Skip to main content

Advertisement

Log in

The impact of cerium oxide nanoparticles on the physiology of soybean (Glycine max (L.) Merr.) under different soil moisture conditions

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The ongoing global climate change raises concerns over the decreasing moisture content in agricultural soils. Our research investigated the physiological impact of two types of cerium oxide nanoparticles (CeO2NPs) on soybean at different moisture content levels. One CeO2NP was positively charged on the surface and the other negatively charged due to the polyvinylpyrrolidone (PVP) coating. The results suggest that the effect of CeO2NPs on plant photosynthesis and water use efficiency (WUE) was dependent upon the soil moisture content. Both types of CeO2NPs exhibited consistently positive impacts on plant photosynthesis at the moisture content above 70% of field capacity (θfc). Similar positive impact of CeO2NPs was not observed at 55% θfc, suggesting that the physiological impact of CeO2NPs was dependent upon the soil moisture content. The results also revealed that V Cmax (maximum carboxylation rate) was affected by CeO2NPs, indicating that CeO2NPs affected the Rubisco activity which governs carbon assimilation in photosynthesis. In conclusion, CeO2NPs demonstrated significant impacts on the photosynthesis and WUE of soybeans and such impacts were affected by the soil moisture content.

Soil moisture content affects plant cerium oxide nanoparticle interactions

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baruah S, Dutta J (2009) Nanotechnology applications in pollution sensing and degradation in agriculture: a review. Environ Chem Lett 7:191–204

    Article  CAS  Google Scholar 

  • Boczkowski J, Hoet P (2010) What’s new in nanotoxicology? Implications for public health from a brief review of the 2008 literature. Nanotoxicology 4:1–14

    Article  CAS  Google Scholar 

  • Cao Z, Stowers C, Rossi L, Zhang W, Lombardini L, Ma X (2017) Physiological effects of cerium oxide nanoparticles on the photosynthesis and water use efficiency of soybean (Glycine max L.) Environ Sci Nano 4:1086–1094

    Article  CAS  Google Scholar 

  • Dan Y, Ma X, Zhang W, Liu K, Stephan C, Shi H (2016) Single particle ICP-MS method development for the determination of plant uptake and accumulation of CeO2 nanoparticles. Anal Bioanal Chem 408(19):5157–5167

    Article  CAS  Google Scholar 

  • Dimkpa CO, Bindraban PS, Fugice J, Agyin-Birikorang S, Singh U, Hellums D (2017) Composite micronutrient nanoparticles and salts decrease drought stress in soybean. Agron Sustain Dev 37:5

    Article  CAS  Google Scholar 

  • Du W, Gardea-Torresdey JL, Ji R, Yin Y, Zhu J, Peralta-Videa JR, Guo H (2015) Physiological and biochemical changes imposed by CeO2 nanoparticles on wheat: a life cycle field study. Environ Sci Technol 49:11884–11893

    Article  CAS  Google Scholar 

  • Du W, Tan W, Peralta-Videa JR, Gardea-Torresdey JL, Ji R, Yin Y, Guo H (2017) Interaction of metal oxide nanoparticles with higher terrestrial plants: physiological and biochemical aspects. Plant Physiol Bioch 110:210–225

    Article  CAS  Google Scholar 

  • Farquhar G, Richards R (1984) Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Funct Plant Biol 11:539–552

    CAS  Google Scholar 

  • Flexas J et al (2013) Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency. Photosynth Res 117(1–3):45–59

    Article  CAS  Google Scholar 

  • Gui X et al (2015) Fate and phytotoxicity of CeO2 nanoparticles on lettuce cultured in the potting soil environment. PLoS One 10(8):e0134261

    Article  CAS  Google Scholar 

  • Hanson PJ, McRoberts RE, Isebrands JC, Dixon RK (1987) An optimal sampling strategy for determining CO2 exchange rate as a function of photosynthetic photon flux density. Photosynthetica 21:98–101

    CAS  Google Scholar 

  • Hendren CO, Badireddy AR, Casman E, Wiesner MR (2013) Modeling nanomaterial fate in wastewater treatment: Monte Carlo simulation of silver nanoparticles (nano-Ag). Sci Total Environ 449:418–425

    Article  CAS  Google Scholar 

  • Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70

    Article  CAS  Google Scholar 

  • Kreyling J, Arfin Khan M, Sultana F, Bebel W, Beierkuhnlein C, Foken T, Walter J, Jentsch A (2017) Drought effects in climate change manipulation experiments: quantifying the influence of ambient weather conditions and rain-out shelter artifacts. Ecosystems 20:301–315

    Article  CAS  Google Scholar 

  • Krishnan P, Singh R, Verma APS, Joshi DK, Singh S (2014) Changes in seed water status as characterized by NMR in developing soybean seed grown under moisture stress conditions. Biochem Bioph Res Co 444:485–490

    Article  CAS  Google Scholar 

  • Lawson T, Blatt MR (2014) Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiol 164:1556–1570

    Article  CAS  Google Scholar 

  • Locke AM, Ort DR (2014) Leaf hydraulic conductance declines in coordination with photosynthesis, transpiration and leaf water status as soybean leaves age regardless of soil moisture. J Exp Bot 65:6617–6627

    Article  CAS  Google Scholar 

  • López-Moreno ML, de la Rosa G, Hernández-Viezcas JÁ, Castillo-Michel H, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2010) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44:7315–7320

    Article  CAS  Google Scholar 

  • Meckel L, Egli DB, Phillips RE, Radcliffe D, Leggett JE (1984) Effect of moisture stress on seed growth in soybeans. Agron J 76:647–650

    Article  Google Scholar 

  • Moran R (1982) Formulae for determination of chlorophyllous pigments extracted with N,N-dimethylformamide. Plant Physiol 69:1376–1381

    Article  CAS  Google Scholar 

  • Myers SS, Smith MR, Guth S, Golden CD, Vaitla B, Mueller ND, Dangour AD, Huybers P (2017) Climate change and global food systems: potential impacts on food security and undernutrition. Annu Rev Publ Health 38:259–277

    Article  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Palmer G, Platts PJ, Brereton T, Chapman JW, Dytham C, Fox R, Pearce-Higgins JW, Roy DB, Hill JK, Thomas CD (2017) Climate change, climatic variation and extreme biological responses. Philos T Roy Soc B 372:20160144

    Article  Google Scholar 

  • Park B, Donaldson K, Duffin R, Tran L, Kelly F, Mudway I, Morin JP, Guest R, Jenkinson P, Samaras Z, Giannouli M, Kouridis H, Martin P (2008) Hazard and risk assessment of a nanoparticulate cerium oxide-based diesel fuel additive—a case study. Inhal Toxicol 20:547–566

    Article  CAS  Google Scholar 

  • Park I-S, Kim D-I (1993) Significance of fresh weight to dry cell weight ratio in plant cell suspension cultures. Biotechnol Tech 7:627–630

    Article  Google Scholar 

  • Parry MAJ, Flexas J, Medrano H (2005) Prospects for crop production under drought: research priorities and future directions. Ann Appl Biol 147:211–226

    Article  Google Scholar 

  • Patil SS, Shedbalkar UU, Truskewycz A, Chopade BA, Ball AS (2016) Nanoparticles for environmental clean-up: a review of potential risks and emerging solutions. Environ Tech Inn 5:10–21

    Article  Google Scholar 

  • Perullini M, Aldabe Bilmes SA, Jobbágy M (2013) Cerium oxide nanoparticles: structure, applications, reactivity, and eco-toxicology. In: Brayner R, Fiévet F, Coradin T (eds) Nanomaterials: a danger or a promise? A chemical and biological perspective. Springer, London, pp 307–333

    Chapter  Google Scholar 

  • Rico CM, Lee SC, Rubenecia R, Mukherjee A, Hong J, Peralta-Videa JR, Gardea-Torresdey JL (2014) Cerium oxide nanoparticles impact yield and modify nutritional parameters in wheat (Triticum aestivum L.) J Agr Food Chem 62:9669–9675

    Article  CAS  Google Scholar 

  • Roco MC, Mirkin CA, Hersam MC (2011) Nanotechnology research directions for societal needs in 2020: summary of international study. J Nanopart Res 13:897–919

    Article  Google Scholar 

  • Rossi L, Sebastiani L, Tognetti R, d'Andria R, Morelli G, Cherubini P (2013) Tree-ring wood anatomy and stable isotopes show structural and functional adjustments in olive trees under different water availability. Plant Soil 372:567–579

    Article  CAS  Google Scholar 

  • Rossi L, Zhang W, Lombardini L, Ma X (2016) The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L. Environ Pollut 219:28–36

    Article  CAS  Google Scholar 

  • Routschek A, Schmidt J, Kreienkamp F (2014) Impact of climate change on soil erosion—a high-resolution projection on catchment scale until 2100 in Saxony/Germany. Catena 121:99–109

    Article  Google Scholar 

  • Sharifan H, Ma X (2017) Potential photochemical interactions of UV filter molecules with multi-chlorinated structure of prymnesins in harmful algal bloom events. Mini-Rev Org Chem 14(5):391–399

    Article  CAS  Google Scholar 

  • Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL (2007) Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ 30:1035–1040

    Article  CAS  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Firoz M, Al-Khaishany MY (2015) Role of nanoparticles in plants. In: Siddiqui HM, Al-Whaibi HM, Mohammad F (eds) Nanotechnology and plant sciences: nanoparticles and their impact on plants, Chapter 2. Springer International Publishing, Cham, pp 19–35. https://doi.org/10.1007/978-3-319-14502-0_2

  • Solanki P, Bhargava A, Chhipa H, Jain N, Panwar J (2015) Nano-fertilizers and their smart delivery system. In: Rai M, Ribeiro C, Mattoso L, Duran N (eds) Nanotechnologies in food and agriculture, Chapter 4. Springer International Publishing, Cham, pp 81–101. https://doi.org/10.1007/978-3-319-14024-7_4

  • Spielman-Sun E, Lombi E, Donner E, Howard D, Unrine JM, Lowry GV (2017) Impact of surface charge on cerium oxide nanoparticle uptake and translocation by wheat (Triticum aestivum). Environ Sci Technol 51(13):7361–7368

    Article  CAS  Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. P Natl Acad Sci-Biol 108:20260–20264

    Article  Google Scholar 

  • USDA (2017) World Agricultural Supply and Demand Estimates (WASDE-570). The Dept, Washington, DC

  • Wang Q, Ma X, Zhang W, Pei H, Chen Y (2012) The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety. Metallomics 4:1105–1112

    Article  CAS  Google Scholar 

  • Yang JT, Preiser AL, Li Z, Weise SE, Sharkey TD (2016) Triose phosphate use limitation of photosynthesis: short-term and long-term effects. Planta 243:687–698

    Article  CAS  Google Scholar 

  • Zhou S, Medlyn B, Sabaté S, Sperlich D, Prentice IC (2014) Short-term water stress impacts on stomatal, mesophyll and biochemical limitations to photosynthesis differ consistently among tree species from contrasting climates. Tree Physiol 34:1035–1046

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of Texas Hazardous Waste Research Center research grant #515TAM0045H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingmao Ma.

Additional information

Responsible editor: Zhihong Xu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Z., Rossi, L., Stowers, C. et al. The impact of cerium oxide nanoparticles on the physiology of soybean (Glycine max (L.) Merr.) under different soil moisture conditions. Environ Sci Pollut Res 25, 930–939 (2018). https://doi.org/10.1007/s11356-017-0501-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0501-5

Keywords

Navigation