Skip to main content

Comparative Study of Cellulase Production Using Submerged and Solid-State Fermentation

  • Chapter
  • First Online:
Approaches to Enhance Industrial Production of Fungal Cellulases

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

There’s an expanding demand for cellulases for different applications, among which the bioconversion of submerged and solid-state fermentation for cellulose production is the major one. Enhancements within the titers, as well as particular exercises of cellulases, are exceedingly wanted for its utility in bioethanol generation and other applications. This audit bargains with improvements in bioprocess innovations, solid-state and submerged maturation, as well as on the techniques embraced for progressing cellulase generation properties, counting designing the qualities. It moreover gives a brief diagram of commercially accessible cellulase arrangements. Submerged and solid-state fermentation have been widely used for the production of cellulose in a wide variety of substances that are highly beneficial to individuals and industry. Over a long time, maturation strategies have picked up monstrous significance due to their financial and natural preference development of new machinery and processes. Two broad fermentation techniques have emerged as a result of this rapid development: submerged fermentation (SmF) and solid-state fermentation (SSF). These methods have been in advance altered and refined to maximize efficiency. Discovery of the beneficial activity of several secondary metabolites produced by microorganisms (bioactive compounds) has resulted in the further exploration of fermentation as a production technique for these compounds. At the research level, both SSF and SmF have been used; however, some techniques yielded better results than others. Much work still needs to be done to identify the best fermentation technique for each bioactive compound. This paper presents the different fermentation techniques for the production of cellulose compound. This paper presents comparative analysis of submerge and solid state fermentations for production of cellulase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya PB, Acharya DK, Modi HA (2008) Optimization for cellulase production by Aspergillus Niger using saw dust as substrate. Afr J Biotechnol 7:4147–4152

    CAS  Google Scholar 

  • Acharya BK, Mohana S, Jog R, Divecha J, Madamwar D (2010) Utilization of anaerobically treated distillery spent wash for production of cellulases under solid-state fermentation. J Environ Manag 91:2019–2027

    Article  CAS  Google Scholar 

  • Agrawal R, Satlewal A, Verma AK (2013) Production of an extracellular cellobiase in solid state fermentation. J Microbiol Biotechnol Food Sci 2:2339–2350

    CAS  Google Scholar 

  • Ahuja SK, Ferreira GM, Moreira AR (2004) Utilization of enzymes for environmental applications. Crit Rev Biotechnol 24(2–3):125–154

    Article  CAS  PubMed  Google Scholar 

  • Ang SK, Shaza EM, Adibah Y, Suraini AA, Madihah MS (2013) Production of cellulases and xylanase by Aspergillus fumigatus SK1 using untreated oil palm trunk through solid state fermentation. Process Biochem 48:1293–1302

    Article  CAS  Google Scholar 

  • Assamoi AA, Jacqueline D, Delvigne F, Lognay G, Thonart P (2008) Solid-state fermentation of xylanase from Penicillium canescens 10-10c in a multi-layer-packed bed reactor. Appl Biochem Biotechnol 145:87–97

    Article  CAS  PubMed  Google Scholar 

  • Babu KR, Satyanarayana T (1996) Production of bacterial enzymes by solid state fermentation. J Sci Ind Res 55:464–467

    CAS  Google Scholar 

  • Basha NS, Rekha R, Komala M, Ruby S (2009) Production of extracellular anti-leukaemic enzyme lasparaginase from marine actinomycetes by solid state and submerged fermentation: purification and characterisation. Trop J Pharm Res 8(4):353–360

    Article  CAS  Google Scholar 

  • Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18(5):355–383

    Article  CAS  PubMed  Google Scholar 

  • Biswas SR, Jana SC, Mishra AK, Nanda G (1990) Production, purification and characterization of xylanase from a hyperxylanotic mutant of Aspergillus ochraceus. Biotechnol Bioeng 35:244–251

    Article  CAS  PubMed  Google Scholar 

  • Brijwani K, Oberoi HS, Vadlani PV (2010) Production of a cellulolytic enzyme system in mixed-culture solid-state fermentation of soybean hulls supplemented with wheat bran. Process Biochem 45(1):120–128

    Article  CAS  Google Scholar 

  • Cen P, Xia L (1999) Production of cellulase in solid state fermentation. In: Scheper T (ed) Recent progress in bioconversion of lignocellulosics, Advances in biochemical engineering/biotechnology, vol 65. Springer, Berlin, p 69

    Chapter  Google Scholar 

  • Coradi GV, Da Visitação VL, De Lima EA, Saito LYT, Palmieri DA, Takita MA et al (2013) Comparing submerged and solid-state fermentation of agro-industrial residues for the production and characterization of lipase by Trichoderma harzianum. Ann Microbiol 63:533–540

    Article  CAS  Google Scholar 

  • Coughlan MP (1985) Cellulase production, properties and applications. Biochem Soc Trans 13:405–406

    Article  CAS  PubMed  Google Scholar 

  • Cunha FM, Esperanca MN, Zangirolami TC, Badino AC, Farinas CS (2012) Sequential solid-state and submerged cultivation of Aspergillus Niger on sugarcane bagasse for the production of cellulase. Bioresour Technol 112:270–274

    Article  CAS  PubMed  Google Scholar 

  • Da Silva DP, Pirota RDB, Codima CA, Tremacoldi CR, Rodrigues A, Farinas CS (2012) Using Amazon forest fungi and agricultural residues as a strategy to produce cellulolytic enzymes. Biomass Bioenergy 37:243–250

    Article  CAS  Google Scholar 

  • Datta M, Patel S, Parikh H (1989) Solid state fermentation for cellulases and β-glucosidase production by Aspergillus Niger. J Ferment Bioeng 67:424–426

    Article  Google Scholar 

  • Debing J, Peijun L, Stagnitti F, Xianzhe X, Li L (2006) Pectinase production by solid fermentation from Aspergillus Niger by a new prescription experiment. Ecotox Environ Safe 64:244–250

    Article  CAS  Google Scholar 

  • Demain AL (1999) Pharmaceutically active secondary metabolites of microorganisms. Appl Microbiol Biotechnol 52:455–463

    Article  CAS  PubMed  Google Scholar 

  • Du R, Su R, Li X, Tantai X, Liu Z, Yang J (2012) Controlled adsorption of cellulase onto pretreated corncob by pH adjustment. Cellulose 19:371–380

    Article  CAS  Google Scholar 

  • Durand A, Chereau D (1988) A new pilot reactor for solid-state fermentation: application to the protein enrichment of sugar beet pulp. Biotechnol Bioeng 31(5):476–486

    Article  CAS  PubMed  Google Scholar 

  • Durand R, Renaud J, Maratray SA, Diez M (1996) INRA-Dijon reactors for solid state fermentation: designs and applications. J Sci Ind Res 55(5–6):317–332

    CAS  Google Scholar 

  • Ekundayo FO, Ekundayo EA, Ayodele BB (2017) Comparative studies on glucanases and beta-glucosidase activities of Pleurotus ostreatus and P. Pulmonarius in solid state fermentation. Mycosphere 8(8):1201–1209

    Article  Google Scholar 

  • Emert GH, Katzen R (1980) Gulf’s cellulose-to-ethanol process. CHEMTECH 10(10):610–615

    CAS  Google Scholar 

  • Enari TM (1983) Microbial cellulases. In: Forgaty WF (ed) Microbial enzymes and biotechnology, vol I. Applied Sciences Publishers, London, pp 83–223

    Google Scholar 

  • Fadel M (2000) Production physiology of cellulases and β-glucosidase enzymes of Aspergillus niger grown under solid state fermentation conditions. Online Biol Sci 1:401–411

    Google Scholar 

  • Farinas CS (2018) Solid-state fermentation for the on-site production of cellulolytic enzymes and their use in the saccharification of lignocellulosic biomass. In: Current developments in biotechnology and bioengineering. Elsevier, Amsterdam, pp 169–183

    Chapter  Google Scholar 

  • Florencio C, Cunha FM, Badino AC, Farinas CS (2015) Validation of a novel sequential cultivation method for the production of enzymatic cocktails from Trichoderma strains. Appl Biochem Biotechnol 175:1389–1402

    Article  CAS  PubMed  Google Scholar 

  • Gautam SP, Bundela PS, Pandey AK, Awasthi MK, Sarsaiya S (2010) Optimization of the medium for the production of cellulase by the Trichoderma viride using submerged fermentation. Int J Environ Sci 1(4):656

    CAS  Google Scholar 

  • Ghildyal NP, Lonsane BK, Sreekantiah KR, Sreenivasa Murthy V (1985) Economics of submerged and solid state fermentation for the production of amyloglucosidase. J Food SciTechnol 22:171–176

    Google Scholar 

  • Goyal M, Kalra KL, Sareen VK, Soni G (2008) Xylanase production with xylan rich lignocelulasic waste by a local soil isolate of Trichoderma viride. Braz J Microbiol 39:535–541

    Article  PubMed  PubMed Central  Google Scholar 

  • Grajek W (1987) Comparative studies on the production of cellulases by thermophilic fungi in submerged and solid-state fermentation. Appl Microbiol Biotechnol 26(2):126–129

    Article  CAS  Google Scholar 

  • Graminha EB, Gonçalves AZ, Pirota RD, Balsalobre MA, Da Silva R, Gomes E (2008) Enzyme production by solid-state fermentation: application to animal nutrition. Anim Feed Sci Technol 144(1–2):1–22

    Article  CAS  Google Scholar 

  • Gupte A, Madamwar D (1997) Solid state fermentation of lignocellulosic waste for cellulase and β-glucosidase production by cocultivation of Aspergillus ellipticus and Aspergillus fumigatus. Biotechnol Prog 13(2):166–169

    Article  CAS  Google Scholar 

  • Gutierrez-Correa M, Portal L, Moreno P, Tengerdy RP (1999) Mixed culture solid substrate fermentation of Trichoderma reesei with Aspergillus Niger on sugar cane bagasse. Bioresour Technol 68(2):173–178

    Article  CAS  Google Scholar 

  • Hafiz, Muhammad Nasir I, Ishtiaq A, Muhammad Anjum Z, Muhammad I (2011) Purification and characterization of the kinetic parameters of cellulase produced from wheat straw by Trichoderma viride under SSF and its detergent compatibility. Adv Biosci Biotechnol 2(3):149–156

    Google Scholar 

  • Hesseltine CW (1972) Solid state fermentations. Biotechnol Bioeng 14(5):17–32

    Google Scholar 

  • Hesseltine CW (1977) Solid state fermentation-part 1. Process Biochem 12:24–27

    CAS  Google Scholar 

  • Hesseltine CW (1987) Solid state fermentation—an overview. Int Biodeterior 23(2):79–89

    Article  CAS  Google Scholar 

  • Hong J, Tamaki H, Akiba S et al (2001) Cloning of a gene encoding a highly stable endo-b-1,4-glucanase from Aspergillus niger and its expression in yeast. J Biosci Bioeng 92:434–441

    Article  CAS  PubMed  Google Scholar 

  • Hui L, Wan C, Hai-tao D, Xue-jiao C, Qi-fa Z, Yu-hua Z (2010) Direct microbial conversion of wheat straw into lipid by a cellulolytic fungus of Aspergillus oryzae A-4 in solid-state fermentation. Bioresour Technol 101:7556–7562

    Article  CAS  Google Scholar 

  • Isaac GS, Abu-Tahon MA (2015) Enhanced alkaline cellulases production by the thermohalophilic Aspergillus terreus AUMC 10138 mutated by physical and chemical mutagens using corn stover as substrate. Braz J Microbiol 46(4):1269–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishida N, Saitoh S, Ohnishi T, Tokuhiro K et al (2006) Metabolic engineering of Saccharomyces cerevisiae for efficient production of pure L-(+)-lactic acid. Appl Biochem Biotechnol 131:795–807

    Article  PubMed  Google Scholar 

  • Iqbal, Hafiz Muhammad Nasir, et al. “Purification and characterization of the kinetic parameters of cellulase produced from wheat straw by Trichoderma viride under SSF and its detergent compatibility.” Advances in Bioscience and Biotechnology 2.03 (2011): 149–156.

    Article  CAS  Google Scholar 

  • Jabasingh SA, Nachiyar CV (2011) Utilization of pretreated bagasse for the sustainable bioproduction of cellulase by Aspergillus nidulans MTCC344 using response surface methodology. Ind Crop Prod 34:1564–1571

    Article  CAS  Google Scholar 

  • Jalak J, Kurasin M, Teugjas H, Valjama P (2012) Endo-exo synergism in cellulose hydrolysis revisited. J Biol Chem 287(34):28802–28815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karmakar M, Ray R (2011) Current trends in research and application of microbial cellulases. Res J Microbiol 6:41–53

    Article  CAS  Google Scholar 

  • Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13(4):345–351

    Article  CAS  PubMed  Google Scholar 

  • Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 109(4):1083–1087

    Article  CAS  PubMed  Google Scholar 

  • Kotwal SM, Gote MM, Sainkar SR, Khan MI, Khire JM (1998) Production of α-galactosidase by thermophilic fungus Humicola sp. in solid-state fermentation and its application in soyamilk hydrolysis. Process Biochem 33(3):337–343

    Article  CAS  Google Scholar 

  • Kuhad RC, Mehta G, Gupta R, Sharma KK (2010) Fed batch enzymatic saccharification of newspaper cellulosics improves the sugar content in the hydrolysates and eventually the ethanol fermentation by Saccharomyces cerevisiae. Biomass Bioenergy 7:1–6

    Google Scholar 

  • Kumar S, Sharma HK, Sarkar BC (2011) Effect of substrate and fermentation conditions on pectinase and cellulase production by Aspergillus Niger NCIM 548 in submerged (SmF) and solid state fermentation (SSF). Food Sci Biotechnol 20(5):1289

    Article  CAS  Google Scholar 

  • Lawal SA, Ugheoke BI (2010) Investigation of alpha-cellulose content of agro-waste products as alternatives for paper production. AU J Technol 13:258–260

    Google Scholar 

  • Lee YB, Lee B, Jo K, Lee N, Chang C, Lee Y, Lee J (2007) Purification and characterization of cellulase by Bacillus amyoliquefaciens DL3, utilizing rice hull. Bioresour Technol 98(2):288–297

    Article  CAS  Google Scholar 

  • Lee CK, Darah I, Ibrahim CO (2011) Production and optimization of cellulase enzyme using Aspergillus niger USM AI 1 and comparison with Trichoderma reesei via solid state fermentation system. Biotechnol Res Int 2011:1

    Article  CAS  Google Scholar 

  • Lever M, Ho G, Cord-Ruwisch R (2010) Ethanol from lignocellulose using crude unprocessed cellulose from solid-state fermentation. Bioresour Technol 101(18):7083–7087

    Article  CAS  Google Scholar 

  • Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38:449–467

    Article  CAS  Google Scholar 

  • Liu BL, Tzeng YM (1998) Optimization of growth medium for the production of spores from Bacillus thuringiensis using response surface methodology. Bioprocess Biosyst Eng 18:413–418

    CAS  Google Scholar 

  • Liu J, Xue D, He K, Yao S (2012) Cellulase production in solid-state fermentation by marine Aspergillus sp. ZJUBE-1 and its enzymological properties. Adv Sci Lett 16(1):381–386

    Article  CAS  Google Scholar 

  • Lonsane BK, Ramakrishna M (1989) Microbial enzymes in food processing industry: present status and future prospects in India. Indian Food Industry 8(4):15–31

    Google Scholar 

  • Ming C, Jing Z, Liming X (2008) Enzymatic hydrolysis of maize straw polysaccharides for the production of reducing sugars. Carbohydr Polym 71(3):411–415

    Article  CAS  Google Scholar 

  • Mitchell DA, Berovic M, Krieger N (2006) Introduction to solid state fermentation bioreactors. In: Mitchell DA, Krieger N, Berovi M (eds) Solid state bioreactors: fundamentals of design and operation. Springer, Berlin, pp 33–44

    Chapter  Google Scholar 

  • Moo-Young M, Moriera AR, Tengerdy RP (1983) Principles of solid state fermentation. In: Smith JE, Berry DR, Kristiansen B (eds) The filamentous fungi, Fungal biotechnology, vol 4. Edward Arnold Publishers, London, pp 117–144

    Google Scholar 

  • Mrudula S, Murugammal R (2011) Production of cellulase by Aspergillus Niger under submerged and solid state fermentation using coir waste as a substrate. Braz J Microbiol 42(3):1119–1127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nampoothiri KM, Pandey A (1996) Solid-state fermentation for L-glutamic acid production using Brevibacterium sp. Biotechnol Letts 18(2):199–204

    Article  CAS  Google Scholar 

  • Neagu DA, DESTAIN J, THONART P, SOCACIU C (2012) Trichoderma reesei cellulase produced by submerged versus solid state fermentations. Bull UASVM Agric 69:2

    Google Scholar 

  • Nema N, Alamir L, Mohammad M (2015) Production of cellulase from Bacillus cereus by submerged fermentation using corn husks as substrates. Int Food Res J 22(5):1831–1836.

    Google Scholar 

  • Padmavathi T, Nandy V, Agarwal P (2012) Optimization of the medium for the production of cellulases by Aspergillus terreus and Mucor plumbeus. Eur J Exp Biol 2(4):1161–1170

    CAS  Google Scholar 

  • Palaniyappan M, Vijayagopa V, Viswanathan R, Viruthagiri T (2009) Screening of natural substrates and optimization of operating variables on the production of pectinase by submerged fermentation using Aspergillus niger MTCC 281. Afr J Biotechnol 8:682–686

    CAS  Google Scholar 

  • Pandey A (1991) Aspects of fermenter design for solid-state fermentations. Process Biochem 26(6):355–361

    Article  CAS  Google Scholar 

  • Pandey A (1992) Recent development in solid state fermentation. Process Biochem 27(2):109–117

    Article  CAS  Google Scholar 

  • Pandey A (1996) Recent developments in solid-state fermentation. Process Biochem 27:109–117

    Article  Google Scholar 

  • Pandey A (2003) Sold-state fermentation. Biochem Eng J 13:81–84

    Article  CAS  Google Scholar 

  • Pandey A, Selvakumar P, Soccol CR, Nigam P (1999) Solid-state fermentation for the production of industrial enzymes. Curr Sci 77:149–162

    CAS  Google Scholar 

  • Pandey A, Soccol CR, Nigam P, Soccol VT (2000) Biotechnological potential of agro- industrial residues: sugarcane bagasse. Bioresour Technol 74(1):69–80

    Article  CAS  Google Scholar 

  • Patil SR, Dayanand A (2006) Exploration of regional agrowastes for the production of pectinase by Aspergillus niger. Food Technol Biotech 44:289–292

    CAS  Google Scholar 

  • Pirota RD, Delabona PS, Farinas CS (2014) Simplification of the biomass to ethanol conversion process by using the whole medium of filamentous fungi cultivated under solid-state fermentation. Bioenergy Res 7:744–752

    Article  CAS  Google Scholar 

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Mielenz JR (2006) The path forward for biofuels and biomaterials. Science 311(5760):484–489

    Article  CAS  PubMed  Google Scholar 

  • Raimbault M (1988) Enzymes production by solid state fermentation. In: Solid state fermentation in bioconversion of agro-industrial raw materials, vol 5. ORSTOM Centre Montpellier, Montpellier

    Google Scholar 

  • Raimbault M (1998) General and microbiological aspects of solid substrate fermentation. Electron J Biotechnol 27:498–503

    Google Scholar 

  • Ray RC (2011) Solid-state fermentation for production of microbial cellulase: an overview. In: Cellulase: types and action, mechanism, and uses. Nova Science Publishers Inc, New York

    Google Scholar 

  • Reddy GPK, Narasimha G, Kumar KD, Ramanjaneyulu G, Ramya A, Kumari BS, Reddy BR (2015) Cellulase production by Aspergillus Niger on different natural lignocellulosic substrates. Int J Curr Microbiol App Sci 4(4):835–845

    CAS  Google Scholar 

  • Robinson T, Nigam P (2003) Bioreactor design for protein enrichment of agricultural residues by solid state fermentation. Biochem Eng J 13:197–203

    Article  CAS  Google Scholar 

  • Robinson T, Singh D, Nigam P (2001) Solid-state fermentation: a promising microbial technology for secondary metabolite production. Appl Microbiol Biotechnol 55:284–289

    Article  CAS  PubMed  Google Scholar 

  • Romero-Gómez SJ, Augur C, Viniegra-González G (2000) Invertase production by Aspergillus Niger in submerged and solid-state fermentation. Biotechnol Lett 22(15):1255–1258

    Article  Google Scholar 

  • Roussos S (1989) Sugarcane used in solid state fermentation for cellulases production. Solid State Ferment:139–150

    Google Scholar 

  • Roussos S, Hannibal L, Aquiahuatl MA, Trejo M, Marakatis S (1994) Caffeine degradation by Penicillium verrucosum in solid fermentation of coffee pulp: critical effect of additional inorganic and organic nitrogen sources. J Food Sci Technol 31(4):316–319

    CAS  Google Scholar 

  • Ruth MF, Howard JA, Nikolov Z, Hooker BS et al (1999) Preliminary economic analysis of agricultural production for use in cellulose hydrolysis. In: Abstracts from the 21st symposium on biotechnology for fuels and chemicals, Fort Collins, Colorado, Mays, Abstract, 3–49

    Google Scholar 

  • Sadhu S, Maiti TK (2013) Cellulase production by bacteria: a review. Brit Microbial Res J 3(3):235–258

    Article  CAS  Google Scholar 

  • Sekar C, Balaraman K (1998) Optimization studies on the production of cyclosporin A by solid state fermentation. Bioprocess Eng 18(4):293–296

    Article  CAS  Google Scholar 

  • Shobana P, Maheswari NU (2013) Production of cellulase from Aspergillus fumigatus under submerged and solid state fermentation using agricultural waste. Int J Adv Pharm Biol Chem 2(4):595–599

    CAS  Google Scholar 

  • Shweta A (2015) Solid state fermentation for cellulase production. Biotechnol Res 1(1):108–112

    Google Scholar 

  • Singh A, Singh N, Bishnoi NR (2009) Production of cellulases by Aspergillus heteromorphus from wheat straw under submerged fermentation. Int J Environ Sci Eng 1:1

    CAS  Google Scholar 

  • Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A (2010) Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzym Microb Technol 46(7):541–549

    Article  CAS  Google Scholar 

  • Souza PM, Magalhaes PO (2010) Application of microbial - amylase in industry-a review. Braz J Microbiol 41:850–861

    Article  PubMed  PubMed Central  Google Scholar 

  • Stockton BC, Mitchell DJ, Grohmann K, Himmel ME (1991) Optimum b-D glucosidase supplementation of cellulase for efficient conversion of cellulose to glucose. Biotechnol Lett 13:57–62

    Article  CAS  Google Scholar 

  • Subramaniyam R, Vimala R (2012) Solid state and submerged fermentation for the production of bioactive substances: a comparative study. Int J Sci Nat 3(3):480–486

    CAS  Google Scholar 

  • Sukumaran RK, Singhania RR, Mathew GM, Pandey A (2009) Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bioethanol production. Renew Energy 34(2):421–424

    Article  CAS  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Szendefy J, Szakacs G, Christopher L (2006) Potential of solid-state fermentation enzymes of Aspergillus oryzae in biobleaching of paper pulp. Enzym Microb Tech 39:1354–1360

    Article  CAS  Google Scholar 

  • Vandenberghe LP, Soccol CR, Pandey A, Lebeault JM (2000) Solid-state fermentation for the synthesis of citric acid by Aspergillus Niger. Bioresour Technol 74(2):175–178

    Article  CAS  Google Scholar 

  • Vintila T, Dragomirescu M, Jurcoane S, Vintila D, Caprita R, Maniu M (2009) Production of cellulase by submerged and solid-state cultures and yeasts selection for conversion of lignocellulose to ethanol. Rom Biotechnol Lett 14(2):4275–4281

    CAS  Google Scholar 

  • Wen Z, Liao W, Chen S (2005) Production of cellulase/β-glucosidase by the mixed fungi culture Trichoderma reesei and Aspergillus phoenicis on dairy manure. Process Biochem 40:3087–3094

    Article  CAS  Google Scholar 

  • Xue M, Liu D, Zhang H, Qi H, Lei Z (1992) A pilot process of solid state fermentation from sugar beet pulp for the production of microbial protein. J Ferment Bioeng 73(3):203–205

    Article  CAS  Google Scholar 

  • Yang SQ, Yan QJ, Jiang ZQ et al (2006) High-level of xylanase production by the thermophilic Paecilomyces thermophila J18 on wheat straw in solid-state fermentation. Bioresour Technol 97:1794–1800

    Article  CAS  PubMed  Google Scholar 

  • Zeng W, Chen HZ (2009) Air pressure pulsation solid state fermentation of feruloyl esterase by Aspergillus niger. Bioresour Technol 100:1371–1375

    Article  CAS  PubMed  Google Scholar 

  • Zhiyou W, Liao W, Shulin C (2004) Hydrolysis of animal manure lignocellulosics for reducing sugar production. Bioresour Technol 91(1):31–39

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dasari, P.R., Ramteke, P.W., Kesri, S., Kongala, P.R. (2019). Comparative Study of Cellulase Production Using Submerged and Solid-State Fermentation. In: Srivastava, M., Srivastava, N., Ramteke, P., Mishra, P. (eds) Approaches to Enhance Industrial Production of Fungal Cellulases . Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-14726-6_3

Download citation

Publish with us

Policies and ethics