Skip to main content

Current Perspectives on Nasopharyngeal Carcinoma

  • Chapter
  • First Online:
Human Cell Transformation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1164))

Abstract

Of the ~129,079 new cases of nasopharyngeal carcinoma (NPC) and 72,987 associated deaths estimated for 2018, the majority will be geographically localized to South East Asia, and likely to show an upward trend annually. It is thought that disparities in dietary habits, lifestyle, and exposures to harmful environmental factors are likely the root cause of NPC incidence rates to differ geographically. Genetic differences due to ethnicity and the Epstein Barr virus (EBV) are likely contributing factors. Pertinently, NPC is associated with poor prognosis which is largely attributed to lack of awareness of the salient symptoms of NPC. These include nose hemorrhage and headaches and coupled with detection and the limited therapeutic options. Treatment options include radiotherapy or chemotherapy or combination of both. Surgical excision is generally the last option considered for advanced and metastatic disease, given the close proximity of nasopharynx to brain stem cell area, major blood vessels, and nerves. To improve outcome of NPC patients, novel cellular and in vivo systems are needed to allow an understanding of the underling molecular events causal for NPC pathogenesis and for identifying novel therapeutic targets and effective therapies. While challenges and gaps in current NPC research are noted, some advances in targeted therapies and immunotherapies targeting EBV NPCs are discussed in this chapter, which may offer improvements in outcome of NPC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Muir, C. S. (1983). Nasopharyngeal cancer—a historical vignette. CA: A Cancer Journal for Clinicians, 33, 180–185.

    CAS  Google Scholar 

  2. Muir, C. S. (1971). Nasopharyngeal carcinoma in non-Chinese populations with special reference to south-east Asia and Africa. International Journal of Cancer, 8, 351–363.

    Article  CAS  Google Scholar 

  3. Muir, C. S. (1972). Cancer of the head and neck. Nasopharyngeal cancer. Epidemiology and etiology. JAMA, 220, 393–394.

    Article  CAS  Google Scholar 

  4. Yu, W. M., & Hussain, S. S. (2009). Incidence of nasopharyngeal carcinoma in Chinese immigrants, compared with Chinese in China and South East Asia: Review. The Journal of Laryngology and Otology, 123, 1067–1074. https://doi.org/10.1017/S0022215109005623.

    Article  CAS  PubMed  Google Scholar 

  5. Parkin, D. M., Laara, E., & Muir, C. S. (1988). Estimates of the worldwide frequency of sixteen major cancers in 1980. International Journal of Cancer, 41, 184–197.

    Article  CAS  Google Scholar 

  6. Bray, F., et al. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians, 68, 394–424. https://doi.org/10.3322/caac.21492.

    Article  Google Scholar 

  7. Wu, Z. X., Xiang, L., Rong, J. F., He, H. L., & Li, D. (2016). Nasopharyngeal carcinoma with headaches as the main symptom: A potential diagnostic pitfall. Journal of Cancer Research and Therapeutics, 12, 209–214. https://doi.org/10.4103/0973-1482.157334.

    Article  CAS  PubMed  Google Scholar 

  8. Wang, K. H., Austin, S. A., Chen, S. H., Sonne, D. C., & Gurushanthaiah, D. (2017). Nasopharyngeal carcinoma diagnostic challenge in a nonendemic setting: Our experience with 101 patients. The Permanente Journal, 21, 16. https://doi.org/10.7812/TPP/16-180.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wildeman, M. A., et al. (2013). Primary treatment results of nasopharyngeal carcinoma (NPC) in Yogyakarta, Indonesia. PLoS One, 8, e63706. https://doi.org/10.1371/journal.pone.0063706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang, L., Chen, Q. Y., Liu, H., Tang, L. Q., & Mai, H. Q. (2013). Emerging treatment options for nasopharyngeal carcinoma. Drug Des Devel Ther, 7, 37–52. https://doi.org/10.2147/DDDT.S30753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Thompson, L. D. (2007). Update on nasopharyngeal carcinoma. Head and Neck Pathology, 1, 81–86. https://doi.org/10.1007/s12105-007-0012-7.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bray, F., Colombet, M., Mery, L., Piñeros, M., Znaor, A., Zanetti, R., & Ferlay, J. (Eds.). (2017). Cancer incidence in five continents (Vol. XI (electronic version)). Lyon: International Agency for Research on Cancer. Retrieved January 29, 2019, from http://ci5.iarc.fr

  13. Parkin, D. M., Bray, F., Ferlay, J., & Pisani, P. (2005). Global cancer statistics, 2002. CA: a Cancer Journal for Clinicians, 55, 74–108.

    Google Scholar 

  14. Wei, K. R., et al. (2017). Nasopharyngeal carcinoma incidence and mortality in China, 2013. Chinese Journal of Cancer, 36, 90. https://doi.org/10.1186/s40880-017-0257-9.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mousavi, S. M., Sundquist, J., & Hemminki, K. (2010). Nasopharyngeal and hypopharyngeal carcinoma risk among immigrants in Sweden. International Journal of Cancer, 127, 2888–2892. https://doi.org/10.1002/ijc.25287.

    Article  CAS  PubMed  Google Scholar 

  16. Buell, P. (1974). The effect of migration on the risk of nasopharyngeal cancer among Chinese. Cancer Research, 34, 1189–1191.

    CAS  PubMed  Google Scholar 

  17. Arnold, M., et al. (2013). Lower mortality from nasopharyngeal cancer in The Netherlands since 1970 with differential incidence trends in histopathology. Oral Oncology, 49, 237–243. https://doi.org/10.1016/j.oraloncology.2012.09.016.

    Article  PubMed  Google Scholar 

  18. Buell, P. (1973). Race and place in the etiology of nasopharyngeal cancer: A study based on California death certificates. International Journal of Cancer, 11, 268–272.

    Article  CAS  Google Scholar 

  19. Jeannel, D., et al. (1993). Increased risk of nasopharyngeal carcinoma among males of French origin born in Maghreb (North Africa). International Journal of Cancer, 54, 536–539.

    Article  CAS  Google Scholar 

  20. Flavell, K. J., & Murray, P. G. (2000). Hodgkin’s disease and the Epstein-Barr virus. Molecular Pathology, 53, 262–269.

    Article  CAS  Google Scholar 

  21. Ferry, J. A. (2006). Burkitt’s lymphoma: Clinicopathologic features and differential diagnosis. The Oncologist, 11, 375–383. https://doi.org/10.1634/theoncologist.11-4-375.

    Article  PubMed  Google Scholar 

  22. Cho, J., Kang, M. S., & Kim, K. M. (2016). Epstein-Barr virus-associated gastric carcinoma and specific features of the accompanying immune response. Journal of Gastric Cancer, 16, 1–7. https://doi.org/10.5230/jgc.2016.16.1.1.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rowe, M., et al. (1989). Distinction between Epstein-Barr virus type A (EBNA 2A) and type B (EBNA 2B) isolates extends to the EBNA 3 family of nuclear proteins. Journal of Virology, 63, 1031–1039.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Tzellos, S., et al. (2014). A single amino acid in EBNA-2 determines superior B lymphoblastoid cell line growth maintenance by Epstein-Barr virus type 1 EBNA-2. Journal of Virology, 88, 8743–8753. https://doi.org/10.1128/JVI.01000-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tzellos, S., & Farrell, P. J. (2012). Epstein-Barr virus sequence variation-biology and disease. Pathogens, 2, 156–174. https://doi.org/10.3390/pathogens1020156.

    Article  CAS  Google Scholar 

  26. Rickinson, A. B., Young, L. S., & Rowe, M. (1987). Influence of the Epstein-Barr virus nuclear antigen EBNA 2 on the growth phenotype of virus-transformed B cells. Journal of Virology, 5, 1310–1317.

    Google Scholar 

  27. Palser, A. L., et al. (2015). Genome diversity of Epstein-Barr virus from multiple tumor types and normal infection. Journal of Virology, 89, 5222–5237. https://doi.org/10.1128/JVI.03614-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tsai, M. H., et al. (2017). The biological properties of different Epstein-Barr virus strains explain their association with various types of cancers. Oncotarget, 8, 10238–10254. https://doi.org/10.18632/oncotarget.14380.

    Article  PubMed  Google Scholar 

  29. Kim, D. N., et al. (2013). Characterization of naturally Epstein-Barr virus-infected gastric carcinoma cell line YCCEL1. The Journal of General Virology, 94, 497–506. https://doi.org/10.1099/vir.0.045237-0.

    Article  CAS  PubMed  Google Scholar 

  30. Raab-Traub, N., & Flynn, K. (1986). The structure of the termini of the Epstein-Barr virus as a marker of clonal cellular proliferation. Cell, 47, 883–889.

    Article  CAS  Google Scholar 

  31. Hildesheim, A., et al. (2002). Association of HLA class I and II alleles and extended haplotypes with nasopharyngeal carcinoma in Taiwan. Journal of the National Cancer Institute, 94, 1780–1789.

    Article  CAS  Google Scholar 

  32. Yu, K. J., et al. (2009). Association of human leukocyte antigens with nasopharyngeal carcinoma in high-risk multiplex families in Taiwan. Human Immunology, 70, 910–914. https://doi.org/10.1016/j.humimm.2009.08.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gonzalez-Galarza, F. F., et al. (2015). Allele frequency net 2015 update: New features for HLA epitopes, KIR and disease and HLA adverse drug reaction associations. Nucleic Acids Research, 43, D784–D788. https://doi.org/10.1093/nar/gku1166.

    Article  CAS  PubMed  Google Scholar 

  34. Li, Y. Y., et al. (2017). Exome and genome sequencing of nasopharynx cancer identifies NF-kappaB pathway activating mutations. Nature Communications, 8, 14121. https://doi.org/10.1038/ncomms14121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. International Human Genome Sequencing Consortium. (2001). Nature, 409, 860.

    Article  Google Scholar 

  36. Kim, M. S., et al. (2014). A draft map of the human proteome. Nature, 509, 575–581. https://doi.org/10.1038/nature13302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Risinger, M. A., & Groden, J. (2004). Crosslinks and crosstalk: Human cancer syndromes and DNA repair defects. Cancer Cell, 6, 539–545. https://doi.org/10.1016/j.ccr.2004.12.001.

    Article  CAS  PubMed  Google Scholar 

  38. Yee Ko, J. M., et al. (2014). Multigene pathway-based analyses identify nasopharyngeal carcinoma risk associations for cumulative adverse effects of TERT-CLPTM1L and DNA double-strand breaks repair. International Journal of Cancer, 135, 1634–1645. https://doi.org/10.1002/ijc.28802.

    Article  CAS  PubMed  Google Scholar 

  39. Hui, K. F., et al. (2019). High risk Epstein-Barr virus variants characterized by distinct polymorphisms in the EBER locus are strongly associated with nasopharyngeal carcinoma. International Journal of Cancer, 144, 3031. https://doi.org/10.1002/ijc.32049.

    Article  CAS  PubMed  Google Scholar 

  40. Ng, C. C., et al. (2009). A genome-wide association study identifies ITGA9 conferring risk of nasopharyngeal carcinoma. Journal of Human Genetics, 54, 392–397. https://doi.org/10.1038/jhg.2009.49.

    Article  CAS  PubMed  Google Scholar 

  41. Bei, J. X., et al. (2010). A genome-wide association study of nasopharyngeal carcinoma identifies three new susceptibility loci. Nature Genetics, 42, 599–603. https://doi.org/10.1038/ng.601.

    Article  CAS  PubMed  Google Scholar 

  42. Tse, K. P., et al. (2009). Genome-wide association study reveals multiple nasopharyngeal carcinoma-associated loci within the HLA region at chromosome 6p21.3. American Journal of Human Genetics, 85, 194–203. https://doi.org/10.1016/j.ajhg.2009.07.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chin, Y. M., et al. (2015). HLA-A SNPs and amino acid variants are associated with nasopharyngeal carcinoma in Malaysian Chinese. International Journal of Cancer, 136, 678–687. https://doi.org/10.1002/ijc.29035.

    Article  CAS  PubMed  Google Scholar 

  44. Bei, J. X., et al. (2016). A GWAS meta-analysis and replication study identifies a novel locus within CLPTM1L/TERT associated with nasopharyngeal carcinoma in individuals of Chinese ancestry. Cancer Epidemiology, Biomarkers & Prevention, 25, 188–192. https://doi.org/10.1158/1055-9965.EPI-15-0144.

    Article  CAS  Google Scholar 

  45. Boyle, E. A., Li, Y. I., & Pritchard, J. K. (2017). An expanded view of complex traits: From polygenic to omnigenic. Cell, 169, 1177–1186. https://doi.org/10.1016/j.cell.2017.05.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Salted fish and nasopharyngeal carcinoma. (1989). Lancet, 2, 840–842.

    Google Scholar 

  47. Ning, J. P., Yu, M. C., Wang, Q. S., & Henderson, B. E. (1990). Consumption of salted fish and other risk factors for nasopharyngeal carcinoma (NPC) in Tianjin, a low-risk region for NPC in the People’s Republic of China. Journal of the National Cancer Institute, 82, 291–296.

    Article  CAS  Google Scholar 

  48. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. (2010). IARC monographs on the evaluation of carcinogenic risks to humans. Ingested nitrate and nitrite, and cyanobacterial peptide toxins. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 94(v-vii), 1–412.

    Google Scholar 

  49. Huang, D. P., Ho, J. H., Saw, D., & Teoh, T. B. (1978). Carcinoma of the nasal and paranasal regions in rats fed Cantonese salted marine fish. IARC Scientific Publications, 315–328.

    Google Scholar 

  50. Bartsch, H., & Montesano, R. (1984). Relevance of nitrosamines to human cancer. Carcinogenesis, 5, 1381–1393.

    Article  CAS  Google Scholar 

  51. Qiu, Y., et al. (2017). Contamination of Chinese salted fish with volatile N-nitrosamines as determined by QuEChERS and gas chromatography-tandem mass spectrometry. Food Chemistry, 232, 763–769. https://doi.org/10.1016/j.foodchem.2017.04.055.

    Article  CAS  PubMed  Google Scholar 

  52. Datta, N. R., Samiei, M., & Bodis, S. (2014). Radiation therapy infrastructure and human resources in low- and middle-income countries: Present status and projections for 2020. International Journal of Radiation Oncology, Biology, Physics, 89, 448–457. https://doi.org/10.1016/j.ijrobp.2014.03.002.

    Article  PubMed  Google Scholar 

  53. Sizhong, Z., Xiukung, G., & Yi, Z. (1983). Cytogenetic studies on an epithelial cell line derived from poorly differentiated nasopharyngeal carcinoma. International Journal of Cancer, 31, 587–590.

    Article  CAS  Google Scholar 

  54. Capes-Davis, A., et al. (2013). Match criteria for human cell line authentication: Where do we draw the line? International Journal of Cancer, 132, 2510–2519. https://doi.org/10.1002/ijc.27931.

    Article  CAS  PubMed  Google Scholar 

  55. Strong, M. J., et al. (2014). Comprehensive high-throughput RNA sequencing analysis reveals contamination of multiple nasopharyngeal carcinoma cell lines with HeLa cell genomes. Journal of Virology, 88, 10696–10704. https://doi.org/10.1128/JVI.01457-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chan, S. Y., et al. (2008). Authentication of nasopharyngeal carcinoma tumor lines. International Journal of Cancer, 122, 2169–2171. https://doi.org/10.1002/ijc.23374.

    Article  CAS  PubMed  Google Scholar 

  57. Geraghty, R. J., et al. (2014). Guidelines for the use of cell lines in biomedical research. British Journal of Cancer, 111, 1021–1046. https://doi.org/10.1038/bjc.2014.166.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hughes, P., Marshall, D., Reid, Y., Parkes, H., & Gelber, C. (2007). The costs of using unauthenticated, over-passaged cell lines: How much more data do we need? BioTechniques, 43, 575, 577-578, 581-572 passim.. https://doi.org/10.2144/000112598.

    Article  CAS  PubMed  Google Scholar 

  59. Young, L. S., & Dawson, C. W. (2014). Epstein-Barr virus and nasopharyngeal carcinoma. Chinese Journal of Cancer, 33, 581–590. https://doi.org/10.5732/cjc.014.10197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cheung, S. T., et al. (1999). Nasopharyngeal carcinoma cell line (C666-1) consistently harbouring Epstein-Barr virus. International Journal of Cancer, 83, 121–126.

    Article  CAS  Google Scholar 

  61. Yu, F., et al. (2017). Non-malignant epithelial cells preferentially proliferate from nasopharyngeal carcinoma biopsy cultured under conditionally reprogrammed conditions. Scientific Reports, 7, 17359. https://doi.org/10.1038/s41598-017-17628-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lin, W., et al. (2018). Establishment and characterization of new tumor xenografts and cancer cell lines from EBV-positive nasopharyngeal carcinoma. Nature Communications, 9, 4663. https://doi.org/10.1038/s41467-018-06889-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yip, Y. L., et al. (2018). Establishment of a nasopharyngeal carcinoma cell line capable of undergoing lytic Epstein-Barr virus reactivation. Laboratory Investigation, 98, 1093–1104. https://doi.org/10.1038/s41374-018-0034-7.

    Article  PubMed  Google Scholar 

  64. Ricker, E., Chowdhury, L., Yi, W., & Pernis, A. B. (2016). The RhoA-ROCK pathway in the regulation of T and B cell responses. F1000Research, 5, 2295. https://doi.org/10.12688/f1000research.7522.1.

    Article  CAS  Google Scholar 

  65. Siva Sankar, P., et al. (2017). Modeling nasopharyngeal carcinoma in three dimensions. Oncology Letters, 13, 2034–2044. https://doi.org/10.3892/ol.2017.5697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Day, C. P., Merlino, G., & Van Dyke, T. (2015). Preclinical mouse cancer models: A maze of opportunities and challenges. Cell, 163, 39–53.

    Article  CAS  Google Scholar 

  67. Hoarau-Vechot, J., Rafii, A., Touboul, C., & Pasquier, J. (2018). Halfway between 2D and animal models: Are 3D cultures the ideal tool to study cancer-microenvironment interactions? International Journal of Molecular Sciences, 19, 181. https://doi.org/10.3390/ijms19010181.

    Article  CAS  PubMed Central  Google Scholar 

  68. Muniandy, K., et al. (2016). Establishment and analysis of the 3-dimensional (3D) spheroids generated from the nasopharyngeal carcinoma cell line HK1. Trop Life Sci Res, 27, 125–130. https://doi.org/10.21315/tlsr2016.27.3.17.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Smalley, K. S., et al. (2006). Multiple signaling pathways must be targeted to overcome drug resistance in cell lines derived from melanoma metastases. Molecular Cancer Therapeutics, 5, 1136–1144. https://doi.org/10.1158/1535-7163.MCT-06-0084.

    Article  CAS  PubMed  Google Scholar 

  70. Lo, M. C., et al. (2013). Role of MIF/CXCL8/CXCR2 signaling in the growth of nasopharyngeal carcinoma tumor spheres. Cancer Letters, 335, 81–92. https://doi.org/10.1016/j.canlet.2013.01.052.

    Article  CAS  PubMed  Google Scholar 

  71. Xia, H., et al. (2010). miR-200a regulates epithelial-mesenchymal to stem-like transition via ZEB2 and beta-catenin signaling. The Journal of Biological Chemistry, 285, 36995–37004. https://doi.org/10.1074/jbc.M110.133744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ng, Y. K., et al. (2012). K252a induces anoikis-sensitization with suppression of cellular migration in Epstein-Barr virus (EBV)—associated nasopharyngeal carcinoma cells. Investigational New Drugs, 30, 48–58. https://doi.org/10.1007/s10637-010-9513-4.

    Article  CAS  PubMed  Google Scholar 

  73. Siva Sankar, P., Che Mat, M. F., Muniandy, K., Xiang, B. L. S., Ling, P. S., Hoe, S. L. L., Khoo, A. S., & Mohana-Kumaran, N. (2017). Modeling nasopharyngeal carcinoma in three dimensions. Oncology Letters, 4, 2034–2044.

    Article  Google Scholar 

  74. Xu, H., et al. (2018). Organoid technology and applications in cancer research. Journal of Hematology & Oncology, 11, 116. https://doi.org/10.1186/s13045-018-0662-9.

    Article  CAS  Google Scholar 

  75. Scanu, T., et al. (2015). Salmonella manipulation of host Signaling pathways provokes cellular transformation associated with gallbladder carcinoma. Cell Host & Microbe, 17, 763–774. https://doi.org/10.1016/j.chom.2015.05.002.

    Article  CAS  Google Scholar 

  76. Huang, D. P., Ho, J. H., Chan, W. K., Lau, W. H., & Lui, M. (1989). Cytogenetics of undifferentiated nasopharyngeal carcinoma xenografts from southern Chinese. International Journal of Cancer, 43, 936–939.

    Article  CAS  Google Scholar 

  77. Busson, P., et al. (1988). Establishment and characterization of three transplantable EBV-containing nasopharyngeal carcinomas. International Journal of Cancer, 42, 599–606.

    Article  CAS  Google Scholar 

  78. Pioche-Durieu, C., et al. (2005). In nasopharyngeal carcinoma cells, Epstein-Barr virus LMP1 interacts with galectin 9 in membrane raft elements resistant to simvastatin. Journal of Virology, 79, 13326–13337. https://doi.org/10.1128/JVI.79.21.13326-13337.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Vicat, J. M., et al. (2003). Apoptosis and TRAF-1 cleavage in Epstein-Barr virus-positive nasopharyngeal carcinoma cells treated with doxorubicin combined with a farnesyl-transferase inhibitor. Biochemical Pharmacology, 65, 423–433.

    Article  CAS  Google Scholar 

  80. Smith, P. A., Merritt, D., Barr, L., & Thorley-Lawson, D. A. (2011). An orthotopic model of metastatic nasopharyngeal carcinoma and its application in elucidating a therapeutic target that inhibits metastasis. Genes & Cancer, 2, 1023–1033. https://doi.org/10.1177/1947601912440878.

    Article  CAS  Google Scholar 

  81. Dadras, S. S., et al. (2005). Tumor lymphangiogenesis predicts melanoma metastasis to sentinel lymph nodes. Modern Pathology, 18, 1232–1242. https://doi.org/10.1038/modpathol.3800410.

    Article  PubMed  Google Scholar 

  82. Patel, V., et al. (2013). DSG3 as a biomarker for the ultrasensitive detection of occult lymph node metastasis in oral cancer using nanostructured immunoarrays. Oral Oncology, 49, 93–101. https://doi.org/10.1016/j.oraloncology.2012.08.001.

    Article  CAS  PubMed  Google Scholar 

  83. Zong, J., et al. (2015). Impact of intensity-modulated radiotherapy on nasopharyngeal carcinoma: Validation of the 7th edition AJCC staging system. Oral Oncology, 51, 254–259. https://doi.org/10.1016/j.oraloncology.2014.10.012.

    Article  PubMed  Google Scholar 

  84. Howe, K., et al. (2013). The zebrafish reference genome sequence and its relationship to the human genome. Nature, 496, 498–503. https://doi.org/10.1038/nature12111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Patton, E. E., et al. (2005). BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Current Biology, 15, 249–254. https://doi.org/10.1016/j.cub.2005.01.031.

    Article  CAS  PubMed  Google Scholar 

  86. White, R. M., et al. (2011). DHODH modulates transcriptional elongation in the neural crest and melanoma. Nature, 471, 518–522. https://doi.org/10.1038/nature09882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Agrawal, N., et al. (2011). Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science, 333, 1154–1157. https://doi.org/10.1126/science.1206923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lin, D. C., et al. (2014). The genomic landscape of nasopharyngeal carcinoma. Nature Genetics, 46, 866–871. https://doi.org/10.1038/ng.3006.

    Article  CAS  PubMed  Google Scholar 

  89. Cancer Genome Atlas Network. (2015). Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature, 517, 576–582. https://doi.org/10.1038/nature14129.

    Article  CAS  Google Scholar 

  90. Chow, Y. P., et al. (2017). Exome sequencing identifies potentially druggable mutations in nasopharyngeal carcinoma. Scientific Reports, 7, 42980. https://doi.org/10.1038/srep42980.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Haldi, M., Ton, C., Seng, W. L., & McGrath, P. (2006). Human melanoma cells transplanted into zebrafish proliferate, migrate, produce melanin, form masses and stimulate angiogenesis in zebrafish. Angiogenesis, 9, 139–151. https://doi.org/10.1007/s10456-006-9040-2.

    Article  PubMed  Google Scholar 

  92. Fior, R., et al. (2017). Single-cell functional and chemosensitive profiling of combinatorial colorectal therapy in zebrafish xenografts. Proceedings of the National Academy of Sciences of the United States of America, 114, E8234–E8243. https://doi.org/10.1073/pnas.1618389114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Harfouche, R., et al. (2009). Nanoparticle-mediated targeting of phosphatidylinositol-3-kinase signaling inhibits angiogenesis. Angiogenesis, 12, 325–338. https://doi.org/10.1007/s10456-009-9154-4.

    Article  CAS  PubMed  Google Scholar 

  94. Berens, E. B., Sharif, G. M., Wellstein, A., & Glasgow, E. (2016). Testing the vascular invasive ability of cancer cells in zebrafish (Danio Rerio). Journal of Visualized Experiments. https://doi.org/10.3791/55007.

  95. Hall, C., Flores, M. V., Storm, T., Crosier, K., & Crosier, P. (2007). The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish. BMC Developmental Biology, 7, 42. https://doi.org/10.1186/1471-213X-7-42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ellett, F., Pase, L., Hayman, J. W., Andrianopoulos, A., & Lieschke, G. J. (2011). mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish. Blood, 117, e49–e56. https://doi.org/10.1182/blood-2010-10-314120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Okuda, K. S., et al. (2012). lyve1 expression reveals novel lymphatic vessels and new mechanisms for lymphatic vessel development in zebrafish. Development, 139, 2381–2391. https://doi.org/10.1242/dev.077701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Follain, G., et al. (2018). Hemodynamic forces tune the arrest, adhesion, and extravasation of circulating tumor cells. Developmental Cell, 45, 33–52 e12. https://doi.org/10.1016/j.devcel.2018.02.015.

    Article  CAS  PubMed  Google Scholar 

  99. Liu, T. L., et al. (2018). Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms. Science, 360, eaaq1392. https://doi.org/10.1126/science.aaq1392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lin, J., et al. (2016). A clinically relevant in vivo zebrafish model of human multiple myeloma to study preclinical therapeutic efficacy. Blood, 128, 249–252. https://doi.org/10.1182/blood-2016-03-704460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gaudenzi, G., et al. (2017). Patient-derived xenograft in zebrafish embryos: A new platform for translational research in neuroendocrine tumors. Endocrine, 57, 214–219. https://doi.org/10.1007/s12020-016-1048-9.

    Article  CAS  PubMed  Google Scholar 

  102. Wu, J. Q., et al. (2017). Patient-derived xenograft in zebrafish embryos: A new platform for translational research in gastric cancer. Journal of Experimental & Clinical Cancer Research, 36, 160. https://doi.org/10.1186/s13046-017-0631-0.

    Article  CAS  Google Scholar 

  103. Okuda, K. S., et al. (2015). A zebrafish model of inflammatory lymphangiogenesis. Biology Open, 4, 1270–1280. https://doi.org/10.1242/bio.013540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Benasso, M. (2013). Induction chemotherapy for squamous cell head and neck cancer: A neverending story. Oral Oncology, 49, 747–752. https://doi.org/10.1016/j.oraloncology.2013.04.007.

    Article  CAS  PubMed  Google Scholar 

  105. Sonis, S. T. (2009). Mucositis: The impact, biology and therapeutic opportunities of oral mucositis. Oral Oncology, 45, 1015–1020. https://doi.org/10.1016/j.oraloncology.2009.08.006.

    Article  CAS  PubMed  Google Scholar 

  106. Sridharan, S., Dal Pra, A., Catton, C., Bristow, R. G., & Warde, P. (2013). Locally advanced prostate cancer: Current controversies and optimisation opportunities. Clinical Oncology (Royal College of Radiologists), 25, 499–505. https://doi.org/10.1016/j.clon.2013.04.004.

    Article  CAS  Google Scholar 

  107. Nieboer, P., de Vries, E. G., Mulder, N. H., & van der Graaf, W. T. (2005). Relevance of high-dose chemotherapy in solid tumours. Cancer Treatment Reviews, 31, 210–225. https://doi.org/10.1016/j.ctrv.2005.02.002.

    Article  CAS  PubMed  Google Scholar 

  108. Specenier, P. M., & Vermorken, J. B. (2009). Current concepts for the management of head and neck cancer: Chemotherapy. Oral Oncology, 45, 409–415. https://doi.org/10.1016/j.oraloncology.2008.05.014.

    Article  CAS  PubMed  Google Scholar 

  109. Larkin, J., et al. (2015). Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. The New England Journal of Medicine, 373, 23–34. https://doi.org/10.1056/NEJMoa1504030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tentler, J. J., et al. (2012). Patient-derived tumour xenografts as models for oncology drug development. Nature Reviews. Clinical Oncology, 9, 338–350. https://doi.org/10.1038/nrclinonc.2012.61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yang, M., et al. (2013). Overcoming erlotinib resistance with tailored treatment regimen in patient-derived xenografts from naive Asian NSCLC patients. International Journal of Cancer, 132, E74–E84. https://doi.org/10.1002/ijc.27813.

    Article  CAS  PubMed  Google Scholar 

  112. Brinster, R. L., et al. (1984). Transgenic mice harboring SV40 T-antigen genes develop characteristic brain tumors. Cell, 37, 367–379.

    Article  CAS  Google Scholar 

  113. Guy, C. T., Cardiff, R. D., & Muller, W. J. (1992). Induction of mammary tumors by expression of polyomavirus middle T oncogene: A transgenic mouse model for metastatic disease. Molecular and Cellular Biology, 12, 954–961.

    Article  CAS  Google Scholar 

  114. Platt, R. J., et al. (2014). CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell, 159, 440–455. https://doi.org/10.1016/j.cell.2014.09.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Agliano, A., et al. (2008). Human acute leukemia cells injected in NOD/LtSz-scid/IL-2Rgamma null mice generate a faster and more efficient disease compared to other NOD/scid-related strains. International Journal of Cancer, 123, 2222–2227. https://doi.org/10.1002/ijc.23772.

    Article  CAS  PubMed  Google Scholar 

  116. Gradilone, A., Spadaro, A., Gianni, W., Agliano, A. M., & Gazzaniga, P. (2008). Induction of multidrug resistance proteins in lymphocytes from patients with arthritic disorders. Clinical and Experimental Medicine, 8, 229–230. https://doi.org/10.1007/s10238-008-0008-y.

    Article  PubMed  Google Scholar 

  117. Topalian, S. L., Solomon, D., & Rosenberg, S. A. (1989). Tumor-specific cytolysis by lymphocytes infiltrating human melanomas. Journal of Immunology, 142, 3714–3725.

    CAS  Google Scholar 

  118. Barth, R. J., Jr., Mule, J. J., Asher, A. L., Sanda, M. G., & Rosenberg, S. A. (1991). Identification of unique murine tumor associated antigens by tumor infiltrating lymphocytes using tumor specific secretion of interferon-gamma and tumor necrosis factor. Journal of Immunological Methods, 140, 269–279.

    Article  Google Scholar 

  119. Boon, T., Cerottini, J. C., Van den Eynde, B., van der Bruggen, P., & Van Pel, A. (1994). Tumor antigens recognized by T lymphocytes. Annual Review of Immunology, 12, 337–365. https://doi.org/10.1146/annurev.iy.12.040194.002005.

    Article  CAS  PubMed  Google Scholar 

  120. Boon, T., Gajewski, T. F., & Coulie, P. G. (1995). From defined human tumor antigens to effective immunization? Immunology Today, 16, 334–336.

    Article  CAS  Google Scholar 

  121. Eggermont, A. M., & Robert, C. (2011). New drugs in melanoma: it’s a whole new world. European Journal of Cancer, 47, 2150–2157. https://doi.org/10.1016/j.ejca.2011.06.052.

    Article  PubMed  Google Scholar 

  122. Smalley, K. S., & McArthur, G. A. (2012). The current state of targeted therapy in melanoma: This time it’s personal. Seminars in Oncology, 39, 204–214. https://doi.org/10.1053/j.seminoncol.2012.01.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Farolfi, A., et al. (2012). Ipilimumab in advanced melanoma: Reports of long-lasting responses. Melanoma Research, 22, 263–270. https://doi.org/10.1097/CMR.0b013e328353e65c.

    Article  CAS  PubMed  Google Scholar 

  124. Mackensen, A., et al. (2006). Phase I study of adoptive T-cell therapy using antigen-specific CD8+ T cells for the treatment of patients with metastatic melanoma. Journal of Clinical Oncology, 24, 5060–5069. https://doi.org/10.1200/JCO.2006.07.1100.

    Article  CAS  PubMed  Google Scholar 

  125. Rosenberg, S. A., Restifo, N. P., Yang, J. C., Morgan, R. A., & Dudley, M. E. (2008). Adoptive cell transfer: A clinical path to effective cancer immunotherapy. Nature Reviews. Cancer, 8, 299–308. https://doi.org/10.1038/nrc2355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lopez, M. N., et al. (2009). Prolonged survival of dendritic cell-vaccinated melanoma patients correlates with tumor-specific delayed type IV hypersensitivity response and reduction of tumor growth factor beta-expressing T cells. Journal of Clinical Oncology, 27, 945–952. https://doi.org/10.1200/JCO.2008.18.0794.

    Article  CAS  PubMed  Google Scholar 

  127. Gonzalez, F. E., et al. (2014). Tumor cell lysates as immunogenic sources for cancer vaccine design. Human Vaccines & Immunotherapeutics, 10, 3261–3269. https://doi.org/10.4161/21645515.2014.982996.

    Article  Google Scholar 

  128. Keilholz, U., et al. (2005). Dacarbazine, cisplatin, and interferon-alfa-2b with or without interleukin-2 in metastatic melanoma: A randomized phase III trial (18951) of the European Organisation for Research and Treatment of Cancer Melanoma Group. Journal of Clinical Oncology, 23, 6747–6755. https://doi.org/10.1200/JCO.2005.03.202.

    Article  CAS  PubMed  Google Scholar 

  129. Agarwala, S. S., et al. (2002). Results from a randomized phase III study comparing combined treatment with histamine dihydrochloride plus interleukin-2 versus interleukin-2 alone in patients with metastatic melanoma. Journal of Clinical Oncology, 20, 125–133. https://doi.org/10.1200/JCO.2002.20.1.125.

    Article  CAS  PubMed  Google Scholar 

  130. Bajetta, E., et al. (1994). Multicenter randomized trial of dacarbazine alone or in combination with two different doses and schedules of interferon alfa-2a in the treatment of advanced melanoma. Journal of Clinical Oncology, 12, 806–811.

    Article  CAS  Google Scholar 

  131. Dudley, M. E., et al. (2005). Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. Journal of Clinical Oncology, 23, 2346–2357. https://doi.org/10.1200/JCO.2005.00.240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Eshhar, Z., Waks, T., & Gross, G. (2014). The emergence of T-bodies/CAR T cells. Cancer Journal, 20, 123–126. https://doi.org/10.1097/PPO.0000000000000027.

    Article  CAS  Google Scholar 

  133. Rosenberg, S. A., & Restifo, N. P. (2015). Adoptive cell transfer as personalized immunotherapy for human cancer. Science, 348, 62–68. https://doi.org/10.1126/science.aaa4967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Guida, M., Pisconte, S., & Colucci, G. (2012). Metastatic melanoma: The new era of targeted therapy. Expert Opinion on Therapeutic Targets, 16(Suppl 2), S61–S70. https://doi.org/10.1517/14728222.2011.645807.

    Article  CAS  PubMed  Google Scholar 

  135. Amaria, R. N., Lewis, K. D., & Gonzalez, R. (2011). Therapeutic options in cutaneous melanoma: Latest developments. Therapeutic Advances in Medical Oncology, 3, 245–251. https://doi.org/10.1177/1758834011415308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hodi, F. S., et al. (2010). Improved survival with ipilimumab in patients with metastatic melanoma. The New England Journal of Medicine, 363, 711–723. https://doi.org/10.1056/NEJMoa1003466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Brahmer, J. R., et al. (2010). Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: Safety, clinical activity, pharmacodynamics, and immunologic correlates. Journal of Clinical Oncology, 28, 3167–3175. https://doi.org/10.1200/JCO.2009.26.7609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Simeone, E., & Ascierto, P. A. (2012). Immunomodulating antibodies in the treatment of metastatic melanoma: The experience with anti-CTLA-4, anti-CD137, and anti-PD1. Journal of Immunotoxicology, 9, 241–247. https://doi.org/10.3109/1547691X.2012.678021.

    Article  CAS  PubMed  Google Scholar 

  139. Pardoll, D. M. (2012). The blockade of immune checkpoints in cancer immunotherapy. Nature Reviews. Cancer, 12, 252–264. https://doi.org/10.1038/nrc3239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kyte, J. A., et al. (2007). T cell responses in melanoma patients after vaccination with tumor-mRNA transfected dendritic cells. Cancer Immunology, Immunotherapy, 56, 659–675. https://doi.org/10.1007/s00262-006-0222-y.

    Article  CAS  PubMed  Google Scholar 

  141. Sabado, R. L., & Bhardwaj, N. (2013). Dendritic cell immunotherapy. Annals of the New York Academy of Sciences, 1284, 31–45. https://doi.org/10.1111/nyas.12125.

    Article  CAS  PubMed  Google Scholar 

  142. Aguilera, R., et al. (2011). Heat-shock induction of tumor-derived danger signals mediates rapid monocyte differentiation into clinically effective dendritic cells. Clinical Cancer Research, 17, 2474–2483. https://doi.org/10.1158/1078-0432.CCR-10-2384.

    Article  CAS  PubMed  Google Scholar 

  143. O’Rourke, M. G., et al. (2003). Durable complete clinical responses in a phase I/II trial using an autologous melanoma cell/dendritic cell vaccine. Cancer Immunology, Immunotherapy, 52, 387–395. https://doi.org/10.1007/s00262-003-0375-x.

    Article  PubMed  Google Scholar 

  144. Reyes, D., et al. (2013). Tumour cell lysate-loaded dendritic cell vaccine induces biochemical and memory immune response in castration-resistant prostate cancer patients. British Journal of Cancer, 109, 1488–1497. https://doi.org/10.1038/bjc.2013.494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Veldeman, L., et al. (2008). Evidence behind use of intensity-modulated radiotherapy: A systematic review of comparative clinical studies. The Lancet Oncology, 9, 367–375. https://doi.org/10.1016/S1470-2045(08)70098-6.

    Article  PubMed  Google Scholar 

  146. Tan, W. L., et al. (2016). Advances in systemic treatment for nasopharyngeal carcinoma. Chinese Clinical Oncology, 5, 21. https://doi.org/10.21037/cco.2016.03.03.

    Article  PubMed  Google Scholar 

  147. Lin, S., et al. (2012). Combined high-dose radiation therapy and systemic chemotherapy improves survival in patients with newly diagnosed metastatic nasopharyngeal cancer. American Journal of Clinical Oncology, 35, 474–479. https://doi.org/10.1097/COC.0b013e31821a9452.

    Article  CAS  PubMed  Google Scholar 

  148. Xu, T., et al. (2015). Weekly cetuximab concurrent with IMRT aggravated radiation-induced oral mucositis in locally advanced nasopharyngeal carcinoma: Results of a randomized phase II study. Oral Oncology, 51, 875–879. https://doi.org/10.1016/j.oraloncology.2015.06.008.

    Article  CAS  PubMed  Google Scholar 

  149. Zhai, R. P., et al. (2015). Experience with combination of nimotuzumab and intensity-modulated radiotherapy in patients with locoregionally advanced nasopharyngeal carcinoma. OncoTargets and Therapy, 8, 3383–3390. https://doi.org/10.2147/OTT.S93238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Zhang, H. J., et al. (2018). Addition of bevacizumab to systemic therapy for locally advanced and metastatic nasopharyngeal carcinoma. Oncology Letters, 15, 7799–7805. https://doi.org/10.3892/ol.2018.8284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Stoker, S. D., et al. (2013). Current treatment options for local residual nasopharyngeal carcinoma. Current Treatment Options in Oncology, 14, 475–491. https://doi.org/10.1007/s11864-013-0261-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ma, B. B. Y., et al. (2018). Antitumor activity of nivolumab in recurrent and metastatic nasopharyngeal carcinoma: an international, multicenter study of the Mayo Clinic phase 2 consortium (NCI-9742). Journal of Clinical Oncology, 36, 1412–1418. https://doi.org/10.1200/JCO.2017.77.0388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Hsu, C., et al. (2017). Safety and antitumor activity of pembrolizumab in patients with programmed death-ligand 1-positive nasopharyngeal carcinoma: Results of the KEYNOTE-028 study. Journal of Clinical Oncology, 35, 4050–4056. https://doi.org/10.1200/JCO.2017.73.3675.

    Article  CAS  PubMed  Google Scholar 

  154. Chia, W. K., et al. (2014). Adoptive T-cell transfer and chemotherapy in the first-line treatment of metastatic and/or locally recurrent nasopharyngeal carcinoma. Molecular Therapy, 22, 132–139. https://doi.org/10.1038/mt.2013.242.

    Article  CAS  PubMed  Google Scholar 

  155. Huang, J., et al. (2017). Epstein-Barr virus-specific adoptive immunotherapy for recurrent, metastatic nasopharyngeal carcinoma. Cancer, 123, 2642–2650. https://doi.org/10.1002/cncr.30541.

    Article  CAS  PubMed  Google Scholar 

  156. Tang, M., et al. (2010). Haplotype-dependent HLA susceptibility to nasopharyngeal carcinoma in a Southern Chinese population. Genes and Immunity, 11, 334–342. https://doi.org/10.1038/gene.2009.109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, H.M., Okuda, K.S., González, F.E., Patel, V. (2019). Current Perspectives on Nasopharyngeal Carcinoma. In: Rhim, J., Dritschilo, A., Kremer, R. (eds) Human Cell Transformation. Advances in Experimental Medicine and Biology, vol 1164. Springer, Cham. https://doi.org/10.1007/978-3-030-22254-3_2

Download citation

Publish with us

Policies and ethics