinc oxide nanoparticles. Mater Today Chem 10:175–186

    Article  CAS  Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479

    Article  CAS  PubMed  Google Scholar 

  • Sudha PN, Sangeetha K, Vijayalakshmi K, Barhoum A (2018) Nanomaterials history, classification, unique properties, production and market. In: Barhoum A, Makhlouf ASH (eds) Emerging applications of nanoparticles and architecture nanostructures. Current prospects and future trends. Elsevier, Amsterdam

    Google Scholar 

  • Sui R, Charpentier P (2012) Synthesis of metal oxide nanostructures by direct sol–gel chemistry in supercritical fluids. Chem Rev 112(6):3057–3082

    Article  CAS  PubMed  Google Scholar 

  • Sweet MJ, Chessher A, Singleton I (2012) Review: metal-based nanoparticles; size, function, and areas for advancement in applied microbiology. Adv Appl Microbiol 80:113–142

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, He R, Zhao J, Nie G, Xu L, Xing B (2016) Oxidative stress induced toxicity of CuO nanoparticles and related toxicogenomic responses in Arabidopsis thaliana. Environ Pollut 212:605–614

    Article  CAS  PubMed  Google Scholar 

  • Tarrahi R, Khataee B, Movafeghi A, Rezanejad F (2018) Toxicity of ZnSe nanoparticles to Lemna minor: evaluation of biological responses. J Environ Manage 226:298–307

    Article  CAS  PubMed  Google Scholar 

  • Taylor AF, Rylott EL, Anderson CWN, Bruce NC (2014) Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLoS ONE 9(4):e93793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thiomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. PNAS 97(9):4991–4996

    Article  Google Scholar 

  • Tiwari JN, Tiwari RN, Kim KS (2012) Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog Mater Sci 57:724–803

    Article  CAS  Google Scholar 

  • Tiwari PK, Singh AK, Singh VP, Prasad SM, Ramawat N, Tripathi DK, Chauhan DK, Rai AK (2019) Liquid assisted pulsed laser ablation synthesized copper oxide nanoparticles (CuO-NPs) and their differential impact on rice seedlings. Ecotoxicol Environ Safety 176:321–329

    Article  CAS  PubMed  Google Scholar 

  • Tourinho P, Van Gestel CAM, Lofts S, Svendsen C, Soares AMVM, Loureiro S (2012) Metal-based nanoparticles in soil: fate, behavior and effects on soil invertebrates. Environ Toxicol Chem 31:1679–1696

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Dubey NK (2015) Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiol Biochem 96:189–198

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Shweta SS, Singh S, Pandey R, Singh VP, Sharma NC, Prasad SM, Dubey NK, Chauhan DK (2017a) An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiol Bioch 110:2–12

    Article  CAS  Google Scholar 

  • Tripathi DK, Tripathi A, Shweta Singh S, Singh Y, Vishwakarma K, Yadav G, Sharma S, Singh VK, Mishra RK, Upadhyay RG, Dubey NK (2017b) Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: a concentric review. Front Microbiol 8:07

    Article  PubMed  PubMed Central  Google Scholar 

  • Tripathi DK, Singh S, Singh S, Srivastava PK, Singh VP, Singh S, Prasad SM, Singh PK, Dubey NK, Pandey AC, Chauhan DK (2017c) Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol Biochem 110:167–177

    Article  CAS  PubMed  Google Scholar 

  • Trujillo-Reyes J, Majumdar S, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2014) Exposure studies of core-shell Fe/Fe3O4 and Cu/CuO NPs to lettuce (Lactuca sativa) plants: are they a potential physiological and nutritional hazard? J Hazard Mater 267:255–263

    Article  CAS  PubMed  Google Scholar 

  • Tsazuki T (2009) Commercial scale production of inorganic nanoparticles. Int J Nanotechnol 6:567–578

    Article  Google Scholar 

  • Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF Jr, Rejeski D, Hull MS (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotech 6:1769–1780

    Article  CAS  Google Scholar 

  • Verma R, Gangwar J, Srivastava AK (2017) Multiphase TiO2 nanostructures: a review of efficient synthesis, growth mechanism, probing capabilities, and applications in bio-safety and health. RSC Adv 7:44199–44224

    Article  CAS  Google Scholar 

  • Verma SK, Das AK, Patel MK, Shah A, Kumar V, Gantait S (2018) Engineered nanomaterials for plant growth and development: a perspective analysis. Sci Total Environ 630:1413–1435

    Article  CAS  PubMed  Google Scholar 

  • Verret F, Gravot A, Auroy P, Leonhardt N, David P, Nussaume L, Vavasseur A, Richaud P (2004) Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Lett 576:306–312

    Article  CAS  PubMed  Google Scholar 

  • Verrier PJ, Bird D, Burla B, Dassa E, Forestier C, Geisler M, Klein M, Kolukisaoglu U, Lee Y, Martinoia E, Murphy A, Rea PA, Samuels L, Schulz B, Spalding EP, Yazaki K, Theodoulou FL (2008) Plant ABC proteins—a unified nomenclature and updated inventory. Trends Plant Sci 13:151–159

    Article  CAS  PubMed  Google Scholar 

  • Vishwakarma K, Upadhyay N, Singh J, Liu S, Singh VP, Prasad SM, Chauhan DK, Tripathi DK, Sharma S (2017) Differential phytotoxic impact of plant mediated silver nanoparticles (AgNPs) and silver nitrate (AgNO3) on Brassica sp. Front Plant Sci 8:1501

    Article  PubMed  PubMed Central  Google Scholar 

  • Vishwakarma K, Upadhyay N, Kumar N, Tripathi DK, Chauhan DK, Sharma S, Sahi S (2018) Potential applications and avenues of nanotechnology in sustainable agriculture. In: Nanomaterials in plants, algae, and microorganisms. Academic Press, London, pp 473–500

    Google Scholar 

  • Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B (2012) Xylemand phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46:4434–4441

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Lombi E, Zhao F-J, Kopittke PM (2016) nanotechnology: A new opportunity in plant sciences. Trends Plant Sci 21(8):699–711

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Wang Y, Chen X (2019) Synthesis of uniform silver nanowires from AgCl seeds for transparent conductive films via spin-coating at variable spin-speed. Colloid Surf A 565:154–161

    Article  CAS  Google Scholar 

  • Watson J-L, Fang T, Dimkpa CO, Britt DW, McLean JE, Jacobson A, Anderson AJ (2015) The phytotoxicity of ZnO nanoparticles on wheat varies with soil properties. Biometals 28:101–112C

    Article  CAS  PubMed  Google Scholar 

  • White PJ, Whiting SN, Baker AJM, Broadley MR (2002) New Phytol 153:201–207

    Article  CAS  Google Scholar 

  • Williams LE, Pittman JK, Hall JL (2000) Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta 1465:104–126

    Article  CAS  PubMed  Google Scholar 

  • Williams RJ, Harrison S, Keller V, Kuenen J, Lofts S, Praetorius A, Svendsen C, Vermeulen LC, van Wijnen J (2019) Models for assessing engineered nanomaterial fate and behaviour in the aquatic environment. Curr Opin Environ Sustain 36:105–115

    Article  Google Scholar 

  • Xiang L, Zhao HM, Li YW, Huang XP, Wu XL, Zhai T, Yuan Y, Cai QY, Mo CH (2015) Effects of the size and morphology of zinc oxide nanoparticles on the germination of Chinese cabbage seeds. Environ Sci Pollut Res 22:10452–10462

    Article  CAS  Google Scholar 

  • Xiao Y, Vijver MG, Peijnenburg WJGM (2018) Impact of water chemistry on the behavior and fate of copper nanoparticles. Environ Pollut 234:684–691

    Article  CAS  PubMed  Google Scholar 

  • Xing B, Zhu W, Zheng X, Zhu Y, Wei Q, Wu D (2018) Electrochemiluminescence immunosensor based on quenching effect of SiO2@PDA on SnO2/rGO/Au NPs-luminol for Insulin detection. Sensor Actuator B 265:403–411

    Article  CAS  Google Scholar 

  • Xu F (2018) Review of analytical studies on TiO2 nanoparticles and particle aggregation, coagulation, flocculation, sedimentation, stabilization. Chemosphere 212:662–677

    Article  CAS  PubMed  Google Scholar 

  • Xu C, De S, Balu AM, Ojeda M, Luque R (2015) Mechanochemical synthesis of advanced nanomaterials for catalytic applications. Chem Commun 51:6698–6713

    Article  CAS  Google Scholar 

  • Xue L, Liu Y, Li F, Sun K, Chen W, Yang K, Hu H, Lin J, Chen H, Yang Z, Guo T (2019) Highly flexible light emitting diodes based on a quantum dots-polymer composite emitting layer. Vacuum 163:282–286. https://doi.org/10.1016/j.vacuum.2019.02.033

    Article  CAS  Google Scholar 

  • Yang L, Watts D (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Liu C, Gao F, Su M, Wu X et al (2007) The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol Trace Elem Res 119:77–88

    Article  CAS  PubMed  Google Scholar 

  • Yang ZZ, Chen J, Dou RZ, Gao X, Mao CB, Wang L (2015) Assessment of the phytotoxicity of metal oxide nanoparticles on two crop plants, maize (Zea mays L.) and rice (Oryza sativa L.). Int J Environ Res Public Health 12:15100–15109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Cao W, Rui Y (2017) Interactions between nanoparticles and plants: phytotoxicity and defense mechanisms. J Plant Interact 12(1):158–169

    Article  CAS  Google Scholar 

  • Yasur J, Rani PU (2013) Environmental effects of nanosilver: impact on castor seed germination, seedling growth, and plant physiology. Environ Sci Pollut Res 20:8636–8648

    Article  CAS  Google Scholar 

  • Yin Y, Wang Y, Liu Y, Zeng G, Hu X, Hu X, Zhou L, Guo Y, Li J (2015) Cadmium accumulation and apoplastic and symplastic transport in Boehmeria nivea (L.) Gaudich on cadmium-contaminated soil with the addition of EDTA or NTA. RSC Adv 5:47584–47591

    Article  CAS  Google Scholar 

  • Yoon HC, Kang H, Lee S, Oh JH, Yang H, Do YR (2016) Study of perovskite QD down-converted LEDs and six-color white LEDs for future displays with excellent color performance. App Mater Interfaces 8(28):18189–18200

    Article  CAS  Google Scholar 

  • Yuan M, Li X, Xiao J, Wang S (2011) Molecular and functional analyses of COPT/Ctr-type copper transporter-like gene family in rice. BMC Plant Biol 11:69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai G, Walters KS, Peate DW, Alvarez PJJ, Schnoor JL (2014) Transport of gold nanoparticles through plasmodesmata and precipitation of gold ions in woody poplar. Environ Sci Technol Lett 1:146–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, He X, Zhang H, Ma Y, Zhang P, Ding Y, Zhao Y (2011) Uptake and distribution of ceria nanoparticles in cucumber plants. Metallomics 3:816–822

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, Zhang H, Tu C, Hu X, Li L, Luo Y, Christie P (2015) Phytotoxicity of ZnO nanoparticles and the released Zn (II) ion to corn (Zea mays L.) and cucumber (Cucumis sativus L.) during germination. Environ Sci Pollut Res 22:11109–11117

    Article  CAS  Google Scholar 

  • Zhang W, Musante C, White JC, Schwab P, Wang Q, Ebbs SD, Ma X (2017a) Bioavailability of cerium oxide nanoparticles to Raphanus sativus L. in two soils. Plant Physiol Biochem 110:185–193

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Dan Y, Shi H, Ma X (2017b) Elucidating the mechanisms for plant uptake and in-planta speciation of cerium in radish (Raphanus sativum L.) treated with cerium oxide nanoparticles. J Environ Chem Eng 5:527–577

    Article  Google Scholar 

  • Zhang W, Gu J, Zhang C, Xie Y, Zheng X (2019a) Preparation of titania coating by induction suspension plasma spraying for biomedical application. Surf Coat Tech 358:511–520

    Google Scholar 

  • Zhang P, Ma Y, Xie C, Guo Z, He X, Valsami-Jones E, Lynch I, Luo W, Zheng L, Zhang Z (2019b) Plant species-dependent transformation and translocation of ceria nanoparticles. Environ Sci: Nano 6:60–67

    CAS  Google Scholar 

  • Zhao LJ, Huang YX, Hu J, Zhou HJ, Adeleye AS, Keller AA (2016) H-1 NMR and GC-MS based metabolomics reveal defense and detoxification mechanism of cucumber plant under nano-Cu stress. Environ Sci Technol 50:2000–2010

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104:83–91

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work received support from the Regional Fund for Environmental Protection and Water Management in Lodz, Poland (projects 804/BN/D/2016 and 58/BN/D/2018), additional funding from the Institute of General and Ecological Chemistry is also acknowledged.

The European University Foundation is acknowledged for advising on the legal and social dimension of this study. MSc(Arch) Edyta Skiba is kindly acknowledged for computer graphics design.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elżbieta Skiba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Skiba, E., Adamczyk-Szabela, D., Wolf, W.M. (2021). Metal-Based Nanoparticles’ Interactions with Plants. In: Singh, V.P., Singh, S., Tripathi, D.K., Prasad, S.M., Chauhan, D.K. (eds) Plant Responses to Nanomaterials. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-36740-4_6

Download citation

Publish with us

Policies and ethics