Skip to main content

Tumour Microenvironment in Skin Carcinogenesis

  • Chapter
  • First Online:
Tumor Microenvironments in Organs

Abstract

Tumour microenvironment is a complex system comprising cells and molecules that will provide the necessary conditions for tumour development and progression. Cells residing in the tumour microenvironment gain specific phenotypes and specific functions that are pro-tumorigenic. Tumour progression is in fact a combination between tumour cell characteristics and its interplay with tumour microenvironment. This dynamic network will allow tumour cells to grow, migrate and invade tissues. In the present chapter, we are highlighting some traits that characterise tumour microenvironment in basal cell carcinoma, squamous cell carcinoma and cutaneous melanoma. In skin cancers, there are some common tumour microenvironment characteristics such as the presence of tumour-associated macrophages and regulatory T lymphocytes that are non-tumour cells promoting tumorigenesis. There are also skin cancer type differences in terms of tumour microenvironment characteristics. Thus, markers such as macrophage migration inhibitory factor in melanoma or the extraordinary diverse genetic make-up in the cancer-associated fibroblasts associated to squamous cell carcinoma are just a few of specific traits in skin cancer types. New technological advances for evaluation of tumour environment are presented. Thus, non-invasive skin imaging techniques such as reflectance confocal microscopy can evaluate skin tumour inflammatory infiltrates for density and cellular populations. Analysing tumour micromedium in depth may offer new insights into cancer therapy and identify new therapy targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Samarasinghe V, Madan V (2012) Nonmelanoma skin cancer. J Cutan Aesthet Surg 5(1):3–10

    Article  PubMed  PubMed Central  Google Scholar 

  2. Duarte AF, Sousa-Pinto B, Haneke E et al (2018) Risk factors for development of new skin neoplasms in patients with past history of skin cancer: a survival analysis. Sci Rep 8(1):15744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Wu T, Dai Y (2017) Tumor microenvironment and therapeutic response. Cancer Lett 387:61–68

    Article  CAS  PubMed  Google Scholar 

  4. Sarbu MI, Matei C, Mitran CI et al (2019) Photodynamic therapy: a hot topic in dermato-oncology. Oncol Lett 17(5):4085–4093

    PubMed  PubMed Central  Google Scholar 

  5. Sautès-Fridman C, Cherfils-Vicini J, Damotte D et al (2011) Tumor microenvironment is multifaceted. Cancer Metastasis Rev 30(1):13–25

    Article  PubMed  Google Scholar 

  6. Tzanakakis GN, Neagu M, Tsatsakis AM, Nikitovic D (2019) Proteoglycans and immunobiology of cancer-therapeutic implications. Front Immunol 10:875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ahmed F, Haass NK (2018) Microenvironment-driven dynamic heterogeneity and phenotypic plasticity as a mechanism of melanoma therapy resistance. Front Oncol 8:173

    Article  PubMed  PubMed Central  Google Scholar 

  8. Aksenenko M, Palkina N, Komina A et al (2019) Differences in microRNA expression between melanoma and healthy adjacent skin. BMC Dermatol 19(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  9. Eskiizmir G (2015) Tumor microenvironment in head and neck squamous cell carcinomas. Turk Arch Otorhinolaryngol 53:120–127

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bhatia S, Oweida A, Lennon S et al (2019) Inhibition of EphB4-ephrin-B2 signaling reprograms the tumor immune microenvironment in head and neck cancers. Cancer Res 79(10):2722–2735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fujimura T, Kakizaki A, Furudate S et al (2016) Tumor-associated macrophages in skin: how to treat their heterogeneity and plasticity. J Dermatol Sci 83(3):167–173

    Article  CAS  PubMed  Google Scholar 

  12. Santos EM, de Matos FR, de Morais EF et al (2019) Evaluation of Cd8+ and natural killer cells defense in oral and oropharyngeal squamous cell carcinoma. J Cranio-Maxillofac Surg 11(4):E440

    Google Scholar 

  13. Shang B, Liu Y, Jiang SJ, Liu Y (2015) Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis. Sci Rep 5:15179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Evrard D, Szturz P, Tijeras-Raballand A et al (2019) Macrophages in the microenvironment of head and neck cancer: potential targets for cancer therapy. Oral Oncol 88:29–38

    Article  CAS  PubMed  Google Scholar 

  15. Li YY, Zhou CX, Gao Y (2018 Aug 1) Interaction between oral squamous cell carcinoma cells and fibroblasts through TGF-β1 mediated by podoplanin. Exp Cell Res 369(1):43–53

    Article  CAS  PubMed  Google Scholar 

  16. Liu T, Zhou L, Li D, Andl T, Zhang Y (2019) Cancer-associated fibroblasts build and secure the tumor microenvironment. Front Cell Dev Biol 7:60

    Article  PubMed  PubMed Central  Google Scholar 

  17. LeBleu VS, Kalluri R (2018) A peek into cancer-associated fibroblasts: origins, functions and translational impact. Dis Model Mech 11(4):029447

    Article  CAS  Google Scholar 

  18. Ilie MA, Caruntu C, Lupu M, Lixandru D, Georgescu SR, Bastian A, Constantin C, Neagu M, Zurac SA, Boda D (2019) Current and future applications of confocal laser scanning microscopy imaging in skin oncology. Oncol Lett 17(5):4102–4111

    PubMed  PubMed Central  Google Scholar 

  19. Elenitsas R, Nousari CH, Seykora JT (2005) Laboratory methods. In: Elder DE, Elenitzas R, Johnson BL, Murphy GF (eds) Lever’s histopathology of the skin, 9th edn. Lippincott Williams & Wilkins, Philadelphia, PA, pp 59–60

    Google Scholar 

  20. Wong CS, Strange RC, Lear JT (2003) Basal cell carcinoma. Br Med J 327(7418):794–798

    Article  CAS  Google Scholar 

  21. Lupu M, Caruntu C, Ghita MA et al (2016) Gene expression and proteome analysis as sources of biomarkers in basal cell carcinoma. Dis Markers 2016:9831237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Rubin AI, Chen EH, Ratner D (2005) Basal-cell carcinoma. N Engl J Med 353(21):2262–2269

    Article  CAS  PubMed  Google Scholar 

  23. Costescu M, Coman OA, Tampa M et al (2013) Axillary basal cell carcinoma-a rare form of a frequent kind of carcinoma. Romanian J Morphol Embryol 54(3 Suppl):851–856

    Google Scholar 

  24. Tjiu JW, Chen JS, Shun CT et al (2009) Tumor-associated macrophage-induced invasion and angiogenesis of human basal cell carcinoma cells by cyclooxygenase-2 induction. J Investig Dermatol 129(4):1016–1025

    Article  CAS  PubMed  Google Scholar 

  25. Kaiser U, Loeffler KU, Nadal J et al (2018) Polarization and distribution of tumor-associated macrophages and COX-2 expression in basal cell carcinoma of the ocular Adnexae. Curr Eye Res 43(9):1126–1135

    Article  CAS  PubMed  Google Scholar 

  26. Padoveze EH, Chiacchio ND, Ocampo-Garza J et al (2017) Macrophage subtypes in recurrent nodular basal cell carcinoma after Mohs micrographic surgery. Int J Dermatol 56(12):1366–1372

    Article  CAS  PubMed  Google Scholar 

  27. König S, Nitzki F, Uhmann A et al (2014) Depletion of cutaneous macrophages and dendritic cells promotes growth of basal cell carcinoma in mice. PLoS One 9(4):e93555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Pellegrini C, Orlandi A, Costanza G et al (2017) Expression of IL-23/Th17-related cytokines in basal cell carcinoma and in the response to medical treatments. PLoS One 12(8):e0183415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Omland SH (2016) Local immune response in cutaneous basal cell carcinoma. Acta Derm Venereol 64(10):B5412

    Google Scholar 

  30. Omland SH, Nielsen PS, Gjerdrum LM et al (2016) Immunosuppressive environment in basal cell carcinoma: the role of regulatory T cells. Acta Derm Venereol 96(7):917–921

    Article  CAS  PubMed  Google Scholar 

  31. Kaporis HG, Guttman-Yassky E, Lowes MA et al (2007) Human basal cell carcinoma is associated with Foxp3+ T cells in a Th2 dominant microenvironment. J Investig Dermatol 127(10):2391–2398

    Article  CAS  PubMed  Google Scholar 

  32. Jin HT, Ahmed R, Okazaki T (2011) Role of PD-1 in regulating T-cell immunity. Curr Top Microbiol Immunol 350:17–37

    CAS  PubMed  Google Scholar 

  33. Georgescu SR, Ioghen MR, Sarbu MI et al (2018) Biological therapy in the treatment of melanoma. J Mind Med Sci 5(2):169–175

    Article  Google Scholar 

  34. Lipson EJ, Lilo MT, Ogurtsova A et al (2017) Basal cell carcinoma: PD-L1/PD-1 checkpoint expression and tumor regression after PD-1 blockade. J Immunother Cancer 5:23

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ghita MA, Caruntu C, Rosca AE, Kaleshi H, Caruntu A, Moraru L, Docea AO, Zurac S, Boda D, Neagu M, Spandidos DA, Tsatsakis AM (2016) Reflectance confocal microscopy and dermoscopy for in vivo, non-invasive skin imaging of superficial basal cell carcinoma. Oncol Lett 11(5):3019–3024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Căruntu C, Boda D, Guţu DE, Căruntu A (2014) In vivo reflectance confocal microscopy of basal cell carcinoma with cystic degeneration. Romanian J Morphol Embryol 55(4):1437–1441

    Google Scholar 

  37. Longo C, Lallas A, Kyrgidis A et al (2014) Classifying distinct basal cell carcinoma subtype by means of dermatoscopy and reflectance confocal microscopy. J Am Acad Dermatol 71(4):716–724

    Article  PubMed  Google Scholar 

  38. Lupu M, Caruntu C, Solomon I et al (2017) The use of in vivo reflectance confocal microscopy and dermoscopy in the preoperative determination of basal cell carcinoma histopathological subtypes. DermatoVenerol 62:7–13

    Google Scholar 

  39. Malvehy J, Puig S, Carrera C, Segura S (2012) Nodular melanoma. In: Hofmann-Wellenhof R, Pellacani G, Malvehy J, Soyer HP (eds) Reflectance confocal microscopy for skin diseases. Springer, Berlin Heidelberg, p 198

    Google Scholar 

  40. Lupu M, Popa MI, Voiculescu VM et al (2019) A retrospective study of the diagnostic accuracy of in vivo reflectance confocal microscopy for basal cell carcinoma diagnosis and subtyping. J Clin Med 8(4):1–14

    Article  Google Scholar 

  41. Omland SH, Wettergren EE, Mollerup S et al (2017) Cancer associated fibroblasts (CAFs) are activated in cutaneous basal cell carcinoma and in the peritumoural skin. BMC Cancer 17(1):675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Lacina L, Smetana K Jr, Dvořánková B et al (2007) Stromal fibroblasts from basal cell carcinoma affect phenotype of normal keratinocytes. Br J Dermatol 156(5):819–829

    Article  CAS  PubMed  Google Scholar 

  43. Sasaki K, Sugai T, Ishida K et al (2018) Analysis of cancer-associated fibroblasts and the epithelial-mesenchymal transition in cutaneous basal cell carcinoma, squamous cell carcinoma, and malignant melanoma. Hum Pathol 79:1–8

    Article  CAS  PubMed  Google Scholar 

  44. Yamamura M, Modlin RL, Ohmen JD et al (1993) Local expression of antiinflammatory cytokines in cancer. J Clin Invest 91(3):1005–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Elamin I, Zecević RD, Vojvodić D et al (2008) Cytokine concentrations in basal cell carcinomas of different histological types and localization. Acta Dermatovenerol Alp Pannonica Adriat 17(2):55–59

    PubMed  Google Scholar 

  46. McAllister F, Kolls JK (2015) Th17 cytokines in non-melanoma skin cancer. Eur J Immunol 45(3):692–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Voiculescu V, Calenic B, Ghita M et al (2016) From normal skin to squamous cell carcinoma: a quest for novel biomarkers. Dis Markers 2016:4517492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Burton KA, Ashack KA, Khachemoune A (2016) Cutaneous squamous cell carcinoma: a review of high-risk and metastatic disease. Am J Clin Dermatol 17(5):491–508

    Article  PubMed  Google Scholar 

  49. Tampa M, Caruntu C, Mitran MI et al (2018) Markers of oral lichen planus malignant transformation. Dis Markers 2018:1959506

    PubMed  PubMed Central  Google Scholar 

  50. Matei C, Tampa M, Ion RM et al (2012) Photodynamic properties of aluminium sulphonated phthalocyanines in human displazic oral keratinocytes experimental model. Dig J Nanomater Biostruct 7(4):1535–1547

    Google Scholar 

  51. Matei C, Caruntu C, Ion RM, Georgescu SR, Dumitrascu GR, Constantin C, Neagu M (2014) Protein microarray for complex apoptosis monitoring of dysplastic oral keratinocytes in experimental photodynamic therapy. Biol Res 47:33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Pettersen JS, Fuentes-Duculan J, Suárez-Fariñas M et al (2011) Tumor-associated macrophages in the cutaneous SCC microenvironment are heterogeneously activated. J Investig Dermatol 131(6):1322–1330

    Article  CAS  PubMed  Google Scholar 

  53. Tampa M, Mitran MI, Mitran CI et al (2018) Mediators of inflammation–a potential source of biomarkers in oral squamous cell carcinoma. J Immunol Res 2018:1061780

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Koontongkaew S (2013) The tumor microenvironment contribution to development, growth, invasion and metastasis of head and neck squamous cell carcinomas. J Cancer 4(1):66–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Alves AM, Diel LF, Lamers ML (2018) Macrophages and prognosis of oral squamous cell carcinoma: a systematic review. J Oral Pathol Med 47(5):460–467

    Article  PubMed  Google Scholar 

  56. Wehrhan F, Buttner-Herold M, Hyckel P et al (2014) Increased malignancy of oral squamous cell carcinomas (OSCC) is associated with macrophage polarization in regional lymph nodes - an immunohistochemical study. BMC Cancer 14:522

    Article  PubMed  PubMed Central  Google Scholar 

  57. Boxberg M, Leising L, Steiger K et al (2019) Composition and clinical impact of the immunologic tumor microenvironment in oral squamous cell carcinoma. J Immunol 202(1):278–291

    Article  CAS  PubMed  Google Scholar 

  58. Hu Y, He MY, Zhu LF et al (2016) Tumor-associated macrophages correlate with the clinicopathological features and poor outcomes via inducing epithelial to mesenchymal transition in oral squamous cell carcinoma. J Exp Clin Cancer Res 35(1):12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Curry JM, Sprandio J, Cognetti D et al (2014) Tumor microenvironment in head and neck squamous cell carcinoma. Semin Oncol 41(2):217–234

    Article  CAS  PubMed  Google Scholar 

  60. Peltanova B, Raudenska M, Masarik M (2019) Effect of tumor microenvironment on pathogenesis of the head and neck squamous cell carcinoma: a systematic review. Mol Cancer 18(1):63

    Article  PubMed  PubMed Central  Google Scholar 

  61. de Ruiter EJ, Ooft ML, Devriese LA et al (2017) The prognostic role of tumor infiltrating T-lymphocytes in squamous cell carcinoma of the head and neck: a systematic review and meta-analysis. Oncoimmunology 6(11):e1356148

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wolf GT, Chepeha DB, Bellile E, Nguyen A, Thomas D, McHugh J et al (2015) Tumor infiltrating lymphocytes (TIL) and prognosis in oral cavity squamous carcinoma: a preliminary study. Oral Oncol 51(1):501–509

    Article  CAS  Google Scholar 

  63. De Meulenaere A, Vermassen T, Aspeslagh S et al (2017) TILs in head and neck cancer: ready for clinical implementation and why (not)? Head Neck Pathol 11(3):354–363

    Article  PubMed  Google Scholar 

  64. Lupu M, Caruntu A, Moraru L et al (2018) Non-invasive imaging techniques for early diagnosis of radiation-induced squamous cell carcinoma of the lip. Romanian J Morphol Embryol 59(3):949–953

    Google Scholar 

  65. Cao T, Oliviero M, Rabinovitz HS (2012) Squamous cell carcinoma. In: Hofmann-Wellenhof R, Pellacani G, Malvehy J, Soyer HP (eds) Reflectance confocal microscopy for skin diseases. Springer, Berlin Heidelberg, p 297

    Chapter  Google Scholar 

  66. Plzák J, Bouček J, Bandúrová V et al (2019) The head and neck squamous cell carcinoma microenvironment as a potential target for cancer therapy. Cancers 11(4):440

    Article  PubMed Central  CAS  Google Scholar 

  67. Erez N, Truitt M, Olson P et al (2010) Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-κB-dependent manner. Cancer Cell 17(2):135–147

    Article  CAS  PubMed  Google Scholar 

  68. Fullár A, Kovalszky I, Bitsche M et al (2012) Tumor cell and carcinoma-associated fibroblast interaction regulates matrix metalloproteinases and their inhibitors in oral squamous cell carcinoma. Exp Cell Res 318(13):1517–1527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Hadler-Olsen E, Wirsing AM (2019) Tissue-infiltrating immune cells as prognostic markers in oral squamous cell carcinoma: a systematic review and meta-analysis. Br J Cancer 120(7):714–727

    Article  PubMed  PubMed Central  Google Scholar 

  70. Larsen SK, Gao Y, Basse PH (2014) NK cells in the tumor microenvironment. Crit Rev Oncog 19(1–2):91–105

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ziober AF, Falls EM, Ziober BL (2006) The extracellular matrix in oral squamous cell carcinoma: friend or foe? Head Neck 28(8):740–749

    Article  PubMed  Google Scholar 

  72. Lyons AJ, Jones J (2007) Cell adhesion molecules, the extracellular matrix and oral squamous carcinoma. Int J Oral Maxillofac Surg 36(8):671–679

    Article  CAS  PubMed  Google Scholar 

  73. Mhawech P, Dulguerov P, Assaly M et al (2005) EB-D fibronectin expression in squamous cell carcinoma of the head and neck. Oral Oncol 41(1):82–88

    Article  CAS  PubMed  Google Scholar 

  74. Vilen ST, Salo T, Sorsa T et al (2013) Fluctuating roles of matrix metalloproteinase-9 in oral squamous cell carcinoma. Sci World J 2013:920595

    Article  CAS  Google Scholar 

  75. Pries R, Nitsch S, Wollenberg B (2006) Role of cytokines in head and neck squamous cell carcinoma. Expert Rev Anticancer Ther 6(9):1195–1203

    Article  CAS  PubMed  Google Scholar 

  76. Lee CH, Chang JS, Syu SH et al (2015) IL-1β promotes malignant transformation and tumor aggressiveness in oral cancer. J Cell Physiol 230(4):875–884

    Article  CAS  PubMed  Google Scholar 

  77. Wasmer MH, Krebs P (2017) The role of IL-33-dependent inflammation in the tumor microenvironment. Front Immunol 7:682

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Chen Z, Malhotra PS, Thomas GR et al (1999) Expression of proinflammatory and proangiogenic cytokines in patients with head and neck cancer. Clin Cancer Res 5(6):1369–1379

    CAS  PubMed  Google Scholar 

  79. Choudhary MM, France TJ, Teknos TN et al (2016) Interleukin-6 role in head and neck squamous cell carcinoma progression. World J Otorhinolaryngol Head Neck Surg 2(2):90–97

    Article  PubMed  PubMed Central  Google Scholar 

  80. Santana AL, Felsen D, Carucci JA (2017) Interleukin-22 and cyclosporine in aggressive cutaneous squamous cell carcinoma. Dermatol Clin 35(1):73–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Heino PJ, Mylläri PH, Jahkola TA et al (2019) Long-term quality of life of melanoma survivors is comparable to that of the general population. Anticancer Res 39(5):2633–2640

    Article  PubMed  Google Scholar 

  82. Voiculescu VM, Lisievici CV, Lupu M et al (2019) Mediators of inflammation in topical therapy of skin cancers. Mediat Inflamm 2019:8369690

    Article  CAS  Google Scholar 

  83. Pieniazek M, Matkowski R, Donizy P (2018) Macrophages in skin melanoma-the key element in melanomagenesis. Oncol Lett 15(4):5399–5404

    PubMed  PubMed Central  Google Scholar 

  84. Georgescu SR, Sârbu MI, Matei C et al (2017) Capsaicin: friend or foe in skin cancer and other related malignancies? Nutrients 9(12):1365

    Article  PubMed Central  CAS  Google Scholar 

  85. Little EG, Eide MJ (2012) Update on the current state of melanoma incidence. Dermatol Clin 30(3):355–361

    Article  CAS  PubMed  Google Scholar 

  86. Caruntu C, Mirica A, Roca AE et al (2016) The role of estrogens and estrogen receptors in melanoma development and progression. Acta Endocrinol 12(2):234–241

    CAS  Google Scholar 

  87. Rastrelli M, Tropea S, Rossi CR et al (2014) Melanoma: epidemiology, risk factors, pathogenesis, diagnosis and classification. In Vivo 28(6):1005–1011

    PubMed  Google Scholar 

  88. Botti G, Cerrone M, Scognamiglio G et al (2013) Microenvironment and tumor progression of melanoma: new therapeutic prospectives. J Immunotoxicol 10(3):235–252

    Article  CAS  PubMed  Google Scholar 

  89. Chen P, Huang Y, Bong R et al (2011) Tumor-associated macrophages promote angiogenesis and melanoma growth via adrenomedullin in a paracrine and autocrine manner. Clin Cancer Res 17(23):7230–7239

    Article  CAS  PubMed  Google Scholar 

  90. Neagu M, Constantin C, Caruntu C et al (2019) Inflammation: a key process in skin tumorigenesis. Oncol Lett 17(5):4068–4084

    CAS  PubMed  Google Scholar 

  91. Chanmee T, Ontong P, Konno K et al (2014) Tumor-associated macrophages as major players in the tumor microenvironment. Cancers. 6(3):1670–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Falleni M, Savi F, Tosi D et al (2017) M1 and M2 macrophages’ clinicopathological significance in cutaneous melanoma. Melanoma Res 27(3):200–210

    Article  CAS  PubMed  Google Scholar 

  93. Koelblinger P, Emberger M, Drach M et al (2019) Increased tumour cell PD-L1 expression, macrophage and dendritic cell infiltration characterise the tumour microenvironment of ulcerated primary melanomas. J Eur Acad Dermatol Venereol 33(4):667–675

    Article  CAS  PubMed  Google Scholar 

  94. Somasundaram R, Herlyn M, Wagner S (2016) The role of tumor microenvironment in melanoma therapy resistance. Melanoma Manag 3(1):23–32

    Article  PubMed  PubMed Central  Google Scholar 

  95. Neagu M, Constantin C, Longo C (2015) Chemokines in the melanoma metastasis biomarkers portrait. J Immunoass Immunochem 36(6):559–566

    Article  CAS  Google Scholar 

  96. Soumoy L, Kindt N, Ghanem G et al (2019) Role of macrophage migration inhibitory factor (MIF) in melanoma. Cancers 11(4):529

    Article  CAS  PubMed Central  Google Scholar 

  97. Giavina-Bianchi MH, Giavina-Bianchi Junior PF, Festa Neto C (2017) Melanoma: tumor microenvironment and new treatments. An Bras Dermatol 92(2):156–166

    Article  PubMed  PubMed Central  Google Scholar 

  98. Gooden MJ, de Bock GH, Leffers N et al (2011) The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. Br J Cancer 105(1):93–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Antohe M, Nedelcu RI, Nichita L et al (2019) Tumor infiltrating lymphocytes: the regulator of melanoma evolution. Oncol Lett 17(5):4155–4161

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Lee N, Zakka LR, Mihm MC Jr et al (2016) Tumour-infiltrating lymphocytes in melanoma prognosis and cancer immunotherapy. Pathology 48(2):177–187

    Article  PubMed  Google Scholar 

  101. Berghoff AS, Ricken G, Widhalm G et al (2015) Tumour-infiltrating lymphocytes and expression of programmed death ligand 1 (PD-L1) in melanoma brain metastases. Histopathology 66(2):289–299

    Article  PubMed  Google Scholar 

  102. Ren M, Dai B, Kong YY et al (2018) PD-L1 expression in tumour-infiltrating lymphocytes is a poor prognostic factor for primary acral melanoma patients. Histopathology 73(3):386–396

    Article  PubMed  Google Scholar 

  103. Nguyen LT, Yen PH, Nie J et al (2010) Expansion and characterization of human melanoma tumor-infiltrating lymphocytes (TILs). PLoS One 5(11):e13940

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Andersen R, Donia M, Ellebaek E et al (2016) Long-lasting complete responses in patients with metastatic melanoma after adoptive cell therapy with tumor-infiltrating lymphocytes and an attenuated IL2 regimen. Clin Cancer Res 22(15):3734–3745

    Article  CAS  PubMed  Google Scholar 

  105. Gurzu S, Beleaua MA, Jung I (2018) The role of tumor microenvironment in development and progression of malignant melanomas–a systematic review. Romanian J Morphol Embryol 59(1):23–28

    Google Scholar 

  106. Ziani L, Safta-Saadoun TB, Gourbeix J et al (2017) Melanoma-associated fibroblasts decrease tumor cell susceptibility to NK cell-mediated killing through matrix-metalloproteinases secretion. Oncotarget 8(12):19780

    Article  PubMed  PubMed Central  Google Scholar 

  107. Zurac S, Neagu M, Constantin C et al (2016) Variations in the expression of TIMP1, TIMP2 and TIMP3 in cutaneous melanoma with regression and their possible function as prognostic predictors. Oncol Lett 11(5):3354–3360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hsu MY, Meier F, Herlyn M (2002) Melanoma development and progression: a conspiracy between tumor and host. Differentiation 70(9–10):522–536

    Article  CAS  PubMed  Google Scholar 

  109. Erdogan B, Webb DJ (2017) Cancer-associated fibroblasts modulate growth factor signaling and extracellular matrix remodeling to regulate tumor metastasis. Biochem Soc Trans 45(1):229–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Naves LB, Almeida L, Ramakrishna S (2017) Understanding the microenvironment of melanoma cells for the development of target drug delivery systems. EMJ Oncol 5(1):85–92

    Google Scholar 

  111. Gama Duarte J, Peyper JM, Blackburn JM (2018) B cells and antibody production in melanoma. Mamm Genome 29(11–12):790–805

    Article  PubMed  CAS  Google Scholar 

  112. Neagu M, Constantin C, Zurac S (2013) Immune parameters in the prognosis and therapy monitoring of cutaneous melanoma patients: experience, role, and limitations. Biomed Res Int 2013:107940

    Article  PubMed  PubMed Central  Google Scholar 

  113. Somasundaram R, Zhang G, Fukunaga-Kalabis M, Perego M, Krepler C, Xu X, Wagner C, Hristova D, Zhang J, Tian T, Wei Z (2017) Tumor-associated B-cells induce tumor heterogeneity and therapy resistance. Nat Commun 8(1):607

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Ladányi A, Kiss J, Mohos A et al (2011) Prognostic impact of B-cell density in cutaneous melanoma. Cancer Immunol Immunother 60(12):1729–1738

    Article  PubMed  CAS  Google Scholar 

  115. Roberts EW, Broz ML, Binnewies M et al (2016) Critical role for CD103+/CD141+ dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma. Cancer Cell 30(2):324–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Preynat-Seauve O, Contassot E, Schuler P et al (2007) Melanoma-infiltrating dendritic cells induce protective antitumor responses mediated by T cells. Melanoma Res 17(3):169–176

    Article  PubMed  Google Scholar 

  117. Stoitzner P, Green LK, Jung JY et al (2008) Inefficient presentation of tumor-derived antigen by tumor-infiltrating dendritic cells. Cancer Immunol Immunother 57(11):1665–1673

    Article  CAS  PubMed  Google Scholar 

  118. Tucci M, Stucci LS, Mannavola F et al (2019) Defective levels of both circulating dendritic cells and T-regulatory cells correlate with risk of recurrence in cutaneous melanoma. Clin Transl Oncol 21(7):845–854

    Article  CAS  PubMed  Google Scholar 

  119. Neagu M, Constantin C, Popescu ID et al (2019) Inflammation and metabolism in cancer cell–mitochondria key player. Front Oncol 9:348

    Article  PubMed  PubMed Central  Google Scholar 

  120. Böhme I, Bosserhoff AK (2016) Acidic tumor microenvironment in human melanoma. Pigment Cell Melanoma Res 29(5):508–523

    Article  PubMed  CAS  Google Scholar 

  121. Estrella V, Chen T, Lloyd M et al (2013) Acidity generated by the tumor microenvironment drives local invasion. Cancer Res 73(5):1524–1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bedogni B, Powell MB (2009) Hypoxia, melanocytes and melanoma–survival and tumor development in the permissive microenvironment of the skin. Pigment Cell Melanoma Res 22(2):166–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Fischer GM, Vashisht Gopal YN, McQuade JL et al (2018) Metabolic strategies of melanoma cells: mechanisms, interactions with the tumor microenvironment, and therapeutic implications. Pigment Cell Melanoma Res 31(1):11–30

    Article  PubMed  Google Scholar 

  124. Rofstad EK, Mathiesen B, Kindem K et al (2006) Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Res 66(13):6699–6707

    Article  CAS  PubMed  Google Scholar 

  125. Gonda TA, Tu S, Wang TC (2009) Chronic inflammation, the tumor microenvironment and carcinogenesis. Cell Cycle 8(13):2005–2013

    Article  CAS  PubMed  Google Scholar 

  126. Georgescu SR, Mitran CI, Mitran MI et al (2018) New insights in the pathogenesis of HPV infection and the associated carcinogenic processes: the role of chronic inflammation and oxidative stress. J Immunol Res 2018:5315816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Tampa M, Matei CL et al (2013) Zinc trisulphonated phthalocyanine used in photodynamic therapy of dysplastic oral keratinocytes. Rev Chimie 64(6):639–645

    CAS  Google Scholar 

  128. Villanueva J, Herlyn M (2008) Melanoma and the tumor microenvironment. Curr Oncol Rep 10(5):439–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Surcel M, Constantin C, Caruntu C et al (2017) Inflammatory cytokine pattern is sex-dependent in mouse cutaneous melanoma experimental model. J Immunol Res 2017:9212134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. von Felbert V, Córdoba F, Weissenberger J et al (2005) Interleukin-6 gene ablation in a transgenic mouse model of malignant skin melanoma. Am J Pathol 166(3):831–841

    Article  Google Scholar 

  131. Gabellini C, Gómez-Abenza E, Ibáñez-Molero S et al (2018) Interleukin 8 mediates bcl-xL-induced enhancement of human melanoma cell dissemination and angiogenesis in a zebrafish xenograft model. Int J Cancer 142(3):584–596

    Article  CAS  PubMed  Google Scholar 

  132. Lázár-Molnár E, Hegyesi H, Tóth S et al (2000) Autocrine and paracrine regulation by cytokines and growth factors in melanoma. Cytokine 12(6):547–554

    Article  PubMed  CAS  Google Scholar 

  133. Yao W, Li Y, Zeng L, Zhang X et al (2019) Intratumoral injection of dendritic cells overexpressing interleukin-12 inhibits melanoma growth. Oncol Rep 42(1):370–376

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Authors were partially financed through Grants PN 19.29.01.01 and PN-III-P1-1.2-PCCDI-2017-0341/2018

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Georgescu, S.R. et al. (2020). Tumour Microenvironment in Skin Carcinogenesis. In: Birbrair, A. (eds) Tumor Microenvironments in Organs. Advances in Experimental Medicine and Biology, vol 1226. Springer, Cham. https://doi.org/10.1007/978-3-030-36214-0_10

Download citation

Publish with us

Policies and ethics