Skip to main content

Dendrobium sp.: In vitro Propagation of Genetically Stable Plants and Ethno-medicinal Uses

  • Living reference work entry
  • First Online:
Orchids Phytochemistry, Biology and Horticulture

Abstract

Plants belonging to the Dendrobium genus occupy a dominant position among the orchids because of their high ornamental and therapeutic values. They are widely popular in the international floriculture trade as they bear stunning flowers with diverse coloration, varied forms, and patterns. The ethnomedicinal uses of these orchids are also prominently found due to the possession of immense medicinal properties. Excessive exploitation through rampant unregulated collection and widespread habitat destruction have dwindled the Dendrobium natural populations at an alarming rate. The fast and reliable micropropagation techniques offer an alternative to the slow conventional methods of Dendrobium propagation. The rapid in vitro regeneration of genetically stable Dendrobiums is essential for effective germplasm conservation and large-scale orchid commercialization. Several genetic stable Dendrobiums have been successfully propagated by ascertaining the clonal fidelity of the regenerants using different molecular markers. This chapter focuses on the uses of Dendrobiums as important ethnomedicine, their in vitro propagation, and clonal assessment for producing genetically stable orchids using DNA markers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Lam Y, Ng TB, Yao RM, Shi J, Xu K, Sze SCW, Zhang KY (2015) Evaluation of chemical constituent and important mechanism of pharmacological biology in Dendrobium plants. Evid Based Complementary Altern Med 2015:841752

    Google Scholar 

  2. Nongdam P, Nirmala C (2011) In vitro rapid propagation of Cymbidium aloifolium (L.) Sw.: a medicinally important orchid via seed culture. J Biol Sci 11:254–260

    Article  CAS  Google Scholar 

  3. Wraith J, Norman P, Pickering C (2020) Orchid conservation and research: an analysis of gaps and priorities for globally red listed species. Ambio 49:1601–1611

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nongdam P, Nirmala C (2012) In vitro seed germination and mass propagation of Cymbidium dayanum Reichb: an important ornamental orchid of North-East India. Trends Hortic Res 2(2):28–37

    Article  Google Scholar 

  5. Xiaohua J, Singchi C, Yibo L (2008) Taxonomic revision of Dendrobium monifolium complex (orchidaceae). Sci Hort 120:143–145

    Article  Google Scholar 

  6. Paudel MR, Bhattarai HD, Pant B (2020) Traditionally used medicinal Dendrobium: a promising source of active anticancer constituents. In: Orchids phytochemistry, Biology horticulture: fundamentals and applications. Springer, Cham. pp 1–26. https://doi.org/10.1007/978-3-030-11257-8_16-1.

  7. Wood HP (2006) The dendrobiums. Timber Press, Portland

    Google Scholar 

  8. Moudi M, Go R, Yien CYS, Saleh MN (2013) A review on molecular systematic of the Genus Dendrobium Sw. Acta Biol Malays 2:71–78

    Google Scholar 

  9. Nongdam P, Nirmala C, Tiwari R (2006) In vitro multiplication of Cymbidium pendulum orchids via embryo culture. Plant Cell Biotech Mol Biol 7:145–150

    Google Scholar 

  10. Hinsley A, Boer HJD, Fay MF, Gale SW, Gardiner LM, Gunasekara RS, Kumar P, Masters S, Metusala D, Roberts D, Veldman S, Wong S, Phelps J (2018) A review of the trade in orchids and implications for conservation. Bot J Linn Soc 186:435–455

    Article  Google Scholar 

  11. Tikendra L, Amom T, Nongdam P (2018) Effect of phytohormones on rapid in vitro propagation of Dendrobium thyrsiflorum Rchb.f.: an endangered medicinal orchid. Pharmacogn Mag 14:495–500

    Google Scholar 

  12. Senthilkumar S (2001) Problems and prospects of orchid mycorrhizal research. J Orchid Soc India 15:23–32

    Google Scholar 

  13. Wraith J, Pickering C (2018) Tourism and recreation of global threat to orchids. Biodivers Conserv 26:3407–3420

    Article  Google Scholar 

  14. Tee CS, Wong CQ, Lam XL, Maziah M (2010) A preliminary study of protocorm-like bodies (PLBs) induction using leaf explants of Vanda and Dendrobium orchids. Asia Pac J Mol Biol Biotechnol 18:189–191

    Google Scholar 

  15. Zhao XB, Wu WJ, Pang L, Cai GX (2012) Study on key technology of rapid culture and propagation for Dendrobium candidum as rare and endangered medicinal materials. J TCM Univ Hunan 32(3):27–30. (in Chinese with English abstract)

    Google Scholar 

  16. Winarto B, Rachmawati F (2013) In vitro propagation protocol of Dendrobium ‘Gradita 31’ via protocorm like bodies. Thammasat Int J Sci Technol 18(2):54–68

    Google Scholar 

  17. Bhattacharyya P, Kumaria S, Tandon P (2016) High frequency regeneration protocol for Dendrobium nobile: a model tissue culture approach for propagation of medicinally important orchid species. S Afr J Bot 104:232–243

    Article  CAS  Google Scholar 

  18. Paul P, Joshi M, Gurjar D, Shailajan S, Kumaria S (2017) In vitro organogenesis and estimation of β-sitosterol in Dendrobium fimbriatum Hook.: an orchid of biopharmaceutical importance. S Afr J Bot 113:248–252

    Article  CAS  Google Scholar 

  19. Lin W, Wang J, Xu X, Wu Y, Qiu D, He B, Sarsaiya S, Ma X, Chen J (2020) Rapid propagation in vitro and accumulation of active substances of endangered Dendrobium cariniferum Rchb.F. Bioengineered 11:386–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rawat JM, Rawat B, Agnihotri RK, Chandra A, Nautiyal S (2013) In vitro propagation, genetic and secondary metabolite analysis of Aconitum violaceum Jacq.: a threatened medicinal herb. Acta Physiol Plant 35:2589–2599

    Article  CAS  Google Scholar 

  21. Krishna H, Alizadeh M, Singh D, Singh U, Chauhan N, Eftekhari M, Sadh RK (2016) Somaclonal variations and their applications in horticultural crops improvement. 3. Biotech 6:54

    Google Scholar 

  22. Antony JJJ, Shamshir RA, Poobathy R, Chew BL, Subramaniam S (2015) Somaclonal variations were not induced by the cryopreservation: levels of somaclonal variations of in vitro and thawed protocorms of Dendrobium bobby Messina analysed by SCoT and TRAP DNA markers. S Afr J Bot 100:148–157

    Article  CAS  Google Scholar 

  23. Chin CK, Lee ZH, Mubbarakh SA, Antony JJJ, Chew BL, Subramaniam S (2019) Effects of plant growth regulators and activated charcoal on somaclonal variations of protocorm-like bodies (PLBs) of Dendrobium sabin blue orchid. Biocatal Agric Biotechnol 22:101426

    Article  Google Scholar 

  24. Tikendra L, Amom T, Nongdam P (2019) Molecular genetic homogeneity assessment of micropropagated Dendrobium moschatum Sw. - a rare medicinal orchid, using RAPD and ISSR markers. Plant Gene 19:100196

    Article  CAS  Google Scholar 

  25. Tikendra L, Koijam AS, Nongdam P (2019) Molecular markers based genetic fidelity assessment of micropropagated Dendrobium chrysotoxum Lindl. Meta Gene. https://doi.org/10.1016/j.mgene.2019.100562

  26. Chandra S, Rawat DS (2015) Medicinal plants of the family Caryophyllaceae: a review of ethno medicinal uses and pharmacological properties. Integr Med Res 4:123–131

    Article  PubMed  PubMed Central  Google Scholar 

  27. Schultes RE (1962) The role of ethnobotanist in search for new medicinal plants. Lloydia 25(4):257–266

    Google Scholar 

  28. Quinlan MB (2011) Ethnomedicine. Wiley online library https://doi.org/10.1002/9781444395303.ch19

  29. Pohle P (1990) Useful plants of Manang district: a contribution to the ethnobotany of the Nepal. Himalaya, Franz Steiner Verlag Wiesbaden GmbH, Stuttgart

    Google Scholar 

  30. Withner CL (1959) The orchid: a scientific survey. Ronald Press Company, New York

    Google Scholar 

  31. Hossain MM (2011) Therapeutic orchids: tradicinal uses and recent advances - an overview. Fitoterapia 82:102–104

    Article  PubMed  Google Scholar 

  32. Bulpitt CJ (2007) The use of orchids in Chinese medicine. J R Soc Med 100:558–563

    Article  PubMed  PubMed Central  Google Scholar 

  33. Vaidya B, Shrestha M, Joshee N (2000) Report on Nepalese orchid species with medicinal properties. In: Watanabe T, Takano A, Bista MS, Bista, Siju HK (eds) The Himalayas plants, can they save us? Proceeding of Nepal-Japan joint symposium on conservation and utilization of Himalayan medicinal resources, Society for the conservation and development of Himalayan Medicinal Resources (SCDHMR), Japan, pp 146–152

    Google Scholar 

  34. Joshi KK, Joshi SD (2000) Genetic heritage of medicinal and aromatic plants of Nepal Himalayas. Buddha Academy Publisher and Distributors, Pvt, Kathmandu

    Google Scholar 

  35. Bulpitt CJ (2005) The uses and misuses of orchids in medicine. QJM 98:625–631

    Article  CAS  PubMed  Google Scholar 

  36. Baral SR, Kurmi PP (2006) A compendium of medicinal plants of Nepal. Publisher Rachana Baral, Mass Printing Press, Kathmandu

    Google Scholar 

  37. Subedi A (2011) New species, pollinator interactions and pharmaceutical potential of Himalayan orchids. Ph. D. Thesis, Leiden University, The Netherlands

    Google Scholar 

  38. Joshi G, Tewari LM, Lohani N, Upreti K, Jalal JS, Tewari G (2009) Diversity of orchids on Uttarakhand and their conservation strategy with special reference to their medicinal importance. Rep Opin 1:47–52

    Google Scholar 

  39. Meitei A, Pamarthi RK, Kumar R, Bhutia NT, Rai D, Kiran BP, Singh AK, Gazmer R, Singh DR (2019) Dendrobium nobile Lindl. in Indian traditional medicine, a phytochemical approach. Indian J Horticul 76(3):557–560

    Article  Google Scholar 

  40. Pant B, Raskoti BB (2013) Medicinal orchids of Nepal. Himalayan Map House, Pvt Ltd, Kathmandu

    Google Scholar 

  41. Nongdam P (2014) Ethno-medicinal uses of some orchids of Nagaland, North-East India. Res J Med Plant 8(3):126–139

    Article  Google Scholar 

  42. Matsuda H, Morikawa T, Xie H, Yoshikawa M (2004) Antiallergic phenanthrenes and stilbenes from the tubers of Gymnadenia conopsea. Planta Med 70:847–855

    Article  CAS  PubMed  Google Scholar 

  43. Arditti J (1992) Fundamentals of orchid biology. Wiley, New York, pp 243–260

    Google Scholar 

  44. Arora M, Mahajan A, Sembi JK (2007) A review on phytochemical and pharmacological potential of family orchidaceae. Int Res J Pharm 8(10):9–24

    Article  CAS  Google Scholar 

  45. Guteirrez RMP (2010) Orchids: a review of uses in traditional medicine, its phytochemistry and pharmacology. J Med Plant Res 4(8):592–638

    Google Scholar 

  46. Khasim S, Rao PRM (1999) Medicinal importance of orchids. The Botanica 49:86–91

    Google Scholar 

  47. Li Y, Wang CL, Guo SX, Yang JS (2008) Two new compounds from Dendrobium candidum. Chem Pharm Bull 56:1477–1479

    Article  CAS  Google Scholar 

  48. Fan C, Wang W, Wang Y, Qin G, Zhao W (2001) Chemical constituents from Dendrobium densiflorum. Phytochemistry 57:1255–1258

    Article  CAS  PubMed  Google Scholar 

  49. Venkateswarlu S, Raju MS, Subbarahu GV (2002) Synthesis and biological activity of isamoenylin, a metabolite of Dendrobium amoenum. Biosci Biotechnol Biochem 66:2236–2238

    Article  CAS  PubMed  Google Scholar 

  50. Miyazawa M, Shimamura H, Nakamura S, Kameoka H (1997) Antimutagenic activity of gigantol from Dendrobium nobile. J Agric Food Chem 45:2849–2853

    Article  CAS  Google Scholar 

  51. Vaidya BN (2019) Nepal global hotspot for medicinal orchids. In: Medicinal plants. pp 35–80. https://doi.org/10.1007/978-3-030-31269-5_3

  52. Arditti J, Ernst R (1984) Physiology of orchid seed germination. In: Arditi J (ed) Orchid biology reviews and perspectives. Cornell University Press, New York

    Google Scholar 

  53. Hossain MM (2009) Traditional therapeutic uses of some indigenous orchids of Bangladesh. Med Aromat Plant Sci Biotechnol 42:101–106

    Google Scholar 

  54. Singh DK (2001) Morphological diversity of the orchids of Orissa/Sarat Misra. In: Pathak P, Sehgal RN, Shkhar N, Sharma M, Sood ABSMPS (eds) Orchids: science and commerce. New Delhi, Bishen Singh Mahendra Pal Singh, pp 35

    Google Scholar 

  55. Yang L, Wang Z, Xu L (2006) Simultaneous determination of phenols (bibenzyl phenanthrene and fluorenone) in Dendrobium species by high performance liquid chromatography with diode array detection. J Chromatograp 1104:230–237

    Article  CAS  Google Scholar 

  56. Zhao P, Wang W, Feng FS, Wu F, Yang ZQ, Wang WJ (2007) High frequency shoot regeneration through transverse thin cell layer culture in Dendrobium candidum Wall Ex Lindl. Plant Cell Tissue Organ Cult 90:131–139

    Article  Google Scholar 

  57. Wu HS, Xu JH, Chen LZ, Sun JJ (2004) Studies on antihyperglycemic effect and its mechanism of Dendrobium candidum. Zhongguo Zhong Yao Za Zhi 29:160–163

    PubMed  Google Scholar 

  58. Zheng Y (2005) Shihuin China pharmacopoeia. Chemical Technology Press, Beijing, pp 61–63

    Google Scholar 

  59. Ding YP, Wu LS, Yu LW (1998) Optimized harvesting period for Dendrobium candidum. China J Chinese Materia Medica 23:458–460

    CAS  Google Scholar 

  60. Bensky D, Gemble A (1993) A Chinese herbal medicine Materia Medica. Eastland Press, Seattle

    Google Scholar 

  61. Xu J, Han BQ, Li SL, Chen XJ, Wang XN, Zhao ZZ et al (2013) Chemistry, bioactivity and quality control of Dendrobium, a commonly used tonic herbin traditional Chinese medicine. Phytochem Rev 12:341–367

    Article  CAS  Google Scholar 

  62. Pant B (2013) Medicinal orchids and their uses: tissue culture a potential alternative for conservation. Afric J Plant Sci 7(10):448–467

    Article  Google Scholar 

  63. Bi ZM, Wang ZT, Xu LS, XU GJ (2003) Studies on the chemical constituents of Dendrobium fimbriatum. Yao Xue Xue Bao 38: 526–529

    Google Scholar 

  64. Jin H, Xu ZX, Chen JH, Han SF, Ge S, Luo YB (2009) Interaction between tissue-cultured seedlings of Dendrobium officinale and mycorrhizal fungus (Epulorhiza sp.) during symbiotic culture. Chin J Plant Ecol 33:433–441

    CAS  Google Scholar 

  65. Ho CK, Chen CC (2003) Moscatilin from the orchid Dendrobium loddigesii is a potential anticancer agent. Cancer Investig 21:729–736

    Article  CAS  Google Scholar 

  66. Roy J, Naha S, Majumdar M, Banerjee N (2007) Direct and callus mediated protocorm-like body induction from shoot-tips of Dendrobium chrysotoxum Lindl. (Orchidaceae). Plant Cell Tissue Organ Cult 90:31–39

    Article  CAS  Google Scholar 

  67. Nimisha PS, Hiranmai Yadav R (2012) Proximate and phytochemical analysis of Dendrobium macrostachyum Lindl. Int J Pharmaceutic Sci 4(1):385–386

    Google Scholar 

  68. Arditti J, Clementsm MA, Fast G, Handley G, Nishimura (1982) Orchid seed germination and seedling culture -a manual. In: Arditti J (ed) Orchid biology -reviews and perspectives, vol II. Cornell University Press, Ithaca, pp 243–370

    Google Scholar 

  69. Dressler RL (1993) Phylogeny and classification of the orchid family. Cambridge University Press, New York

    Google Scholar 

  70. Rama Rao V (2002) Distributional status survey of threatened plants of Gujarat. PhD Thesis, Sardar Patel University, Vallabh Vidyanagar

    Google Scholar 

  71. Gavali D, Sharma D (2004) Traditional knowledge and biodiversity conservation in Gujarat. Indian J Trad Knowledge 3:51–58

    Google Scholar 

  72. Kirtikar KR, Bashu BD (2001) Orchidaceae Dendrobium. In: Indian medicinal plants, 2nd edn. Oriental Press, India, pp 3316–3317

    Google Scholar 

  73. Kovacs A, Vasas A, Hohmann J (2008) Natural phenanthrenes and their biological activity. Phytochemistry 69:1084–1110

    Article  CAS  PubMed  Google Scholar 

  74. Balzarini J, Neyts J, Schols D, Hosoya M, Van Damme E, Peumans W, De Clercq E (1992) The mannose-specific plant lectins from Cymbidium hybrid and Epipactis helleborine and the (N-acetylglucosamine) N-specific plant lectin from Urtica dioca are potent and selective inhibitors of human immunodeficiency virus and cytomegalovirus replication in vitro. Antivir Res 18:191–207

    Article  CAS  PubMed  Google Scholar 

  75. Wu ZG, Jiang W, Chen SL, Mantri N, Tao ZM, Jiang CX (2016) Insights from the cold transcriptome and metabolome of Dendrobium officinale: global reprogramming of metabolic and gene regulation networks during cold acclimation. Front Plant Sci 7:1653

    Article  PubMed  PubMed Central  Google Scholar 

  76. Chen KK, Chen AL (1935) The alkaloid of Chin-Shih-Hu. J Biol Chem 111:653–658

    Article  CAS  Google Scholar 

  77. Liu QF, Zhao WM (2009) A new dedonbrine type alkaloid from Dendrobium nobile. Chin Chem Lett 14:278–279

    Google Scholar 

  78. Chauhan NS (1999) Medicinal and aromatic plants of Himachal Pradesh. Indus Publishing, New Delhi, p 632

    Google Scholar 

  79. Devi PU, Selvi S, Devipriya D, Murugan S, Suja S (2009) Antitumor and antimicrobial activities and inhibition of in-vitro lipid peroxidation by Dendrobium nobile. Afr J Biotechnol. https://doi.org/10.5897/AJB2009.000-9292

  80. Zhu S, Niu Z, Xue Q, Hui W, Xie X, Ding X (2018) Accurate authentication of Dendrobium officinale and its closely related species by comparative analysis of complete plastomes. Acta Pharm Sin B 8(6):969–980

    Article  PubMed  PubMed Central  Google Scholar 

  81. Lin Y, Li J, Li B, He T, Chun Z (2010) Effects of light quality on growth and development of protocorm-like bodies of Dendrobium officinale in vitro. Plant Cell Tissue Organ Cult 105(3):329–335

    Article  Google Scholar 

  82. Zhou Y, Honda M, Zhu H, Zhang Z, Guo X, Li T, Li Z, Peng X, Nakajima K, Duan L (2015) Spatiotemporal sequestration of miR165/166 by Arabidopsis argonaute 10 promotes shoot apical meristem maintenance. Cell Rep 10:1819–1827

    Article  CAS  PubMed  Google Scholar 

  83. Zhang GN, Zhang CF, Wang ZT, Xu LS (2004) Chemical constituents of Dendrobium thyrsiflorum Rchb f (II). Chinese J Natural Med 2(2):78–81

    CAS  Google Scholar 

  84. Zhang D, Zhang JJ (2005) Effect of Coeloglossum viride var. bracteatum extract on oxidation injury in sub-acute senescent model mice. Zhongguo Yi Xue Ke Xue Bao 27:729–733

    Google Scholar 

  85. Song C, Kang J, Ji X, Fu C, Wen X, Yu L, Qiao G (2007) Efficient plant regeneration and genetic fidelity assessment of in vitro-derived plants of Dendrobium nobile- an endangered medicinal and ornamental herb. Orchid Sci Biotechnol 1:51–55

    Google Scholar 

  86. Yan L, Wang CL, Wang YJ, Gua SX, Yang JS, Chen XM, Xiao PG (2009) Three new bibenzyl derivatives from Dendrobium candidum. Chem Pharm Bull 57:218–219

    Article  Google Scholar 

  87. Wu JW, Hu CY, Shahid MQ et al (2013) Analysis on genetic diversification and heterosis in autotetraploid rice. Springer Plus 2:439

    Article  PubMed  PubMed Central  Google Scholar 

  88. You HL, Park JD, Baek NI, Kim S, Ahn BZ (1995) In vitro and in vivo antimural phenanthrenes from the aerial parts of Dendrobium nobile. Planta Med 61:178–180

    Article  Google Scholar 

  89. Manandhar NP (1995) A survey of medicinal plants of Jajarkot district, Nepal. J Ethnopharmacol 48(1):1–6

    Article  CAS  PubMed  Google Scholar 

  90. Pant B, Thapa D (2012) In vitro mass propagation of an epiphytic orchid, Dendrobium primulinum Lindl. through shoot tip culture. Afr J Biotech 11(42):9970–9974

    CAS  Google Scholar 

  91. Yuan Y, Yu M, Jia Z, Song X, Liang Y, Zhang J (2018) Analysis of Dendrobium huoshanense transcriptome unveils putative gene associated with active ingredients synthesis. BMC Genomics 19:978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kartikar KR, Basu BD (1981) Indian medicinal plants, vol 2. International Book Distribution, Dehradun

    Google Scholar 

  93. Mk A, Rashid MH, Hossain MS, Salam MA, Rouf MA (2002) In vitro seed propagation of Dendrobium (Dendrobium transparens) orchid as influenced by different media. Biotechnology 1:111–115

    Article  Google Scholar 

  94. Teixeira da Silva JA (2013) The role of thin cell layers in regeneration and transformation in orchids. Plant Cell, Tissue and Organ Cult 113:149–161

    Article  CAS  Google Scholar 

  95. Zahara M, Datta A, Boonkorkaew P (2016) Effects of sucrose, carrot juice and culture mediaon growth and net CO2 exchange rate in Phalaenopsis hybrid ‘pink’. Sci Hortic 205:17–24

    Article  CAS  Google Scholar 

  96. Utami ESW, Hriyanto S (2020) Organic compounds: contents and their role in improving seed germination and protocorm development in orchids. Int J Agronomy 2020:2795108

    Article  CAS  Google Scholar 

  97. Zahara M, Datta A, Boonkorkaew P, Mishra A (2017) The effects of different media, sucrose concentrations and natural additives on plantlet growth of Phalaenopsis hybrid ‘pink’. Braz Arch Biol Technol 60:e160149

    Article  CAS  Google Scholar 

  98. Anderson AB (1996) The reintroduction of Plantanthera ciliaris in Canada. In: Allen C (ed) North American native terrestrial orchids propagation and production. North American Native Terrestrail Orchid Conference, Germantown, pp 73–76

    Google Scholar 

  99. Stewart SL, Kane ME (2006) Asymbiotic seed germination and in vitro seedling development of Habenaria macroceratitis (Orchidaceae), a rare Florida terrestrial orchid. Plant Cell Tissue Organ Cult 86:147–158

    Article  CAS  Google Scholar 

  100. Dohling S, Kumaria S, Tandon P (2012) Multiple shoot induction from axillary bud cultures of the medicinal orchid, Dendrobium longicornu. AoB Plants pls032. https://doi.org/10.1093/aobpla/pls032

  101. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue culture. Physiologia Planturam 15(3):473–497

    Article  CAS  Google Scholar 

  102. Mitra GC, Prasad RN, Roychowdhury A (1976) Inorganic salts and differentiation of protocorms in seed callus of orchid and correlative changes in its free amino acid content. Indian J Exp Biol 14:350–351

    CAS  Google Scholar 

  103. Knudson L (1946) A new nutrient solution for germination of orchid seed. Amer Orchid Soc Bull 15:214–217

    CAS  Google Scholar 

  104. Vacin E, Went FW (1949) Some pH changes in nutrient solutions. Bot Gaz 110:605–613

    Article  CAS  Google Scholar 

  105. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension culture of soybean root cells. Exp Cell Res 50(1):151–158

    Article  CAS  PubMed  Google Scholar 

  106. Kramer PJ, Kozlowski TT (1979) Physiology of woody plants. Academic Press, New York, p 811

    Google Scholar 

  107. Suzuki RM, Moreira VC, Pescador R, Melo FW (2012) Asymbiotic seed germination and in vitro seedling development of the threatened orchid Hoffmennseggella cinnaberina. In Vitro Cell Dev Biol 48:500–511

    Article  Google Scholar 

  108. Yildiz M (2012) The prerequisite of the success in plant tissue culture: high frequency shoot regeneration. In: Leva A, Rinaldi LMR (eds) Recent advances in plant in vitro culture, 1st edn. InTech Rijeka, London, UK pp 63–90. https://doi.org/10.5772/51097

  109. Teixeira da Silva JA, Dobranszki J, Cardoso JC, Zeng SJ (2015) Mocropropagation of Dendrobium: a review. Plant Cell Rep 34:671–704

    Article  CAS  Google Scholar 

  110. Kong Q, Yuan SY, Végvári GY (2007) Micropropogation of an orchid Dendrobium strongylanthum Rchb.f. Int J Hortic Sci 13:61–64

    Article  Google Scholar 

  111. Kaewduangta W, Reamkatog P (2011) Effect of modification medium on growth development of Dendrobium parishii in vitro. Am Eurasian J Agric Environ Sci 11:117–121

    Google Scholar 

  112. Nongdam P, Tikendra L (2014) Establishment of an efficient in vitro regeneration protocol for rapid and mass propagation of Dendrobium chrysotoxum lindl. using seed culture. Sci World J. https://doi.org/10.1155/2014/740150

  113. Bhadra SK, Barua AK, Bhattacharjee B, Hossain MM (2002) In vitro micropropagation of Dendrobium aphyllum (Roxb.) G. E. C. Fisher. Bangladesh J Genet Biotechnol 3:47–50

    Google Scholar 

  114. Bai MF, Wu TL, Huang M, Zhang TG (2004) Rapid propagation of Dendrobium loddigesii Rolfe by tissue culture. Seed 23:44–46. (in Chinese with English abstract)

    Google Scholar 

  115. Huang WC, Yin LQ, Hu YH, Wang XQ, Zhao XF, Li XF (2008) In vitro rapid propagation of Dendrobium fimbriatum. J Shanghai Jiaotong Univ (Agric Sci) 26:584–587. (in Chinese with English abstract)

    Google Scholar 

  116. Guan P, Shi JM (2009) Tissue culture of stem segment and induction of floral buds of Dendrobium denndanum. Lishizhen Med Materia Med Res 20:205–206. (in Chinese with English abstract)

    CAS  Google Scholar 

  117. Pradhan S, Paudel YP, Pant B (2013) Efficient regeneration of plants from shoot tip explants of Dendrobium densiflorum Lindl., a medicinal orchid. Afr J Biotechnol 12:1378–1383

    CAS  Google Scholar 

  118. Yasugi S, Shinto H (1994) Formation of multiple shoots and regenerated plantlets by culture of pseudobulb segment in nobile type Dendrobium. Plant Tissue Cult Lett 11(2):153–156

    Article  CAS  Google Scholar 

  119. Sharma U, Rao VR, Nohan JSS, Reddy AS (2007) In vitro propagation of Dendrobium microbulbon A. Rich—a rare ethnomedicinal herb. Indian J Biotechnol 6:381–384

    CAS  Google Scholar 

  120. Ferreira WDM, Kerbauy GB, Costa APP (2006) Micropropagation and genetic stability of a Dendrobium hybrid (Orchidaceae). In Vitr Cell Dev Biol Plant 42:568–571

    Article  CAS  Google Scholar 

  121. Webster S, Mitchell SA, Ahmad MH (2003) A novel surface sterilization method for reducing fungal and bacterial contamination of field grown medicinal explants intended for in vitro culture. In Proceedings of 17th SRC conference entitled “Science and technology for economic development: Technology driven agriculture and agro processing SRC, Jamaica

    Google Scholar 

  122. Oyebanji OBO, Nweke O, Odebunmi NB, Galadima MS, Idris UN, Nnodi A, Afolabi S, Ogbadu GH (2009) Simple, effective and economical explant-surface sterilization protocol for cowpea, rice and sorghum seeds. Afri J Biotechnol 8(20):5395–5399

    CAS  Google Scholar 

  123. Hossain MM, Sharma M, Pathak P (2013) In vitro propagation of Dendrobium aphyllum (Orchidaceae)—seed germination to flowering. J Plant Biochem Biotechnol 22:157–167

    Article  Google Scholar 

  124. Zhang X, Gao J (2020) In vitro tetraploid induction from multigenotype protocorms and tetraploid regeneration in Dendrobium officinale. Plant Cell Tissue Organ Cult 141:289–298

    Article  CAS  Google Scholar 

  125. Tomita M, Tomita M (1997) Plant regeneration from immature seed -derived callus of Cypripedium macranthos Swartz var. taiwanianum (Masamune) F. Maekawa. Breed Sci 47:279281

    Google Scholar 

  126. Hynson NA, Madesen TP, Selosse MA, Adam IKU, Ogura-Tsujita Y, Roy M et al (2013) The physiological ecology of mycoheterotropy. In: Merckx VSFT (ed) Mycoheterotropy: the biology of plants living on fungi. Springer, Berlin, pp 297–342

    Chapter  Google Scholar 

  127. Parthibhan S, Senthil Kumar T, Rao MV (2015) Phenology and reintroduction strategies for Dendrobium aqueum Lindley – an endemic, near threatened orchid. J Nat Conserv 24:68–71

    Article  Google Scholar 

  128. Nontachaiyapoon S, Sasirat S, Manoch L (2011) Symbiotic seed germination of Grammatophyllum speciosum Blume and Dendrobium draconis Rchb. f., native orchids of Thailand. Sci Hortic 130:303–308

    Article  Google Scholar 

  129. Paul S, Kumaria S, Tandon P (2012) An effective nutrient medium for asymbiotic seed germination and large-scale in vitro regeneration of Dendrobium hookerianum, a threatened orchid of northeast India. AoB Plants plr032. https://doi.org/10.1093/aobpla/plr032

  130. Utami ESW, Hariyanto S, Manuhara YSW (2017) In vitro propagation of the endangered medicinal orchid, Dendrobium lasianthera JJ Sm through mature seed culture. Asian Pac J Trop Biomed 7:406–410

    Article  Google Scholar 

  131. Phillip VJ, Nainar SAZ (1986) Clonal propagation of Vanilla planifolia (Salisb.) Ames using tissue culture. J Plant Physiol 122:211–215

    Article  Google Scholar 

  132. Morel G (1966) Meristem culture clonal propagation of orchids. Orchid Dig 30:45–49

    Google Scholar 

  133. Dohling S, Das MC, Kumaria S, Tandon P (2007) Conservation of splendid orchids of North-East India. Biodivers. Its significance. IK International Publishers, New Delhi, pp 354–365

    Google Scholar 

  134. Sharma A, Tandon P (1992) In vitro culture of Dendrobium wardianum Warner: morphogenetic effects of some nitrogenous adjuvants. Indian J Plant Physiol 35(1):80–85

    CAS  Google Scholar 

  135. Kanjilal B, DeSarkar D, Mitra J, Dutta BK (1999) Stem disc culture: development of a rapid mass propagation method of Dendrobium moschatum (Buch-Ham) Swartz—an endangered orchid. Curr Sci 77:497–500

    Google Scholar 

  136. Roy J, Banerjee N (2003) Induction of callus and plant regeneration from shoot-tip explant of Dendrobium fimbriatum Lindl. var. oculatum Hk. f. Sci Hortic 97:333–340

    Article  CAS  Google Scholar 

  137. Malabadi RB, Mulgund GS, Kallappa N (2005) Micropropagation of Dendrobium nobile from shoot tip sections. J Plant Physiol 162:473–478

    Article  CAS  PubMed  Google Scholar 

  138. Pornpienpakdee P, Singhasurasak R, Chaiyasap P, Pichyangkura R, Bunjongrat R, Chadchawan S, Limpanavech P (2010) Improving the micropropagation efficiency of hybrid Dendrobium orchids with chitosan. Sci Hortic 124:490–499

    Article  CAS  Google Scholar 

  139. Asghar S, Ahmad T, Ahmad I, Yaseen M (2011) In vitro propagation of orchid (Dendrobium nobile) var. Emma white. Afr J Biotechnol 10:3097–3103

    Article  CAS  Google Scholar 

  140. Vij SP, Pathak P (1989) Micropropagation of Dendrobium chrysanthum Wall. through pseudobulb segments. J Orchid Soc India 3:25–28

    Google Scholar 

  141. Gao PY, Chen JM, Gan Q (2002) Tissue culture of stem segment and plantlet regeneration of Dendrobium nobile. Chin Tradit Herbal Drug 33:1031–1033. (in Chinese with English abstract)

    CAS  Google Scholar 

  142. Bai Y, Bao YH, Wang WQ, Yan YN (2006) Tissue culture and rapid propagation of Dendrobium crepidatum Lindl. ex Paxt. Plant Physiol Commun 42:R28–S68. (in Chinese)

    Google Scholar 

  143. Bhattacharyya P, Paul P, Kumaria S, Tandon P (2018) Transverse thin cell layer (t-TCL) mediated improvised micropropagation protocol for endangered medicinal orchid Dendrobium aphyllum Roxb: an integrated phytomolecular approach. Acta Physiol Plant 40:137

    Article  CAS  Google Scholar 

  144. Pant B, Sha HS, Shrestha R, Pandey S, Joshi PR (2017) An overview on orchid endophytes. In: Varma A, Prasad R, Tuteia N (eds) Mycorrhiza-nutrient uptake biocontrol ecorestoration. Springer, Berlin, pp 503–524

    Chapter  Google Scholar 

  145. Martin KP, Geevarghese J, Jodheph D, Madassery J (2005) In vitro propagation of Debdrobium hybrids using flower stalk node explants. Indian J Exp Biol 43:280–285

    CAS  PubMed  Google Scholar 

  146. Nugroho JD, Arobaya AYS, Tanur EA (2019) Propagation of Dendrobium antennatum Lindl via seed culture in vitro using simple medium: fertilizer and complex organic based medium. HIYATI J Biosci 26(3):133–138

    Article  Google Scholar 

  147. Ma NL, Khoo SK, Lee JX, Soon CF, Shukor NAAB (2020) Efficient micropropagation of Dendrobium aurantiacum from shoot explant. Plant Sci Today 7(3):476–482

    Article  CAS  Google Scholar 

  148. Parthibhan S, Kumar TS, Rao MV (2015) In vitro regeneration from protocorms in Dendrobium aqueum Lindley- an imperilled orchid. J Nat Conserv 24:68–71

    Article  Google Scholar 

  149. Partibhan S, Rao MV, da Silva T, Kumar TS (2018) Somatic embryogenesis from stem thin cell layers of Dendrobium aqueum. Biol Plant 62(3):439–450

    Article  CAS  Google Scholar 

  150. Riva SS, Islam A, Hoque ME (2016) In vitro regeneration and rapid multiplication of Dendrobium bensoniae, an indigenous ornamental orchid. The Agriculturists 14(2):24–31

    Article  Google Scholar 

  151. Refish NMR, Wang L, Fu C, Xu X, Jin W, Li M, Yu L (2016) Establishment and optimization of high efficiency embryogenic callus induction system in Dendrobium candidum. African J Plant Sci 10(4):77–83

    Article  Google Scholar 

  152. Maharajan S, Thakur LS, Thapal BB, Pradhan S, Pant KK, Joshi GP, Pant B (2020) In vitro propagation of the endangered orchid Dendrobium chryseum Rolfe from protocorms culture. Nepal J Sci Technol 19(1):39–47

    Article  Google Scholar 

  153. Kaur S (2017) In vitro regeneration of shoots from nodal explants of Dendrobium chrysotoxum LINDL. J Hortic Res 25(1):27–34

    Article  CAS  Google Scholar 

  154. Hapsoro D, Septiana VT, Ramadiana S, Yusnita Y (2018) A medium containing commercial foliar fertilizer and some organic additives could substitute MS medium for in vitro growth of Dendrobium hybrid seedlings. J Floratek 13(1):11–22

    Google Scholar 

  155. Kaur S, Bhandari P, Bhutani KK (2015) Chracterization of bioactive compounds at seedling stage and optimization of seed germination, culture multiplication and Dendrobium nobile Lindl. - a study in vitro. Int J Adv Res 3(4):1041–1052

    CAS  Google Scholar 

  156. Priyanka S, Verma LS, Satyanarayana E, Subhankar (2018) In vitro regeneration and rapid multiplication of Dendrobium nobile. Int J Chem Studies 6(6):1286–1288

    Google Scholar 

  157. Shetty V, Thomas A, Pujari I, Babu VS (2015) Asymbiotic hypergeneration of protocorm like bodies -an efficient and simple micropropagation strategy for conserving the therapeutic ornamental Dendrobium ovatum. Int J Recent Sci Res 6(12):8009–8015

    Google Scholar 

  158. Bhowmik TK, Rahman MM (2020) Micropropagation of commercially important orchid Dendrobium palpebrae Lindl. through in vitro developed psudobulb culture. J Adv Biotechnol Exp Ther 3(3):225–232

    Article  Google Scholar 

  159. Kunagorn N, Roopkam C, Aumroong P, Anukul N (2017) Meristem tip culture of Dendrobium orchid for boosting efficiency of hygienic large scale micropropagation. Acta Hortic 1155: 419–424

    Google Scholar 

  160. Adhikari H, Pant B (2019) In vitro seed germination and seedling growth of the orchid Dendrobium primulinum Lindl. African J Plant Sci 13(12):324–331

    Article  CAS  Google Scholar 

  161. Mamun AA, Islam MM, Ahmed M, Ghose GC (2018) In vitro mass propagation from shoot tip of Dendrobium Red Bull-an endangered epiphytic orchid. Plant Tissue Cult Biotech 28(2):161–169

    Article  Google Scholar 

  162. Rattana K, Sangchanjiradet S (2017) Micropropagation of Dendrobium signatum Rchb.F. Pertanika J Trop Agric Sci 40(4):577–586

    Google Scholar 

  163. Billore V, Jain M, Suprasanna P (2017) Monochromic radiation through light-emitting diode (LED) positively augments in vitro shoot regeneration in orchid (Dendrobium Sonia). Can J Biotech 1(2):50–58

    Article  Google Scholar 

  164. Sahagun J, Kongbangkerd A, Ratannasut K (2018) Organogenic potential of Dendrobium floral tissues for stable transformation applications. Philippine J Sci 147(4):667–676

    Google Scholar 

  165. Obsuwan K, Serayheap K, Thepsithar C (2019) Effects of calcium silicate and proline-induced salt tolerance on the in vitro propagation of Dendrobium Sonia ‘Red jo’. Acta Hortic 1262:87–91

    Article  Google Scholar 

  166. Bing HYN, Tham DT, Vinh TT, Hoi QV, Cong VK, Duy NV (2018) In vitro propagation of the new orchid Dendrobium trankimianum T. Yukawa. J Biotechnol 16(4):649–657

    Google Scholar 

  167. Larkin P, Scowcroft W (1981) Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214

    Article  CAS  PubMed  Google Scholar 

  168. Lakshmanan V, Venkataramareddy SR, Neelwarne B (2007) Molecular analysis of genetic stability in long-term micropropagated shoots of banana using RAPD and ISSR markers. Electron J Biotechnol. https://doi.org/10.2225/vol10-issue1-fulltext-12

  169. Sahijram L, Soneji JR, Bollamma KT (2003) Analyzing somaclonal variation in micropropagated bananas (Musa spp). In Vitro Cell Dev Biol 39:551–556

    Article  Google Scholar 

  170. Saravanan S, Sarvesan R, Vinod MS (2011) Identification of DNA elements involved in somaclonal variants of Rauvolfia serpentine (L.) arising from indirect organogenesis as evaluated by ISSR analysis. Indian J Sci Technol 4:1241–1245

    Article  Google Scholar 

  171. Vázquez AM (2001) Insight into somaclonal variation. Plant Biosyst 135:57–62

    Article  Google Scholar 

  172. Kunitake H, Nakashima T, Mori K, Tanaka M, Mii M (1995) Plant regeneration from mesophyll protoplasts of Lisianthus (Eustoma grandiflorum) by adding activated charcoal into protoplast culture medium. Plant Cell Tissue Organ Cult 43:59–65

    Article  Google Scholar 

  173. Zayova E, Vassilevska IR, Kraptchev B, Stoeva D (2010) Somaclonal variations through indirect organogenesis in eggplant (Solanum melongena L.). Biol Divers Conserv 3:1–5

    Google Scholar 

  174. Farahani F, Yari R, Masoud S (2011) Somaclonal variation in Dezful cultivar of olive (Olea europaea subsp. europaea). Gene Conserve 10:216–221

    Google Scholar 

  175. Siragusa M, Carra A, Salvia L, Puglia A, De Pasquale F, Carimi F (2007) Genetic instability in calamondin (Citrus madurensis Lour.) plants derived from somatic embryogenesis induced by diphenylurea derivatives. Plant Cell Rep 26:1289–1296

    Article  CAS  PubMed  Google Scholar 

  176. Sun S, Zhong J, Li S, Wang X (2013) Tissue culture-induced somaclonal variation of decreased pollen viability in torenia (Torenia fournieri Lind.). Bot Stud 54(1):36

    Article  PubMed  PubMed Central  Google Scholar 

  177. De Carvalho SR, Luis ZG, Scherwinski-Pereira JE (2014) The histodifferentiation events involved during the acquisition and development of somatic embryogenesis in oil palm (Elesis guineensis Jacq.). Plant Growth Regul 72:67–80

    Article  CAS  Google Scholar 

  178. Arnhold-Schmitt B (1993) Rapid changes in amplification and methylation pattern of genomic DNA in cultured carrot root explants (Daucus carota L.). Theor Appl Genet 85:793–800

    Article  Google Scholar 

  179. Eeuwens CJ, Lord S, Donough CR, Rao V, Vallejo G, Nelson S (2002) Effects of tissue culture conditions during embryoid multiplication on the incidence of “mantled” flowering in clonally propagated oil palm. Plant Cell Tissue Organ Cult 70:311–323

    Article  CAS  Google Scholar 

  180. Kaeppler SM, Kaeppler HF, Rhee Y (2000) Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol 43:179–188

    Article  CAS  PubMed  Google Scholar 

  181. Ngezahayo F, Dong Y, Liu B (2007) Somaclonal variation at the nucleotide sequence level in rice (Oryza sativa) as revealed by RAPD and ISSR markers, and by pairwise sequence analysis. J Appl Genet 48:329–336

    Article  PubMed  Google Scholar 

  182. Leva AR, Petruccelli R, Rinaldi LMR (2012) Somaclonal variation in tissue culture: a case study with olive. In: Leva AR, Rinaldi LMR (eds) Recent advances in plant in vitro culture. INTECH Open Access Publisher, Croatia, pp 123–150

    Chapter  Google Scholar 

  183. Neelankandan AK, Wang K (2012) Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications. Plant Cell Rep 31:597–620

    Article  CAS  Google Scholar 

  184. Tiwari JK, Chandel P, Gupta S, Gopal J, Singh BP, Bhardwaj V (2013) Analysis of genetic stability of in vitro propagated potato microtubers using DNA markers. Physiol Mol Biol Plants 19:587–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Azizi P, Hanafi MM, Sahebi M, Harikrishna JA, Taheri S, Yassoralipour A, Nasehi A (2020) Epigenetic changes and their relationship to somaclonal variation: a need to monitor the micropropagation of plantation crops. Funct Plant Biol. https://doi.org/10.1071/fp19077

  186. Sabir A, Newbury HJ, Todd G, Catty J, Ford-Lloyd BV (1992) Determination of genetic stability using isozymes and RFLPs in beet plants generated in vitro. Theor Appl Genet 84:113–117

    Article  CAS  PubMed  Google Scholar 

  187. Dixit S, Mandal BB, Sangeeta A, Srivastava PS (2003) Genetic stability assessment of plants regenerated from cryopreserved embryogenic tissues of Dioscorea bulbifera l. using RAPD, biochemical and morphological analysis. Cryo Letters 24:77–84

    CAS  PubMed  Google Scholar 

  188. Mallon R, Rodriguez-Oubina J, Gonzalez M (2010) In vitro propagation of the endangered plant Centaurea ultreiae: assessment of genetic stability by cytological studies, flow cytometry and RAPD analysis. Plant Cell Tissue Organ Cult 101:31–39

    Article  Google Scholar 

  189. Loureiro J, Rodriguez E, Dolezel J, Santos C (2006) Comparison of four nuclear isolation buffers for plant DNA cytometry. Ann Bot 98:679–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Bairu MW, Aremu AO, van Staden J (2011) Somaclonal variation in plants: cause and detection methods. Plant Growth Regul 63:147–173

    Article  CAS  Google Scholar 

  191. Butiuc-Keu A, Farkas A, Cristea V (2016) Genetic stability assessment of in vitro plants by molecular markers. Studia Univeritatis Babes - Bolyai Biologia 61(1):107–114

    Google Scholar 

  192. Singh SR, Dalal S, Singh R, Dhawan AK, Kalia RK (2013) Ascertaining clonal fidelity of micropropagated plants of Dendrocalamus hamiltonii Nees et Arn. ex Munro using molecular markers. In Vitro Cell Dev Biol 49:572–583

    Article  CAS  Google Scholar 

  193. Bandupriya HDD, Iroshini WWMA, Perera SACN, Vidhanaarachchi VRM, Fernando SC, Santha ES, Gunathilake TR (2017) Genetic fidelity testing using SSR marker assay confirms trueness to type of micropropagated coconut (Cocos nucifera L) plantlets derived from unfertilized ovaries. The Open Plant Sci J 10:46–54

    Google Scholar 

  194. Raynalta E, Elina J, Sudarsono SD (2018) Clonal fidelity of micro propagated Phalaenopsis plantlets based on assessment using eighteen Ph-Pto SNAP marker loci. Agrivita J Agri Sci 40(3):390–402

    Google Scholar 

  195. Rohela GK, Jogam P, Bylla P, Reuben C (2019) Indirect regeneration and assessment of genetic fidelity of acclimated plantlets by SCoT, ISSR and RAPD markers in Rauwolfia tetraphylla L.: an endangered medicinal plant. Biomed Res Int 2019:3698742

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Dey A, Nongdam P, Nandy S, Mukherjee S, Tikendra L, Hazra AK, Pandey DK (2020) Polyamine elicited aristolochic acid production in in vitro clonally fidel Aristolochia indica L.: an ISSR and RAPD markers and HPTLC based study. S Afr J Bot https://doi.org/10.1016/j.sajb.2020.06.018

  197. Dey A, Nandy S, Nongdam P, Tikendra L, Mukherjee A, Mukherjee S, Pandey DK (2020) Methyl jasmonate and salicylic acid elicit indole alkaloid production and modulate antioxidant defence and biocidal properties in Rauvolfia serpentina Benth. ex Kurz. in vitro culture. S Afri J Bot 135:1–17

    Article  CAS  Google Scholar 

  198. Muralidharan K, Wakeland EK (1993) Concentration of primer and template qualitatively affects products in random- amplified polymorphic DNA PCR. BioTechniques 14:362–364

    CAS  PubMed  Google Scholar 

  199. Amom T, Tikendra L, Rahaman H, Potshangbam A, Nongdam P (2018) Evaluation of genetic relationship between 15 bamboo species of North-East India based on ISSR marker analysis. Mol Biol Res Commun 7:7–15

    PubMed  PubMed Central  Google Scholar 

  200. Zerini HN, Jafari H, Ramandi HD, Bolandi AR, Karimishahri (2019) A comparative assessment of DNA fingerprinting assays of ISSR and RAPD markers for molecular diversity of Saffron and other Crocus spp. in Iran. Nucleus 62:39–50

    Article  Google Scholar 

  201. Gianchino RRA (2020) Investigation of the genetic variation of anise (Pimpinella anisum L.) using RAPD and ISSR markers. Genet Resour Crop Evol 67:763–780

    Article  CAS  Google Scholar 

  202. Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR) anchored polymerase chain reaction amplification. Genomics 20:176–183

    Article  CAS  PubMed  Google Scholar 

  203. Collard BCY, Mackill DJ (2009) Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol Biol Rep 27:86–93

    Article  CAS  Google Scholar 

  204. Amom T, Tikendra L, Apana N, Goutam M, Sonia P, Koijam AS, Potshangbam AM, Rahaman H, Nongdam P (2020) Efficiency of RAPD, ISSR, iPBS, SCoT and phytochemical markers in the genetic relationship study of five native and economical important bamboos of North-East India. Phytochemistry 174:112330

    Article  CAS  PubMed  Google Scholar 

  205. Amom T, Nongdam P (2017) The use of molecular marker methods in plants: a review. Int J Cur Res Rev 9:1–9

    CAS  Google Scholar 

  206. Hu J, Vick BA (2003) Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Mol Biol Rep 21:289–294

    Article  CAS  Google Scholar 

  207. Liu Q, Chen J, Corlett RT, Fan X, Yu D, Yang H, Gao J (2015) Orchid conservation in the biodiversity hotspot of Southwestern China. Conserv Biol 29:1563–1572

    Article  CAS  PubMed  Google Scholar 

  208. Smulders M, de Klerk G (2011) Epigenetics in plant tissue culture. Plant Growth Regul 63:137–146

    Article  CAS  Google Scholar 

  209. Hao YJ, Wen XP, Deng XX (2004) Genetic and epigenetic evaluations of citrus calluses recovered from slow-growth culture. J Plant Physiol 161:479–484

    Article  CAS  PubMed  Google Scholar 

  210. Baurens FC, Causse S, Lagavre T (2008) Methylation-sensitive amplification polymorphism (MSAP) protocol to assess CpG and CpNpG methylation in the banana genome. Fruits 63:117–123

    Article  CAS  Google Scholar 

  211. Morcello F, Gagneur C, Adam H, Richaud F, Singh R, Cheah SC, Rival A, Duval Y, Trebear JW (2006) Somaclonal variation in micropropagated oil palm. Characterization of two novel genes with enhanced expression in epigenetically abnormal cell lines and in response to auxin. Tree Physiol 26:585–594

    Article  Google Scholar 

  212. Wang D, Zhao J, Bai Y, Ao Y, Guo C (2017) The variation analysis of DNA methylation in wheat carrying gametocidal chromosome 3c from Aegilops triuncialis. Int J Mol Sci 18:1738

    Article  PubMed Central  CAS  Google Scholar 

  213. Nadeem MA, Nawaz MA, Shahid MQ, Dogan Y, Comertpay G, Yildiz M, Hatipoglu R, Ahmed F, Alsaleh A, Labhane N et al (2018) DNA molecular markers in plant breeding: current status and recent advancement in genomic selection and genome editing. Biotechnol Biotechnol Equip 32:261–285

    Article  CAS  Google Scholar 

  214. Dey A, Hazra AK, Nongdam P, Nandy S, Tikendra L, Mukharjee A, Banerjee S, Mukherjee S, Pandey DK (2019) Enhanced bacoside content in polyamine treated in vitro raised Bacopa monnieri (L.) Wettst. S Afr J Bot 123:259–269

    Article  CAS  Google Scholar 

  215. Gantait S, Mandai N, Bhattacharyya S, Kanti Das P (2010) Determination of genetic integrity in long-term micropropagated plantlets of Allium ampeloprasum L. using ISSR markers. Biotechnol 9:218–223

    Article  CAS  Google Scholar 

  216. Rathore NNS, Rai MK, Phulwaria M, Rathore NNS, Shekhawat NS (2014) Genetic stability in micropogated Cleome gynandra revealed by SCoT analysis. Acta Physiol Plant 36:555–559

    Article  CAS  Google Scholar 

  217. Bhattacharyya P, Kumaria S, Diengdoh R, Tandon P (2014) Genetic stability and phytochemical analysis of the in vitro regenerated plants of Dendrobium nobile Lindl., an endangered medicinal orchid. Meta Gene 2:489–504

    Article  PubMed  PubMed Central  Google Scholar 

  218. Rani V, Raina SN (2000) Genetic fidelity of organized meristem-derived micropropagated plants: a critical reappraisal. In Vitro Cell Dev Biol Plant 36:319–330

    Article  CAS  Google Scholar 

  219. Bhattacharyya P, Kumaria S, Job N, Tandon P (2015) Phyto-molecular profiling and assessment of antioxidant activity within micropropagated plants of Dendrobium thyrsiflorum: a threatened, medicinal orchid. Plant Cell Tissue Organ Cult 122:535–550

    Article  CAS  Google Scholar 

  220. Wannajindaporn A, Poolsawat O, Chaowiset W, Tantasawat PA (2015) Evaluation of genetic variability in in vitro sodium azide-induced Dendrobium ‘Earsakul’ mutants. Genet Mol Res 13(3):5333–5342

    Article  CAS  Google Scholar 

  221. Bhattachryya P, van Staden J (2018) Molecular insights into genetic diversity and population dynamics of five medicinal Eulophia species: a threatened orchid texa of Africa. Physiol Mol Biol Plants 24:631–641

    Article  CAS  Google Scholar 

  222. Poczai P, Varga I, Laos M et al (2013) Advances in plant gene targeted and functional markers: a review. Plant Methods 9:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  224. Galvan MZ, Bornet B, Balatti PA, Balachandra M (2003) Inter simple sequence repeat (ISSR) markers as a tool for the assessment of both genetic diversity and gene pool origin in common bean (Phaseolus vulgaris L.). Euphytica 132:297–301

    Article  CAS  Google Scholar 

  225. Ajibade SR, Weeden NF, Chite SM (2000) Inter simple sequence repeat analysis of genetic relationships in the genus Vigna. Euphytica 111:47–55

    Article  CAS  Google Scholar 

Download references

Acknowledgments

LT and PN are thankful to UGC (University Grant Commission), New Delhi, India, for financial support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tikendra, L. et al. (2021). Dendrobium sp.: In vitro Propagation of Genetically Stable Plants and Ethno-medicinal Uses. In: Merillon, JM., Kodja, H. (eds) Orchids Phytochemistry, Biology and Horticulture. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-11257-8_30-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11257-8_30-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11257-8

  • Online ISBN: 978-3-030-11257-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics