Skip to main content

Advertisement

Log in

Nanoparticle-mediated targeting of phosphatidylinositol-3-kinase signaling inhibits angiogenesis

  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Objective

Dysregulation of the phosphatidylinositol-3-kinase (PI3K) signaling pathway is a hallmark of human cancer, occurring in a majority of tumors. Activation of this pathway is critical for transformation and also for the angiogenic switch, which is a key step for tumor progression. The objective of this study was to engineer a PI3K inhibitor-loaded biodegradable nanoparticle and to evaluate its efficacy.

Methods and results

Here we report that a nanoparticle-enabled targeting of the PI3K pathway results in inhibition of downstream Akt phosphorylation, leading to inhibition of proliferation and induction of apoptosis of B16/F10 melanoma. It, however, failed to exert a similar activity on MDA-MB-231 breast cancer cells, resulting from reduced internalization and processing of nanoparticles in this cell line. Excitingly, the nanoparticle-enabled targeting of the PI3K pathway resulted in inhibition of endothelial cell proliferation and tubulogenesis, two key steps in tumor angiogenesis. Furthermore, it inhibited both B16/F10- and MDA-MB-231-induced angiogenesis in a zebrafish tumor xenotransplant model.

Conclusion

Our study, for the first time, shows that targeting of the PI3K pathway using nanoparticles can offer an attractive strategy for inhibiting tumor angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2:489–501

    Article  CAS  PubMed  Google Scholar 

  2. Datta SR, Brunet A, Greenberg ME (1999) Cellular survival: a play in three Akts. Genes Dev 13:2905–2927

    Article  CAS  PubMed  Google Scholar 

  3. Shayesteh L, Lu Y, Kuo WL, Baldocchi R, Godfrey T, Collins C, Pinkel D, Powell B, Mills GB, Gray JW (1999) PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet 21:99–102

    Article  CAS  PubMed  Google Scholar 

  4. Engelman JA, Chen L, Tan X, Crosby K, Guimaraes AR, Upadhyay R, Maira M, McNamara K, Perera SA, Song Y, Chirieac LR, Kaur R, Lightbown A, Simendinger J, Li T, Padera RF, García-Echeverría C, Weissleder R, Mahmood U, Cantley LC, Wong KK (2008) Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med 14:1351–1356

    Article  CAS  PubMed  Google Scholar 

  5. Koul D (2008) PTEN signaling pathways in glioblastoma. Cancer Biol Ther 7:1321–1325

    CAS  PubMed  Google Scholar 

  6. Petrocelli T, Slingerland JM (2001) PTEN deficiency: a role in mammary carcinogenesis. Breast Cancer Res 3:356–360

    Article  CAS  PubMed  Google Scholar 

  7. Steelman LS, Stadelman KM, Chappell WH, Horn S, Bäsecke J, Cervello M, Nicoletti F, Libra M, Stivala F, Martelli AM, McCubrey JA (2008) Akt as a therapeutic target in cancer. Expert Opin Ther Targets 12:1139–1165

    Article  CAS  PubMed  Google Scholar 

  8. Iwanaga K, Yang Y, Raso MG, Ma L, Hanna AE, Thilaganathan N, Moghaddam S, Evans CM, Li H, Cai WW, Sato M, Minna JD, Wu H, Creighton CJ, Demayo FJ, Wistuba II, Kurie JM (2008) Pten inactivation accelerates oncogenic K-ras-initiated tumorigenesis in a mouse model of lung cancer. Cancer Res 68:1119–1127

    Article  CAS  PubMed  Google Scholar 

  9. Horie Y, Suzuki A, Kataoka E, Sasaki T, Hamada K, Sasaki J, Mizuno K, Hasegawa G, Kishimoto H, Iizuka M, Naito M, Enomoto K, Watanabe S, Mak TW, Nakano T (2004) Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J Clin Invest 113:1774–1783

    CAS  PubMed  Google Scholar 

  10. Yuan TL, Choi HS, Matsui A, Benes C, Lifshits E, Luo J, Frangioni JV, Cantley LC (2008) Class 1A PI3K regulates vessel integrity during development and tumorigenesis. Proc Natl Acad Sci U S A 105:9739–9744

    Article  CAS  PubMed  Google Scholar 

  11. Sengupta S, Sellers LA, Li RC, Gherardi E, Zhao G, Watson N, Sasisekharan R, Fan TP (2003) Targeting of mitogen-activated protein kinases and phosphatidylinositol 3 kinase inhibits hepatocyte growth factor/scatter factor-induced angiogenesis. Circulation 107:2955–2961

    Article  PubMed  Google Scholar 

  12. Sengupta S, Sasisekharan R (2007) Exploiting nanotechnology to target cancer. Br J Cancer 96(9):1315–1319

    CAS  PubMed  Google Scholar 

  13. Yuan F, Leunig M, Huang SK, Berk DA, Papahadjopoulos D, Jain RK (1994) Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res 54:3352

    CAS  PubMed  Google Scholar 

  14. Ibrahim NK, Desai N, Legha S, Soon-Shiong P, Theriault RL, Rivera E, Esmaeli B, Ring SE, Bedikian A, Hortobagyi GN, Ellerhorst JA (2002) Phase I and pharmacokinetic study of ABI-007, a Cremophor-free, protein-stabilized, nanoparticle formulation of paclitaxel. Clin Cancer Res 8:1038–1044

    CAS  PubMed  Google Scholar 

  15. Stavridi F, Palmieri C (2008) Efficacy and toxicity of nonpegylated liposomal doxorubicin in breast cancer. Expert Rev Anticancer Ther 8:1859–1869

    Article  CAS  PubMed  Google Scholar 

  16. Basu S, Harfouche R, Soni S, Chimote G, Mashelkar RA, Sengupta S (2009) Nanoparticle-mediated targeting of MAPK signaling predisposes tumor to chemotherapy. Proc Natl Acad Sci U S A 106(19):7957–7961

    Article  CAS  PubMed  Google Scholar 

  17. Vlahos CJ, Matter WF, Hui KY, Brown RF (1994) A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem 269:5241–5248

    CAS  PubMed  Google Scholar 

  18. Nicoli S, Presta M (2007) The zebrafish/tumor xenograft angiogenesis assay. Nat Protoc 2:2918–2923

    Article  CAS  PubMed  Google Scholar 

  19. Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nature Rev Cancer 5:161–171

    Article  CAS  Google Scholar 

  20. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nature Nanotech 2:751–760

    Article  CAS  Google Scholar 

  21. Moghimi SM, Hunter AC, Murray JC (2005) Nanomedicine: current status and future prospects. FASEB J 19(3):311–330

    Article  CAS  PubMed  Google Scholar 

  22. Soppimath KS, Aminabhavi T, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Controlled Release 70:1–260

    Article  CAS  Google Scholar 

  23. Honorat M, Mesnier A, Di Pietro A, Lin V, Cohen P, Dumontet C, Payen L (2008) Dexamethasone down-regulates ABCG2 expression levels in breast cancer cells. Biochem Biophys Res Commun 375:308–314

    Article  CAS  PubMed  Google Scholar 

  24. Stokoe D, Stephens LR, Copeland T, Gaffney PR, Reese CB, Painter GF, Holmes AB, McCormick F, Hawkins PT (1997) Dual role of phosphatidylinositol-3, 4, 5-trisphosphate in the activation of protein kinase B. Science 277:567–570

    Article  CAS  PubMed  Google Scholar 

  25. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91:231–241

    Article  CAS  PubMed  Google Scholar 

  26. Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S, Reed JC (1998) Regulation of cell death protease caspase-9 by phosphorylation. Science 282:1318–1321

    Article  CAS  PubMed  Google Scholar 

  27. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868

    Article  CAS  PubMed  Google Scholar 

  28. Buck E, Eyzaguirre A, Rosenfeld-Franklin M, Thomson S, Mulvihill M, Barr S, Brown E, O’Connor M, Yao Y, Pachter J, Miglarese M, Epstein D, Iwata KK, Haley JD, Gibson NW, Ji QS (2008) Feedback mechanisms promote cooperativity for small molecule inhibitors of epidermal and insulin-like growth factor receptors. Cancer Res 68:8322–8332

    Article  CAS  PubMed  Google Scholar 

  29. Grant S (2008) Cotargeting survival signaling pathways in cancer. J Clin Invest 118:3003–3006

    Article  CAS  PubMed  Google Scholar 

  30. She QB, Solit DB, Ye Q, O’Reilly KE, Lobo J, Rosen N (2005) Nanocarriers as an emerging platform for cancer therapy. Cancer Cell 8:287–297

    Article  CAS  PubMed  Google Scholar 

  31. Kinkade CW, Castillo-Martin M, Puzio-Kuter A, Yan J, Foster TH, Gao H, Sun Y, Ouyang X, Gerald WL, Cordon-Cardo C, Abate-Shen C (2008) Targeting AKT/mTOR and ERK MAPK signaling inhibits hormone-refractory prostate cancer in a preclinical mouse model. J Clin Invest 118:3051–3064

    CAS  PubMed  Google Scholar 

  32. Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6:273–286

    Article  CAS  PubMed  Google Scholar 

  33. Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29:15–18

    CAS  PubMed  Google Scholar 

  34. Gasparini G, Longo R, Toi M, Ferrara N (2005) Nanocarriers as an emerging platform for cancer therapy. Nat Clin Pract Oncol 2:562–577

    Article  CAS  PubMed  Google Scholar 

  35. Sengupta S, Sellers LA, Cindrova T, Skepper J, Gherardi E, Sasisekharan R, Fan TP (2003) Cyclooxygenase-2-selective nonsteroidal anti-inflammatory drugs inhibit hepatocyte growth factor/scatter factor-induced angiogenesis. Cancer Res 63:8351–8359

    CAS  PubMed  Google Scholar 

  36. Schnell CR, Stauffer F, Allegrini PR, O’Reilly T, McSheehy PM, Dartois C, Stumm M, Cozens R, Littlewood-Evans A, García-Echeverría C, Maira SM (2008) Effects of the dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235 on the tumor vasculature: implications for clinical imaging. Cancer Res 68:6598–6607

    Article  CAS  PubMed  Google Scholar 

  37. Stoletov K, Montel V, Lester RD, Gonias SL, Klemke R (2007) High-resolution imaging of the dynamic tumor cell vascular interface in transparent zebrafish. Proc Natl Acad Sci U S A 104:17406–17411

    Article  CAS  PubMed  Google Scholar 

  38. Sengupta S, Eavarone D, Capila I, Zhao G, Watson N, Kiziltepe T, Sasisekharan R (2005) Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 436:568–572

    Article  CAS  PubMed  Google Scholar 

  39. Kaul G, Amiji M (2004) Biodistribution and targeting potential of poly(ethylene glycol)-modified gelatin nanoparticles in subcutaneous murine tumor model. J Drug Target 12:585–591

    Article  CAS  PubMed  Google Scholar 

  40. Hood JD, Bednarski M, Frausto R, Guccione S, Reisfeld RA, Xiang R, Cheresh DA (2002) Tumor regression by targeted gene delivery to the neovasculature. Science 296:2404

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Department of Defense BCRP Era of Hope Scholar award [W81XWH-07-1-0482] and Mary Kay Ash Charitable Foundation Grant to SS. DH is supported by an AHA Fellow to Faculty Transition Grant and RH is supported by a CIHR Fellowship. We thank Prof. Joseph Bonventre for access to his laboratory and Nicki Watson, Imaging Facility at Whitehead Institute for Biomedical, for the electron microscopy studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiladitya Sengupta.

Additional information

Rania Harfouche and Sudipta Basu have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10456_2009_9154_MOESM1_ESM.pdf

Supplementary Fig. 1 Concentration–Effect of NP-LY on viability of cancer cells. ac Breast adenocarcinoma (MDA-MB-231), Lewis lung carcinoma (LLC) and melanoma (B16-F10) cells were plated on 96-well plates in the presence or absence of either free drug (LY) or LY-encapsulated nanoparticles (NP-LY). Cells were subjected to incubation with the drugs in a time- and concentration-dependent manner. At 24 and 72 h, the viability of cells was quantified using the MTS assay. Data represents mean ± SEM from independent triplicates. *P < 0.05 compared with vehicle-treated control cells (ANOVA) (PDF 54 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harfouche, R., Basu, S., Soni, S. et al. Nanoparticle-mediated targeting of phosphatidylinositol-3-kinase signaling inhibits angiogenesis. Angiogenesis 12, 325–338 (2009). https://doi.org/10.1007/s10456-009-9154-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-009-9154-4

Keywords

Navigation