Skip to main content
Log in

Human melanoma cells transplanted into zebrafish proliferate, migrate, produce melanin, form masses and stimulate angiogenesis in zebrafish

  • Original paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

In this research, we optimized parameters for xenotransplanting WM-266-4, a metastatic melanoma cell line, including zebrafish site and stage for transplantation, number of cells, injection method, and zebrafish incubation temperature. Melanoma cells proliferated, migrated and formed masses in vivo. We transplanted two additional cancer cell lines, SW620, a colorectal cancer cell line, and FG CAS/Crk, a pancreatic cancer cell line and these human cancers also formed masses in zebrafish. We also transplanted CCD-1092Sk, a human fibroblast cell line established from normal foreskin and this cell line migrated, but did not proliferate or form masses. We quantified the number of proliferating melanoma and normal skin fibroblasts by dissociating xenotransplant zebrafish, dispensing an aliquot of CM-DiI labeled human cells from each zebrafish onto a hemocytometer slide and then visually counting the number of fluorescently labeled cancer cells. Since zebrafish are transparent until approximately 30 dpf, the interaction of labeled melanoma cells and zebrafish endothelial cells (EC) can be visualized by whole-mount immunochemical staining. After staining with Phy-V, a mouse anti-zebrafish monoclonal antibody (mAb) that specifically labels activated EC and angioblasts, using immunohistology and 2-photon microscopy, we observed activated zebrafish EC embedded in human melanoma cell masses. The zebrafish model offers a rapid efficient approach for assessing human cancer cells at various stages of tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Alexa 488-Phy-V:

Alexa 488 conjugated directly with Phy-V monoclonal antibody

Alexa 488-2nd Ab:

Alexa 488 conjugated secondary antibody

BSA:

Bovine serum albumin

DMSO:

Dimethyl sulfoxide

dpf:

Days post fertilization

dpi:

Days post injection

EC:

Vascular endothelial cell

hpf:

Hours post fertilization

hpi:

Hours post injection

HBSS:

Hanks’ balanced salt solution

mAb:

Monoclonal antibody

Phy-V:

A mouse, anti-zebrafish monoclonal antibody that specifically labels EC and angioblasts

msec:

Millisecond

PFA:

Paraformaldehyde in PBST

PBS:

Phosphate buffered saline, pH 7.0

PBST:

PBS containing 0.1% Tween-20

psi:

Pounds per square inch

References

  1. Grabher C, Look AT (2006) Fishing for cancer models. Nat Biotechnol 24(1):45–46

    Article  PubMed  CAS  Google Scholar 

  2. Stern HM, Zon LI (2003) Cancer genetics and drug discovery in the zebrafish. Nat Rev Cancer 3(7):533–539

    Article  PubMed  CAS  Google Scholar 

  3. Yang HW, Kutok JL, Lee NH et al (2004) Targeted expression of human MYCN selectively causes pancreatic neuroendocrine tumors in transgenic zebrafish. Cancer Res 64(20):7256–7262

    Article  PubMed  CAS  Google Scholar 

  4. Patton EE, Widlund HR, Kutok JL et al (2005) BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr Biol 15(3):249–254

    Article  PubMed  CAS  Google Scholar 

  5. Lam SH, Wu YL, Vega VB et al (2006) Conservation of gene expression signatures between zebrafish and human liver tumors and tumor progression. Nat Biotechnol 24(1):73–75

    Article  PubMed  CAS  Google Scholar 

  6. Westerfield M (1993) The zebrafish book: a guide for the laboratory use of zebrafish. The University of Oregon Press, Eugene

    Google Scholar 

  7. Ho RK, Kane DA (1990) Cell-autonomous action of zebrafish spt-1 mutation in specific mesodermal precursors. Nature 348(6303):728–730

    Article  PubMed  CAS  Google Scholar 

  8. Seng WL, Eng K, Lee J et al (2004) Use of a monoclonal antibody specific for activated endothelial cells to quantitate angiogenesis in vivo in zebrafish after drug treatment. Angiogenesis 7(3):243–253

    Article  PubMed  CAS  Google Scholar 

  9. Detrich HW, Westerfield M, Zon L (1999) The zebrafish biology. Meth Cell Biol 59:3–10

    Google Scholar 

  10. Serbedzija G, McGrath P Methods for introducing heterologous cells into fish. US Patent 6,761,876, published 2002, issued 2004

  11. Lugassy C, Kleinman HK, Engbring JA et al (2004) Pericyte-like location of GFP-tagged melanoma cells: ex vivo and in vivo studies of extravascular migratory metastasis. Am J Pathol 164(4):1191–1198

    PubMed  Google Scholar 

  12. Barnhill RL, Lugassy C (2004) Angiotropic malignant melanoma and extravascular migratory metastasis: description of 36 cases with emphasis on a new mechanism of tumour spread. Pathology 36(5):485–490

    Article  PubMed  Google Scholar 

  13. Isogai S, Horiguchi M, Weinstein BM (2001) The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. Dev Biol 230(2):278–301

    Article  PubMed  CAS  Google Scholar 

  14. Asahara T, Murohara T, Sullivan A et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302):964–967

    Article  PubMed  CAS  Google Scholar 

  15. Annabi B, Naud E, Lee YT et al (2004) Vascular progenitors derived from murine bone marrow stromal cells are regulated by fibroblast growth factor and are avidly recruited by vascularizing tumors. J Cell Biochem 91(6):1146–1158

    Article  PubMed  CAS  Google Scholar 

  16. Lee LM, Seftor EA, Bonde G et al (2005) The fate of human malignant melanoma cells transplanted into zebrafish embryos: assessment of migration and cell division in the absence of tumor formation. Dev Dyn 233(4):1560–1570

    Article  PubMed  CAS  Google Scholar 

  17. Kelland LR (2004) Of mice and men: values and liabilities of the athymic nude mouse model in anticancer drug development. Eur J Cancer 40(6):827–836

    Article  PubMed  CAS  Google Scholar 

  18. Yang EB, Tang WY, Zhang K et al (1997) Norcantharidin inhibits growth of human HepG2 cell-transplanted tumor in nude mice and prolongs host survival. Cancer Lett 117(1):93–98

    Article  PubMed  CAS  Google Scholar 

  19. Greiner DL, Hesselton RA, Shultz LD (1998) SCID mouse models of human stem cell engraftment. Stem Cells 16(3):166–177

    Article  PubMed  CAS  Google Scholar 

  20. Katsanis E, Weisdorf DJ, Miller JS (1998) Activated peripheral blood mononuclear cells from patients receiving subcutaneous interleukin-2 following autologous stem cell transplantation prolong survival of SCID mice bearing human lymphoma. Bone Marrow Transplant 22(2):185–191

    Article  PubMed  CAS  Google Scholar 

  21. van Weerden WM, Romijn JC (2000) Use of nude mouse xenograft models in prostate cancer research. Prostate 43(4):263–271

    Article  PubMed  Google Scholar 

  22. Willett CE, Zapata AG, Hopkins N et al (1997) Expression of zebrafish rag genes during early development identifies the thymus. Dev Biol 182(2):331–341

    Article  PubMed  CAS  Google Scholar 

  23. Danilova N, Hohman VS, Sacher F et al (2004) T cells and the thymus in developing zebrafish. Dev Comp Immunol 28(7–8):755–767

    Article  PubMed  CAS  Google Scholar 

  24. Parng C, Seng WL, Semino C et al (2002) Zebrafish: a preclinical model for drug screening. Assay Drug Dev Technol 1(1 Pt 1):41–48

    Article  PubMed  CAS  Google Scholar 

  25. Parng C, Anderson N, Ton C et al (2004) Zebrafish apoptosis assays for drug discovery. Methods Cell Biol 76:75–85

    Google Scholar 

  26. Parng C (2005) In vivo zebrafish assays for toxicity testing. Curr Opin Drug Discov Devel 8(1):100–106

    PubMed  CAS  Google Scholar 

  27. Ton C, Parng C (2005) The use of zebrafish for assessing ototoxic and otoprotective agents. Hear Res 208(1–2):79–88

    Article  PubMed  CAS  Google Scholar 

  28. Motoike T, Loughna S, Perens E et al (2000). Universal GFP reporter for the study of vascular development. Genesis 28(2):75–81.

    Google Scholar 

  29. Lawson ND, Weinstein BM (2002). In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 248(2):307–318.

    Google Scholar 

  30. Cross LM, Cook MA, Lin S et al (2003). Rapid analysis of angiogenisis drugs in a live fluorescent zebrafish assay. Arterioscler Thromb Vasc Biol 23(5):911–912.

    Google Scholar 

  31. Jin SW, Beis D, Mitchell T et al (2005). Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development 132(23):5199–5209.

    Google Scholar 

Download references

Acknowledgments

We acknowledge the expert assistance of Dr. Thomas Diefenbach, DDRC Imaging Core (Children’s Hospital, Boston, MA) with 2-photon microscopy, Poh Kheng Loi of the University of Oregon for preparation of histological samples and Susie Tang for expert technical assistance. We also acknowledge insightful collaborative discussions with Dr. Richard Klemke (UCSD, San Diego, CA). A portion of this research was supported by a Small Business Innovation Research grant from the National Institute for Diabetes and Digestive and Kidney Disease: 1 R43DK074169.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryann Haldi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haldi, M., Ton, C., Seng, W.L. et al. Human melanoma cells transplanted into zebrafish proliferate, migrate, produce melanin, form masses and stimulate angiogenesis in zebrafish. Angiogenesis 9, 139–151 (2006). https://doi.org/10.1007/s10456-006-9040-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-006-9040-2

Keywords

Navigation