Skip to main content

An Overview on Orchid Endophytes

  • Chapter
  • First Online:
Mycorrhiza - Nutrient Uptake, Biocontrol, Ecorestoration

Abstract

Orchids, one of the most beautiful and diverse plant species in the nature, are a bit of a mystery for their seeds lack endosperm and they must depend on endophytes for germination, growth and adaptation. Naturalists and even the general public are drawn to orchids for their ornamental, medicinal and food value. In their keenness to harvest them, collectors have rendered many orchid species threatened or even endangered. Recent research into orchids, which are mycohetetrophic plants, has focused on isolation and identification of the mycorrhizal and non-mycorrhizal endophytes that directly or indirectly contribute to the growth and development of orchids as well as the production of valuable secondary metabolites. This article considers both the role such endophytes play and explains how such symbiotic partner scan be used in the plant tissue culture technique to help conserve and even commercialize various species of orchid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aggarwal S, Nirmala C, Beri S, Rastogi S, Adholeya A (2012) In vitro symbiotic seed germination and molecular characterization of associated endophytic fungi in a commercially important and endangered Indian orchid Vanda coerulea Griff. Ex Lindl. Eur J Environ Sci 2:33–42

    Google Scholar 

  • Agustini V (2016) Short communication: Rhizoctonia-like fungi isolated from roots of Dendrobium lancifolium var. papuanum and Calanthe triplicata in Papua, Indonesia. Biodivers J Biol Divers 17:377–383

    Google Scholar 

  • Alexander C, Hadley G (1985) Carbon movement between host and mycorrhizal endophyte during the development of the orchid Goodyera repens br. New Phytol 101:657–665

    Google Scholar 

  • Al-Karaki G, Al-Raddad A (1997) Effects of arbuscular mycorrhizal fungi and drought stress on growth and nutrient uptake of two wheat genotypes differing in drought resistance. Mycorrhiza 7:83–88

    CAS  Google Scholar 

  • Almeselmani M, Deshmukh PS, Sairam RK, Kushwaha SR, Singh TP (2006) Protective role of antioxidant enzymes under high temperature stress. Plant Sci 171:382–388

    CAS  PubMed  Google Scholar 

  • Arditti J (1967) Factors affecting the germination of orchid seeds. Bot Rev 33:1–97

    Google Scholar 

  • Arditti J, Ernst R (1984) Physiology of orchid seed germination. In: Arditti J (ed) Orchid biology: reviews and perspectives. Cornell University Press, New York

    Google Scholar 

  • Arditti J, Predgeon AM (1997) Orchid biology: reviews and prospectives, vol VII. Springer Science + Business Media, Dordrecht

    Google Scholar 

  • Baltruschat H, Fodor J, Harrach BD, Niemczyk E, Barna B, Gullner G, koczowski A (2008) Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol 180:501–510

    CAS  PubMed  Google Scholar 

  • Baque A, Shin Y, Lee E, Paek K (2011) Effect of light quality, sucrose and coconut water concentration on the microporpagation of Calanthe hybrids (“Bukduseong” × “Hyesung” and “Chunkwang” × “Hyesung”). Aust J Crop Sci 5:1247–1254

    CAS  Google Scholar 

  • Bonfante P, Perotto S (1995) Strategies of arbuscular mycorrhizal fungi when infecting host plants. New Phytol 130:3–21

    Google Scholar 

  • Bulpitt CJ (2005) The uses and misuses of orchids in medicine. QJM Monthly JAPI 98:625–631

    CAS  Google Scholar 

  • Buuren MJ (1995) A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378:626–629

    PubMed  Google Scholar 

  • Chand MB, Paudel MR, Pant B (2016) The antioxidant activity of selected wild orchids of Nepal. JCLM 4:731–736

    CAS  Google Scholar 

  • Chapin FS III, Moilanen L, Kieland K (1993) Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature 361:150–153

    CAS  Google Scholar 

  • Chen J, Wang H, Guo SX (2012) Isolation and identification of endophytic and mycorrhizal fungi from seeds and roots of Dendrobium (Orchidaceae). Mycorrhiza 22:297–307

    PubMed  Google Scholar 

  • Chen J, Zhang L, Xing Y, Wang Y, Xing X, Zhang D (2013) Diversity and taxonomy of endophytic Xylariaceous fungi from medicinal plants of Dendrobium (Orchidaceae). Plos One 8(3). https://doi.org/10.1371/journal.pone.0058268

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Zhang Q, Jia M, Ming Q, Yue W, Qin L (2016) Critical reviews in microbiology endophytic fungi with antitumor activities: their occurrence and anticancer compounds. Crit Rev Microbiol 42:454–473

    CAS  PubMed  Google Scholar 

  • Cribb PJ, Kell SP, Dixon KW, Barrett RL (2003) Orchid conservation: a global perspective. In: Dixon KW, Kell SP, Barrett RL, Cribb PJ (eds) Orchid conservation. Natural History Publications, Kota Kinabalu, Sabah, pp 1–2

    Google Scholar 

  • Dan Y, Meng Z, Guo S (2012a) Effects of forty strains of orchidaceae mycorrhizal fungi on growth of protocorms and plantlets of Dendrobium candidum and D. nobile. Afr J Microbiol Res 6:34–39

    Google Scholar 

  • Dan Y, Yu X, Guo S, Meng Z (2012b) Effects of forty-two strains of orchid mycorrhizal fungi on growth of plantlets of Anoectochilus roxburghii. Afr J Microbiol Res 6:1411–1416

    Google Scholar 

  • Das J, Ramesh KV, Maithri U, Mutangana D, Suresh CK (2014) Response of aerobic rice to Piriformospora indica. IJEB 52:237–251

    Google Scholar 

  • Deb CR (2008) Effects of different factorson immature embryoculture, PLBs differentiation and rapid mass multiplication of Coelogyne suaveolens (Lindl.) Hook. Int J Exp Biol 46:243

    Google Scholar 

  • Dighe SM, Raval M, Shah AK (1986) Detection of nitrogen-fixing ability in an epiphytic orchid Vanda testacea (Linde) Reichb. F. Proc Natl Sci Acad Part B Biol Sci 52:515–518

    CAS  Google Scholar 

  • Ding R, Chen XH, Zhang LJ, XD Y, Qu B, Duan R, Xu YF (2014) Identity and specificity of Rhizoctonia-like fungi from different populations of Liparis japonica (Orchidaceae) in northeast China. PLoS One 9(8)

    PubMed  PubMed Central  Google Scholar 

  • Duponnois R, Garbaye J (1991) Mycorrhization helper bacteria associated with the Douglas fir-Laccaria laccata symbiosis: effects in aseptic and in glass house conditions. Ann For Sci 48:239–251

    Google Scholar 

  • Feng G, Zhang FS, Li XL, Tian CY, Tang C, Rengel Z (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12:185–190

    CAS  PubMed  Google Scholar 

  • Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36

    CAS  PubMed  Google Scholar 

  • Galdiano Junior RF, Nascimbem Pedrinho EA, Luque Castellane TC, de Macedo Lemos EG (2011) Auxin-producing bacteria isolated from the roots of Cattleya walkeriana, an endangered brazilian orchid, and their role in acclimatization. Rev Bras De Ciencia Do Solo 35:729–737

    Google Scholar 

  • Gebauer G, Meyer M (2003) 15N and 13C natural abundance of autotrophic and myco-heterotrophic orchids provides insight into nitrogen and carbon gain from fungal association. New Phytol 160:209–223. https://doi.org/10.1046/j.1469-8137.2003.00872.x

    Article  CAS  PubMed  Google Scholar 

  • Gennaro M, Gonthier P, Nicolotti G (2003) Fungal endophytic communities in healthy and declining Quercus robur L. and Q. cerris L. trees in Northern Italy. J Phytopathol 151:529–534

    Google Scholar 

  • Gezgin Y, Eltem R (2009) Diversity of endophytic fungi from various Aegean and Mediterranean orchids (saleps). Turk J Bot 33:439–445

    Google Scholar 

  • Gill SS, Gill R, Trivedi DK, Anjum NA, Sharma KK, Ansari MW, Ansari A, Johri A, Prasad R, Pereira E, Varma A, Tuteja N (2016) Piriformospora indica: Potential and significance in plant stress tolerance. Front Microbiol 7:332. https://doi.org/10.3389/fmicb.2016.00332

    Article  PubMed  PubMed Central  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2003) Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of Acacia auriculiformis. Biol Fertil Soils 38:170–175

    Google Scholar 

  • Giri B, Giang PH, Kumari R, Prasad R, Sachdev M, Garg AP, Oelmuller R, Varma A (2005) Mycorrhizosphere: strategies and functions. In: Buscot F, Varma A (eds) Microorganisms in soils: roles in genesis and functions, vol 3. Springer, Berlin, Heidelberg, pp 213–252

    Google Scholar 

  • Gutiérrez R (2010) Orchids: a review of uses in traditional medicine, its phytochemistry and pharmacology. J Med Plants Res 4:592–638

    Google Scholar 

  • Harrier L (2001) The arbuscular mycorrhizal symbiosis: a molecular review of the fungal dimension. J Exp Bot 52:469–478

    CAS  PubMed  Google Scholar 

  • He CN, Wang CL, Guo SX, Yang JS, Xiao PG (2006) A novel flavonoid glucoside from Anoectochilus roxburghii (Wall.) Lindl. J Integr Plant Biol 48:359–363

    CAS  Google Scholar 

  • Hong IP, Kim H-K, Park J-S, Kim G-P, Lee MW, Guo SX (2002) Physiological characteristics of symbiotic fungi associated with the seed germination of Gastrodia elata. Mycobiology 30:22–26

    Google Scholar 

  • Hossain MS (2009) Cost effective protocol for in vitro mass propagation of Cybidium aloifolium (L.) Sw. a medicinally important orchid. Eng Life Sci 9:444–453

    CAS  Google Scholar 

  • Hou XQ, Guo SX (2009) Interaction between a dark septate endophytic isolate from Dendrobium sp. and roots of D. nobile seedlings. J Integr Plant Biol 51:374–381

    CAS  PubMed  Google Scholar 

  • Huang L (2004) Preliminary studies on mycorrhizal fungi in promoting the growth of orchid seedlings from tissue culture. Chin J Trop Crops 25:36–38

    Google Scholar 

  • Jacquemyn H, Lenaerts M, Tyteca D, Lievens B (2013) Microbial diversity in the floral nectar of seven Epipactis (Orchidaceae) species. Microbiol Open 2:644–658

    CAS  Google Scholar 

  • Jian-wei G, Fu C, Yu L (2016) Promoting role of Bacillus subtilis BS87 on the growth and content of some natural products in the medicinal plants Anoectochilus roxburghii and A. formosanus. Adv Life Sci 6:31–38. https://doi.org/10.5923/j.als.20160602.01

    Article  Google Scholar 

  • Khamchatra N, Dixon KW, Tantiwiwat S, Piapukiew J (2016) Symbiotic seed germination of an endangered epiphytic slipper orchid, Paphiopedilum villosum (Lindl.) Stein. from Thailand. S Afr J Bot 104:76–81

    Google Scholar 

  • Kim Y, Jordan D, McDonald GA (1998) Effect of phosphate-solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Biol Fertil Soils 26:79–87

    CAS  Google Scholar 

  • Kim Y, Chang K, Ka K, Hur H, Hong I, Shim J, Lee M (2006) Seed germination of Gastrodia elata using symbiotic fungi, Mycena osmundicola. Mycobiology 34:79–82

    PubMed  PubMed Central  Google Scholar 

  • Koide R (1992) Regulation of the vesicular-arbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol Plant Mol Biol 43:557–581

    CAS  Google Scholar 

  • Lanfranco L, Delpero M, Bonfante P (1999) Intrasporal variability of ribosomal sequences in the endomycorrhizal fungus Gigaspora margarita. Mol Ecol 8:37–45

    CAS  PubMed  Google Scholar 

  • Leake JR (1994) The biology of myco-heterotrophic (‘saprophytic’) plants. New Phytol 127:171–216

    PubMed  Google Scholar 

  • Leake JR, McKendrick SL, Bidartondo M, Read DJ (2002) Symbiotic germination and development of the myco-heterotrophic orchid Neottia nidus-avis in nature and its requirement for locally distributed Sebacina spp. New Phytol 163:405–423

    Google Scholar 

  • Li M (2001) Studies and applications on mycorrhiza of Paphiopedilum armeniacum. J Biol 18:17–18

    CAS  Google Scholar 

  • Li AR, Guan KY, Stonor R, Smith SE, Smith FA (2013) Direct and indirect influences of arbuscular mycorrhizal fungi on phosphorus uptake by two root hemiparasitic Pedicularis species: do the fungal partners matter at low colonization levels? Ann Bot 112:1089–1098

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Luo Y, Liu H (2010) Studies of mycorrhizal fungi of chinese orchids and their role in Orchid conservation in China—a review. Bot Rev 76:241–262

    Google Scholar 

  • Ma X, Kang J, Nontachaiyapoom S, Wen T, Hyde KD (2015) Non-mycorrhizal endophytic fungi from orchids. Curr Sci 109:72–80

    Google Scholar 

  • Macdonald RM, Chandler MR (1981) Bacterium like organelles in the vesicular-arbuscular mycorrhizal fungus Glomus caledonius. New Phytol 89:241–246

    Google Scholar 

  • Majumder PL, Bandyopadhyay S (2010) Stilbenoids and sesquiterpene derivatives of the orchids Gastrochilum calcoelaria and Dendrobium amoenum: application of 2D NMR spectroscopy in structural elucidation of complex natural products. J Indian Chem Soc 87:221–234

    CAS  Google Scholar 

  • Majumder PL, Guha S, Sen S (1999) Bibenzyl derivatives from the orchid Dendrobium amoenum. Phytochemistry 52:1365–1369

    CAS  Google Scholar 

  • Malla R, Prasad R, Kumari R, Giang PH, Pokharel U, Oelmueller R, Varma A (2004) Phosphorus solubilizing symbiotic fungus Piriformospora indica. Endocytobiosis Cell Res 15:579–600

    Google Scholar 

  • Mandal SM, Chakraborty D, Dey S (2010) Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav 5:359–368. https://doi.org/10.4161/psb.5.4.10871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mangunwardoyo W (2012) Frequency of endophytic fungi isolated from Dendrobium crumenatum Sw. (Pigeon orchid) and antimicrobial activity. Biodiversitas 13:34–39

    Google Scholar 

  • Matsuoka H, Akiyama M, Kobayashi K, Yamaji K (2013) Fe and P solubilization under limiting conditions by bacteria isolated from carex kobomugi roots at the Hasaki coast. Curr Microbiol 66:314–321

    CAS  PubMed  Google Scholar 

  • Miller AJ, Cramer MD (2005) Root nitrogen acquisition and assimilation. Plant Soil 274:1–36

    CAS  Google Scholar 

  • Moin S, Sahaya SB, Servin WP, Chitra DB (2012) Bioactive potential of Coelogyne stricta (D. Don) Schltr: an ornamental and medicinally important orchid. J Pharma Res 5:2191–2196

    Google Scholar 

  • Moreira ASFP, Dos Santos Isaias RM (2008) Comparative anatomy of the absorption roots of terrestrial and epiphytic orchids. Braz Arch Biol Technol 51:83–93

    Google Scholar 

  • Murashige T (1974) Plant propagation through tissue culture. Ann Rev Plant Physiol 25:135–166

    CAS  Google Scholar 

  • Nicoletti R, Fiorentino A (2015) Plant bioactive metabolites and drugs produced by endophytic fungi of Spermatophyta. Agriculture 5:918–970

    CAS  Google Scholar 

  • Pant B (2013) Medicinal orchids and their uses: tissue culture a potential alternative for conservation. Afr J Plant Sci 7:448–467

    Google Scholar 

  • Pant B, Raskoti BB (2013) Medicinal orchids of Nepal. Himalayan Map House Pvt. Ltd., Nepal

    Google Scholar 

  • Pant B, Thapa D (2012) In vitro mass propagation of an epiphytic orchid, Dendrobium primulinum Lindl. through shoot tip culture. Afr J Biotechnol 11:9970–9974

    CAS  Google Scholar 

  • Pant B, Paudel M, Chand MB, Wagner SH (2016) Treasure troves of orchids in Central Nepal. Central Department of Botany, Nepal

    Google Scholar 

  • Paudel MR, Chand MB, Karki N, Pant B (2015) Antioxidant activity and total phenolic and flavonoid contents of Dendrobium amoenum Wall ex Lindl. Botanica Orientalis. J Plant Sci:20–26

    Google Scholar 

  • Pedersen BP, Kumar H, Waight AB, Risenmay AJ, Roe-Zurz Z, Chau BH, Stroud RM (2013) Crystal structure of a eukaryotic phosphate transporter. Nature 496:533–560

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pirozynski K (1989) Geological history of the Glomaceae, with particular reference to mycorrhizal symbiosis. Symbiosis 7:1–36

    Google Scholar 

  • Pongener A, Deb CR (2011) In vitro regeneration of plantlets of Cymbidium iridioides D. Don using nodal segments as explants. Int J Appl Biotechnol Biochem 1:389–400

    Google Scholar 

  • Pradhan S, Tiruwa B, Subedee BR, Pant B (2014) In vitro germination and propagation of threatened medicinal orchid, Cymbidium aloifolium (L.) Sw. through artificial seed. Asian Pac J Trop Biomed 4:971–976

    CAS  Google Scholar 

  • Pradhan S, Regmi T, Ranjit M, Pant B (2016) Production of virus-free orchid Cymbidium aloifolium (L.) Sw. by various tissue culture techniques. Heliyon 2:e00176

    PubMed  PubMed Central  Google Scholar 

  • Prasad R, Kamal S, Sharma PK, Oelmüller R, Varma A (2013) Root endophyte Piriformospora indica DSM 11827 alters plant morphology, enhances biomass and antioxidant activity of medicinal plant Bacopa monniera. J Basic Microbiol 53:1016–1024

    CAS  PubMed  Google Scholar 

  • Rasmussen HN, Rasmussen FN (2009) Orchid mycorrhiza: implications of a mycophagous life style. Oikos 118:334–345

    Google Scholar 

  • Roy M, Yagame T, Yamato M, Iwase K, Heinz C, Faccio A, Selosse MA (2009) Ectomycorrhizal Inocybe species associate with the mycoheterotrophic orchid Epipogium aphyllum but not its asexual propagules. Ann Bot 104:595–610

    PubMed  PubMed Central  Google Scholar 

  • Schachtman DP, Reid RJ, Ayling SM (1998) Update on phosphorus uptake phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scherer HW, Ahrens G (1996) Depletion of non-exchangeable NH4-N in the soil-root interface in relation to clay mineral composition and plant species. Eur J Agron 5:1–7

    CAS  Google Scholar 

  • Shahollari B, Varma A, Oelmüller R (2005) Expression of a receptor kinase in Arabidopsis roots is stimulated by the basidiomycete Piriformospora indica and the protein accumulates in Triton X-100 insoluble plasma membrane microdomains. J Plant Physiol 162:945–958

    CAS  PubMed  Google Scholar 

  • Sherameti I, Tripathi S, Varma A, Oelmüller R (2008) The root-colonizing endophyte Pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress-related genes in leaves. Mol Plant Microbe Interact MPMI 21:799–807

    CAS  PubMed  Google Scholar 

  • Shimura H, Matsuura M, Takada N, Koda Y (2007) An antifungal compound involved in symbiotic germination of Cypripedium macranthos var. rebunense (Orchidaceae). Phytochemistry 68:1442–1447

    CAS  PubMed  Google Scholar 

  • Sour V, Phonpho S, Soytong K (2015) Isolation of endophytic fungi from some orchid varieties. J Agric Technol 11:1243–1254

    Google Scholar 

  • Stöckel M, Těšitelová T, Jersáková J, Bidartondo MI, Gebauer G (2014) Carbon and nitrogen gain during the growth of orchid seedlings in nature. New Phytol 202:606–615. https://doi.org/10.1111/nph.12688

    Article  CAS  PubMed  Google Scholar 

  • Sudheep NM, Sridhar KR (2012) Non-mycorrhizal fungal endophytes in two orchids of Kaiga forest (Western Ghats), India. J For Res 23:453–460

    CAS  Google Scholar 

  • Sun C, Johnson JM, Cai D, Sherameti I, Oelmüller R, Lou B (2010) Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. J Plant Physiol 167:1009–1017

    CAS  PubMed  Google Scholar 

  • Tripathy BC, Oelmüller R (2012) Reactive oxygen species generation and signaling in plants. Plant Signal Behav 7:1621–1633

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsavkelova EA, Cherdyntseva TA, Botina SG, Netrusov AI (2007) Bacteria associated with orchid roots and microbial production of auxin. Microbiol Res 162:69–76

    CAS  PubMed  Google Scholar 

  • van Breusegem F, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141:384–390

    PubMed  PubMed Central  Google Scholar 

  • Varma A, Verma S, Sudha, Sahay N, Bütehorn B, Franken P (1999) Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl Environ Microbiol 65:2741–2744

    CAS  PubMed  PubMed Central  Google Scholar 

  • Varma A, Sherameti I, Tripathi S, Prasad R et al (2012) The symbiotic fungus Piriformospora indica: review. In: Hock B (ed) Fungal associations, the mycota IX, 2nd edn. Springer, Berlin, Heidelberg, pp 231–254

    Google Scholar 

  • Varma A, Fekete A, Srivastava A, Saxena AK, Frommberger M, Li D, Tripathi S (2013) Piriformospora indica. Soil Biol 33:201–219

    Google Scholar 

  • Vij S (2002) Orchids and tissue culture: current status. Role of plant tissue culture in biodiversity conservation and economic development. Gyanodaya Prakashan, Nainital, p 491

    Google Scholar 

  • Vujanovic V (2000) Viability testing of orchid seed and the promotion of colouration and germination. Ann Bot 86:79–86

    Google Scholar 

  • Wang QX, Yan N, Ji DG, Li SY, Hu H (2013) In vitro growth and carbon utilization of the green-leaved orchid Dendrobium officinale are promoted by Mycorrhizal associations. Bot Stud 54:1

    CAS  PubMed  PubMed Central  Google Scholar 

  • Warcup JH (1981) The Mycorrhizal relationships of Australian orchids. New Phytol 87:371–381

    Google Scholar 

  • Wu J-R, Han S-F, Zhu Y-Y, Lu M, Wang G-P (2005) Ultrastructure of symbiosis mycorrhizal between Cymbidium goeringii and Rhizoctonia sp. J Nanjing For Univ Nat Sci Ed 29:105–108

    Google Scholar 

  • Wu LS, Jia M, Chen L, Zhu B, Dong HX, Si JP, Han T (2016) Cytotoxic and antifungal constituents isolated from the metabolites of endophytic fungus DO14 from Dendrobium officinale. Molecules 21:1–14

    Google Scholar 

  • Xu and Guo (1989) Fungus associated with nutrition of seed germination of Gastrodia elata-Mycena osmundicola Lange. Acta Mycologica Sinica 8:221–226

    Google Scholar 

  • Yagame T, Funabiki E, Nagasawa E, Fukiharu T, Iwase K (2013) Identification and symbiotic ability of Psathyrellaceae fungi isolated from a photosynthetic orchid, Cremastra appendiculata (Orchidaceae). Am J Bot 100:1823–1830

    PubMed  Google Scholar 

  • Yang YL, Liu Z-Y, Zhu G-S (2008) Study on symbiotic seed germination of Pleione bulbocodioides (Franch) Rolfe. Microbiology 35:909–912

    Google Scholar 

  • Yang S, Zhang X, Cao Z, Zhao K, Wang S, Chen M, Hu X (2014a) Growth-promoting Sphingomonas paucimobilis ZJSH1 associated with Dendrobium officinale through phytohormone production and nitrogen fixation. Microbial Biotechnol 7:611–620

    CAS  Google Scholar 

  • Yang Y, Zhao H, Barrero RA, Zhang B, Sun G, Wilson IW, Zhang Y (2014b) Genome sequencing and analysis of the paclitaxel-producing endophytic fungus Penicillium aurantiogriseum NRRL 62431. BMC Genomics 15:69

    PubMed  PubMed Central  Google Scholar 

  • Ye W, Shen CH, Lin Y, Chen PJ, Xu X, Oelmüller R, Lai Z (2014) Growth promotion-related miRNAs in oncidium orchid roots colonized by the endophytic fungus Piriformospora indica. PLos One 9(1). https://doi.org/10.1371/journal.pone.0084920

    PubMed  PubMed Central  Google Scholar 

  • Yuan ZL, Chen YC, Yang Y (2009) Diverse non-mycorrhizal fungal endophytes inhabiting an epiphytic, medicinal orchid (Dendrobium nobile): estimation and characterization. World J Microbiol Biotechnol 25:295–303

    Google Scholar 

  • Zeghad N, Merghem R (2013) Antioxidant and antibacterial activities of Thymus vulgaris L. Med Aromat Plant Res J 58:27–35

    Google Scholar 

  • Zhang F, Lv Y, Zhao Y, Guo S (2013) Promoting role of an endophyte on the growth and contents of kinsenosides and flavonoids of Anoectochilus formosanus Hayata, a rare and threatened medicinal Orchidaceae plant. J Zhejiang Univ Sci B 14:785–792

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao JN, Liu HX (2008) Effects of fungal elicitors on the protocorm of Cymbidium eburneum. Ecol Sci 27:134–137

    Google Scholar 

  • Zi XM, Sheng CL, Goodale UM, Shao SC, Gao JY (2014) In situ seed baiting to isolate germination-enhancing fungi for an epiphytic orchid, Dendrobium aphyllum (Orchidaceae). Mycorrhiza 24:487–499

    CAS  PubMed  Google Scholar 

  • Zimmer K, Hynson NA, Gebauer G, Allen EB, Allen MF, Read DJ (2007) Wide geographical and ecological distribution of nitrogen and carbon gains from fungi in pyroloids and monotropoids (Ericaceae) and in orchids. New Phytol 175:166–175

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bijaya Pant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pant, B., Shah, S., Shrestha, R., Pandey, S., Joshi, P.R. (2017). An Overview on Orchid Endophytes. In: Varma, A., Prasad, R., Tuteja, N. (eds) Mycorrhiza - Nutrient Uptake, Biocontrol, Ecorestoration. Springer, Cham. https://doi.org/10.1007/978-3-319-68867-1_26

Download citation

Publish with us

Policies and ethics