Skip to main content

Advertisement

Log in

Patient-derived xenograft in zebrafish embryos: a new platform for translational research in neuroendocrine tumors

  • Endocrine Methods and Techniques
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Preclinical research on neuroendocrine tumors usually involves immortalized cell lines and few animal models. In the present study we described an in vivo model based on patient-derived xenografts of neuroendocrine tumor cells in zebrafish (Danio rerio) embryos, allowing a rapid analysis of the angiogenic and invasive potential. Patient-derived neuroendocrine tumor cells were transplanted in 48 hours post-fertilization Tg(fli1a:EGFP) y1 zebrafish embryos that express enhanced green fluorescent protein in the entire vasculature. Neuroendocrine tumor cells, stained with CM-Dil, were injected into the subperidermal (perivitelline) space, close to the developing subintestinal venous plexus. A proper control group, represented by zebrafish injected with only D-PBS, was included in this study. Angiogenic and invasive potentials of each patient-derived xenograft were evaluated by both epifluorescence and confocal microscopes. Six out of eight neuroendocrine tumor samples were successfully transplanted in zebrafish embryos. Although the implanted tumor mass had a limited size (about 100 cells for embryos), patient-derived xenografts showed pro-angiogenic (5 cases) and invasive (6 cases) behaviors within 48 hours post injection. Patient-derived xenograft in zebrafish embryos appears to be a reliable in vivo preclinical model for neuroendocrine tumors, tumors with often limited cell availability. The rapidity of this procedure makes our model a promising platform to perform preclinical drug screening and opens a new scenario for personalized treatment in patients with neuroendocrine tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. K.I. Alexandraki, G. Kaltsas, Gastroenteropancreatic neuroendocrine tumors: new insights in the diagnosis and therapy. Endocrine 41(1), 40–52 (2012). doi:10.1007/s12020-011-9562-2

    Article  CAS  PubMed  Google Scholar 

  2. F. Grillo, M. Albertelli, F. Annunziata, M. Boschetti, A. Caff, S. Pigozzi, D. Ferone, L. Mastracci: Twenty years of gastroenteropancreatic neuroendocrine tumors: is reclassification worthwhile and feasible? Endocrine (2015). doi:10.1007/s12020-015-0734-310.1007/s12020-015-0734-3

  3. A. Walenkamp, G. Crespo, F. Fierro Maya, R. Fossmark, P. Igaz, A. Rinke, G. Tamagno, G. Vitale, K. Oberg, T. Meyer, Hallmarks of gastrointestinal neuroendocrine tumours: implications for treatment. Endocr. Relat. Cancer 21(6), R445–R460 (2014). doi:10.1530/ERC-14-0106ERC-14-0106

    Article  PubMed  Google Scholar 

  4. V. Babu, N. Paul, R. Yu, Animal models and cell lines of pancreatic neuroendocrine tumors. Pancreas 42(6), 912–923 (2013). doi:10.1097/MPA.0b013e31827ae99300006676-201308000-00003

    Article  CAS  PubMed  Google Scholar 

  5. K.E. Lines, M. Stevenson, R.V. Thakker, Animal models of pituitary neoplasia. Mol. Cell. Endocrinol. 421, 68–81 (2016). doi:10.1016/j.mce.2015.08.024S0303-7207(15)30064-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. T. Wiedemann, N.S. Pellegata, Animal models of multiple endocrine neoplasia. Mol. Cell. Endocrinol. 421, 49–59 (2016). doi:10.1016/j.mce.2015.07.004S0303-7207(15)30013-7

    Article  CAS  PubMed  Google Scholar 

  7. R. White, K. Rose, L. Zon, Zebrafish cancer: the state of the art and the path forward. Nat. Rev. Cancer 13(9), 624–636 (2013). doi:10.1038/nrc3589nrc3589

    Article  CAS  PubMed  Google Scholar 

  8. G. Vitale, G. Gaudenzi, A. Dicitore, F. Cotelli, D. Ferone, L. Persani, Zebrafish as an innovative model for neuroendocrine tumors. Endocr. Relat. Cancer 21(1), R67–R83 (2014). doi:10.1530/ERC-13-0388ERC-13-0388

    Article  CAS  PubMed  Google Scholar 

  9. N.D. Lawson, B.M. Weinstein, In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev. Biol. 248(2), 307–318 (2002). doi:S0012160602907116

    Article  CAS  PubMed  Google Scholar 

  10. S.Y. Choi, D. Lin, P.W. Gout, C.C. Collins, Y. Xu, Y. Wang, Lessons from patient-derived xenografts for better in vitro modeling of human cancer. Adv. Drug Deliv. Rev. 79–80, 222–237 (2014). doi:10.1016/j.addr.2014.09.009S0169-409X(14)00207-5

    Article  PubMed  Google Scholar 

  11. J.W. Cassidy, C. Caldas, A. Bruna, Maintaining Tumor heterogeneity in patient-derived tumor xenografts. Cancer Res. 75(15), 2963–2968 (2015). doi:10.1158/0008-5472.CAN-15-07270008-5472.CAN-15-0727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. C.B. Kimmel, W.W. Ballard, S.R. Kimmel, B. Ullmann, T.F. Schilling, Stages of embryonic development of the zebrafish. Dev. Dyn. 203(3), 253–310 (1995). doi:10.1002/aja.1002030302

    Article  CAS  PubMed  Google Scholar 

  13. T. Florio, F. Barbieri, R. Spaziante, G. Zona, L.J. Hofland, P.M. van Koetsveld, R.A. Feelders, G.K. Stalla, M. Theodoropoulou, M.D. Culler, J. Dong, J.E. Taylor, J.P. Moreau, A. Saveanu, G. Gunz, H. Dufour, P. Jaquet, Efficacy of a dopamine-somatostatin chimeric molecule, BIM-23A760, in the control of cell growth from primary cultures of human non-functioning pituitary adenomas: a multi-center study. Endocr. Relat. Cancer 15(2), 583–596 (2008). doi:10.1677/ERC-07-027115/2/583

    Article  CAS  PubMed  Google Scholar 

  14. A. Mohamed, M.P. Blanchard, M. Albertelli, F. Barbieri, T. Brue, P. Niccoli, J.R. Delpero, G. Monges, S. Garcia, D. Ferone, T. Florio, A. Enjalbert, V. Moutardier, A. Schonbrunn, C. Gerard, A. Barlier, A. Saveanu, Pasireotide and octreotide antiproliferative effects and sst2 trafficking in human pancreatic neuroendocrine tumor cultures. Endocr. Relat. Cancer 21(5), 691–704 (2014). doi:10.1530/ERC-14-0086ERC-14-0086

    Article  CAS  PubMed  Google Scholar 

  15. S. Nicoli, M. Presta, The zebrafish/tumor xenograft angiogenesis assay. Nat. Protoc. 2(11), 2918–2923 (2007). doi:nprot.2007.412 [pii]10.1038/nprot.2007.412

    Article  CAS  PubMed  Google Scholar 

  16. M. Schartl, Beyond the zebrafish: diverse fish species for modeling human disease. Dis. Model. Mech. 7(2), 181–192 (2014). doi:10.1242/dmm.012245dmm.012245

    Article  PubMed  Google Scholar 

  17. J. Wertman, C.J. Veinotte, G. Dellaire, J.N. Berman, The zebrafish xenograft platform: evolution of a novel cancer model and preclinical screening tool. Adv. Exp. Med. Biol. 916, 289–314 (2016). doi:10.1007/978-3-319-30654-4_13

    Article  PubMed  Google Scholar 

  18. I.J. Marques, F.U. Weiss, D.H. Vlecken, C. Nitsche, J. Bakkers, A.K. Lagendijk, L.I. Partecke, C.D. Heidecke, M.M. Lerch, C.P. Bagowski, Metastatic behaviour of primary human tumours in a zebrafish xenotransplantation model. BMC Cancer 9, 128 (2009). doi:10.1186/1471-2407-9-1281471-2407-9-128

    Article  PubMed  PubMed Central  Google Scholar 

  19. C.J. Veinotte, G. Dellaire, J.N. Berman, Hooking the big one: the potential of zebrafish xenotransplantation to reform cancer drug screening in the genomic era. Dis. Model. Mech. 7(7), 745–754 (2014). doi:10.1242/dmm.0157847/7/745

    Article  PubMed  PubMed Central  Google Scholar 

  20. J. Barriuso, R. Nagaraju, A. Hurlstone, Zebrafish: a new companion for translational research in oncology. Clin. Cancer Res. 21(5), 969–975 (2015). doi:10.1158/1078-0432.CCR-14-29211078-0432.CCR-14-2921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. M. Konantz, T.B. Balci, U.F. Hartwig, G. Dellaire, M.C. Andre, J.N. Berman, C. Lengerke, Zebrafish xenografts as a tool for in vivo studies on human cancer. Ann. N. Y. Acad. Sci. 1266, 124–137 (2012). doi:10.1111/j.1749-6632.2012.06575.x

    Article  PubMed  Google Scholar 

  22. C.L. Morton, P.J. Houghton, Establishment of human tumor xenografts in immunodeficient mice. Nat. Protoc. 2(2), 247–250 (2007). doi:nprot.2007.25 [pii]10.1038/nprot.2007.25

    Article  CAS  PubMed  Google Scholar 

  23. M.J. Puchner, D.K. Ludecke, W. Saeger, H.D. Herrmann, Use of athymic nude mice for in vivo studies of human growth-hormone-secreting pituitary adenomas. Horm. Res. 35(5), 198–204 (1991)

    Article  CAS  PubMed  Google Scholar 

  24. J.H. Yang, J. Hu, L. Wan, L.J. Chen, Barbigerone inhibits tumor angiogenesis, growth and metastasis in melanoma. Asian Pac. J. Cancer Prev. 15(1), 167–174 (2014)

    Article  PubMed  Google Scholar 

  25. C. Zhao, X. Wang, Y. Zhao, Z. Li, S. Lin, Y. Wei, H. Yang, A novel xenograft model in zebrafish for high-resolution investigating dynamics of neovascularization in tumors. PLoS One 6(7), e21768 (2011). doi:10.1371/journal.pone.0021768PONE-D-11-08517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Italian Ministry of Education, Research and University (FIRB RBAP11884M).

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaudenzi, G., Albertelli, M., Dicitore, A. et al. Patient-derived xenograft in zebrafish embryos: a new platform for translational research in neuroendocrine tumors. Endocrine 57, 214–219 (2017). https://doi.org/10.1007/s12020-016-1048-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-016-1048-9

Keywords

Navigation