Skip to main content

Transformation Development in Duckweeds

  • Chapter
  • First Online:
The Duckweed Genomes

Abstract

There are five genera (Spirodela, Landoltia, Lemna, Wolffiella and Wolffia) of duckweed species widely distributed in various freshwater habitats worldwide. Rapid growth rate, predominantly asexual reproduction and floating growth made them ideal for a plant model. The sensitivity to some toxicants and enrichment capacity also made duckweeds favorable in biomonitoring and bioremediation in contaminated water. Furthermore, duckweeds have increasingly been considered as alternative sources for bioenergy and food, due to their high biomass accumulation rate and nutritional contents. Both stable and transient transformation protocols have been established for some duckweed species. Agrobacterium-mediated method is the main approach in duckweeds genetic transformation, which could be affected by the type of explants, Agrobacterium strains, their densities, co-culture conditions and antibiotics and their concentrations. Particle treatment and other improvements such as vacuum infiltration can accelerate transient transformation efficiency by microprojectile bombardment method. Inadequacies are still present in genetic transformation of some duckweed species including low efficiency of transformation and long-time period especially using calli as infected materials. Therefore, more concentrated and persistent efforts to develop efficient approaches for genetic transformation of duckweeds are still needed. Furthermore, it is necessary to make an effort to express various types of genes so as to expand the development and utilization of duckweeds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel S, Theologis A (1994) Transient transformation of Arabidopsis leaf protoplasts: a versatile experimental system to study gene expression. Plant J 5(3):421–427

    Article  CAS  PubMed  Google Scholar 

  • Ali S, Zhang X, Xue Q, Hassan MJ (2007) Investigations for improved genetic transformation mediated by Agrobacterium tumefaciens in two rice cultivars. Biotechnology 6(1):138–147

    Article  CAS  Google Scholar 

  • Anderson KE, Lowman Z, Stomp AM, Chang J (2011) Duckweed as a feed ingredient in laying hen diets and its effect on egg production and composition. Int J Poult Sci 10(1):4–7

    Article  CAS  Google Scholar 

  • Appenroth KJ, Borisjuk N, Lam E (2013) Telling duckweed apart: genotyping technologies for the Lemnaceae. Chin J Appl Environ Biol 19(1):1–10

    Article  CAS  Google Scholar 

  • Appenroth KJ, Crawford DJ, Les DH (2015) After the genome sequencing of duckweed—how to proceed with research on the fastest growing angiosperm? Plant Biol 17(Suppl 1 s1):1–4

    Article  PubMed  Google Scholar 

  • Appenroth KJ, Sree KS, Böhm V, Hammann S, Vetter W, Leiterer M et al (2017) Nutritional value of duckweeds (Lemnaceae) as human food. Food Chem 217:266–273

    Article  CAS  PubMed  Google Scholar 

  • Bai FW, Anderson WA, Mooyoung M (2008) Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv 26(1):89–105

    Article  CAS  PubMed  Google Scholar 

  • Balaji P, Satheeshkumar PK, Venkataraman K, Vijayalakshmi MA (2015) Expression of anti-tumor necrosis factor alpha (TNFα) single-chain variable fragment (scFv) in Spirodela punctata plants transformed with Agrobacterium tumefaciens. Biotechnol Appl Biochem 63(3):354

    Article  PubMed  CAS  Google Scholar 

  • Bertran K, Thomas C, Guo X, Bublot M, Pritchard N, Regan JT et al (2015) Expression of H5 hemagglutinin vaccine antigen in common duckweed (Lemna minor) protects against H5N1 high pathogenicity avian influenza virus challenge in immunized chickens. Vaccine 33(30):3456–3462

    Article  CAS  PubMed  Google Scholar 

  • Boehm R (2007) Bioproduction of therapeutic proteins in the 21st century and the role of plants and plant cells as production platforms. Ann N Y Acad Sci 1102(1):121–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boehm R, Kruse CD, Barth S, Schnabl H (2001) A transient transformation system for duckweed (Wolffia columbiana) using Agrobacterium-mediated gene transfer. J Appl Bot 75(4):107–111

    Google Scholar 

  • Bog M, Lautenschlager U, Landrock MF, Landolt E, Fuchs J, Sree KS et al (2015) Genetic characterization and barcoding of taxa in the genera Landoltia and Spirodela, (Lemnaceae) by three plastidic markers and amplified fragment length polymorphism (AFLP). Hydrobiologia 749(1):169–182

    Article  CAS  Google Scholar 

  • Cantó-Pastor A, Mollá-Morales A, Ernst E, Dahl W, Zhai J, Yan Y et al (2015) Efficient transformation and artificial miRNA gene silencing in Lemna minor. Plant Biol 17(Suppl 1 s1):59

    Article  PubMed  CAS  Google Scholar 

  • Cao HX, Vu GT, Wang W, Messing J, Schubert I (2015) Chromatin organisation in duckweed interphase nuclei in relation to the nuclear DNA content. Plant Biol 17(Suppl 1 s1):120

    Article  PubMed  CAS  Google Scholar 

  • Cao HX, Vu GT, Wang W, Appenroth KJ, Messing J, Schubert I (2016) The map-based genome sequence of Spirodela polyrhiza aligned with its chromosomes, a reference for karyotype evolution. New Phytol 209(1):354–363

    Article  CAS  PubMed  Google Scholar 

  • Cheng J (2010) Biological process for ethanol production. In: Cheng J (ed) Biomass to renewable energy processes. CRC Press, Boca Raton, FL, USA, pp 209–270

    Google Scholar 

  • Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR et al (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115(3):971–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chhabra G, Chaudhary D, Sainger M, Jaiwal PK (2011) Genetic transformation of Indian isolate of Lemna minor, mediated by Agrobacterium tumefaciens, and recovery of transgenic plants. Physiol Mol Biol Plants Int J Funct Plant Biol 17(2):129–136

    Article  CAS  Google Scholar 

  • Cox KM, Sterling JD, Regan JT, Gasdaska JR, Frantz KK, Peele CG et al (2006) Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor. Nat Biotechnol 24(12):1591–1597

    Article  CAS  PubMed  Google Scholar 

  • Cui W, Cheng JJ (2015) Growing duckweed for biofuel production: a review. Plant Biol 17(Suppl 1 s1):16

    Article  PubMed  Google Scholar 

  • Dai S, Zheng P, Marmey P, Zhang S, Tian W, Chen S et al (2001) Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Mol Breed 7(1):25–33

    Article  CAS  Google Scholar 

  • Endo A, Nakamura T, Ando A, Tokuyasu K, Shima J (2008) Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae. Biotechnol Biofuels 1:1–6

    Article  CAS  Google Scholar 

  • Firsov A, Tarasenko I, Mitiouchkina T, Ismailova N, Shaloiko L, Vainstein A et al (2015) High-yield expression of M2e peptide of avian influenza virus H5N1 in transgenic duckweed plants. Mol Biotechnol 57(7):1–9

    Article  CAS  Google Scholar 

  • Frey M, Rall S, Roth A, Hemleben V (1980) Evidence for uptake of plasmid DNA into intact plants (Lemna perpusilla) proved by an E. coli transformation assay. Z Naturforsch 35(11–12):1104–1106

    Article  CAS  Google Scholar 

  • Gasdaska JR, Spencer D, Dickey L (2003) Advantages of therapeutic protein production in the aquatic plant Lemna. BioProcess J 2(2):49–56

    Article  Google Scholar 

  • Gheysen G, Angenon G, Van Montagu M (1998) Agrobacterium-mediated plant transformation: a scientifically intriguing story with significant applications. Transgenic Plant Res 1–33

    Google Scholar 

  • Giri CC, Laxmi GV (2000) Production of transgenic rice with agronomically useful genes: an assessment. Biotechnol Adv 18(8):653–683

    Article  CAS  PubMed  Google Scholar 

  • Hoeck AV, Horemans N, Monsieurs P, Cao HX, Vandenhove H, Blust R (2015) The first draft genome of the aquatic model plant Lemna minor, opens the route for future stress physiology research and biotechnological applications. Biotechnol Biofuels 8(1):188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jones HD (2005) Wheat transformation: current technology and applications to grain development and composition. J Cereal Sci 41(2):137–147

    Article  CAS  Google Scholar 

  • Jones HD, Doherty A, Sparks CA (2009) Methods in molecular biology, vol 513: plant genomics. In: Transient transformation of plants, pp 131–152

    Google Scholar 

  • Jouanin L, Brasileiro ACM, Leple JC, Pilate G, Cornu D (1993) Genetic transformation: a short review of methods and their applications, results and perspectives for forest trees [Agrobacterium]. Ann Sci Forestières 50:325–336

    Article  Google Scholar 

  • Karmakar S, Mukherjee J, Mukherjee S (2016) Removal of fluoride contamination in water by three aquatic plants. Int J Phytorem 18(3):222

    Article  CAS  Google Scholar 

  • Khan SA, Hanif Z, Irshad U, Ahmad R, Yasin M, Chaudhary MF et al (2013) Genetic transformation of sugarcane variety hsf-240 with marker gene GUS. Int J Agric Biol 15(6):1258–1264

    CAS  Google Scholar 

  • Khvatkov P, Chernobrovkina M, Okuneva A, Pushin A, Dolgov S (2015a) Transformation of Wolffia arrhiza (L.) Horkel ex Wimm. Plant Cell Tissue Organ Cult 123(2):299–307

    Article  CAS  Google Scholar 

  • Khvatkov P, Chernobrovkina M, Okuneva A, Shvedova A, Chaban I, Dolgov S (2015b) Erratum to: callus induction and regeneration in Wolffia, arrhiza (L.) Horkel ex Wimm. Plant Cell Tissue Organ Cult 120(1):275–275

    Article  Google Scholar 

  • Klein TM, Wolf ED, Wu R, Sanford JC (1987) High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327(6117):70–73

    Article  CAS  Google Scholar 

  • Ko SM, Sun HJ, Oh MJ, Song IJ, Kim MJ, Sin HS et al (2011) Expression of the protective antigen for PEDV in transgenic duckweed, Lemna minor. Hortic Environ Biotechnol 52(5):511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruse C, Boehm R, Voeste D, Barth S, Schnabl H (2002) Transient transformation of Wolffia columbiana by particle bombardment. Aquat Bot 72(2):175–181

    Article  CAS  Google Scholar 

  • Lam E, Appenroth KJ, Mori K, Fakhoorian T (2014) Duckweed in bloom: the 2nd international conference on duckweed research and applications heralds the return of a plant model for plant biology. Plant Mol Biol 84(6):737–742

    Article  CAS  PubMed  Google Scholar 

  • Landolt E (1986) The family of Lemnaceae—a monographic study, vol 1. Veroffentlichungen des Geobotanischen Institutes der Eidgenossischen Technischen Hochschule, Stiftung Rubel, Zurich, Switzerland

    Google Scholar 

  • Landolt E, Kandeler R (1987) Biosystematic investigations in the family of duckweeds (Lemnaceae), vol 4: the family of Lemnaceae—a monographic study, vol 2 (phytochemistry, physiology, application, bibliography). Veroeffentlichungen Des Geobotanischen Instituts Der Eth Stiftung Ruebel

    Google Scholar 

  • Lemon GD, Posluszny U (2000) Comparative shoot development and evolution in the Lemnaceae. Int J Plant Sci 161(5):733–748

    Article  Google Scholar 

  • Leng RA, Stambolie JH, Bell R (1995) Duckweed—a potential high-protein feed resource for domestic animals and fish. Livestock Res Rural Dev 7(1). http://www.lrrd.cipav.org.co/lrrd7/1/3.htm

  • Li J, Jain M, Vunsh R, Vishnevetsky J, Hanania U, Flaishman M et al (2004) Callus induction and regeneration in Spirodela and Lemna. Plant Cell Rep 22(7):457–464

    Article  CAS  PubMed  Google Scholar 

  • Long VN, Cox KM, Ke JS, Peele CG, Dickey LF (2012) Genetic engineering of a Lemna isoleucine uxotroph. Transgenic Res 21(5):1071–1083

    Article  CAS  Google Scholar 

  • Lynd LR, Cushman JH, Nichols RJ, Wyman CE (1991) Fuel ethanol from cellulosic biomass. Science 251(4999):1318–1323

    Article  CAS  PubMed  Google Scholar 

  • Ma JK, Barros E, Bock R, Christou P, Dale PJ, Dix PJ et al (2005) Molecular farming for new drugs and vaccines. Current perspectives on the production of pharmaceuticals in transgenic plants. Embo Rep 6(7):593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mclaren JS, Smith H (1976) The effect of abscisic acid on growth, photosynthetic rate and carbohydrate metabolism in Lemna minor L. New Phytol 76:11–20

    Article  CAS  Google Scholar 

  • Peng J, Wang B, Song Y, Yuan P (2007) Model N transformation and removal in a duckweed pond: model application. Ecol Model 206:294–300

    Article  CAS  Google Scholar 

  • Pham TLT, Nguyen HA, Pham TH, Nguyen TH, Le HH (2010) Improvement of transformation procedure into duckweed (Wolffia sp.) via Agrobacterium tumefaciens. Tapchı Côngnghê Sinhhoc 8:53–60

    Google Scholar 

  • Pimentel D (2003) Ethanol fuel: energy balance, economics, and environmental impacts are negative. Nat Resour Res 12:127–134

    Article  Google Scholar 

  • Qian C, Jin YL, Zhang GH, Yang F, Yao X, Hai Z (2012) Improving production of bioethanol from duckweed (Landoltia punctata) by pectinase pretreatment. Energies 5(8):3019–3032

    Article  CAS  Google Scholar 

  • Rani T, Yadav RC, Yadav NR, Rani A, Singh D (2013) Genetic transformation in oilseed brassicas—a review. Indian J Agric Sci 83(4)

    Google Scholar 

  • Razzaq A, Ma Z, Wang H (2004) Genetic transformation of wheat (Triticum aestivumL): a review. Mol Plant Breed 2(4):457–464

    Google Scholar 

  • Reid MS, Bieleski RL (1970) Response of Spirodela oligorrhiza to phosphorus deficiency. Plant Physiol 46(4):609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rival S, Wisniewski JP, Langlais A, Kaplan H, Freyssinet G, Vancanneyt G et al (2008) Spirodela (duckweed) as an alternative production system for pharmaceuticals: a case study, aprotinin. Transgenic Res 17(4):503–513

    Article  CAS  PubMed  Google Scholar 

  • Rybicki EP (2010) Plant-made vaccines for humans and animals. Plant Biotechnol J 8:620–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahrawat AK, Becker D, Lütticke S, Lörz H (2003) Genetic improvement of wheat via alien gene transfer, an assessment. Plant Sci 165(5):1147–1168

    Article  CAS  Google Scholar 

  • Sharma AK, Sharma MK (2009) Plants as bioreactors: recent developments and emerging opportunities. Biotechnol Adv 27(6):811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrawat AK, Horst Lörz H (2006) Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers. Plant Biotechnol J 4:575–603

    Article  CAS  PubMed  Google Scholar 

  • Stefaniak B, Woźny A, Budna I (2002) Callus induction and plant regeneration in Lemna minor L. Biol Plant 45(3):469–472

    Article  Google Scholar 

  • Sun Y, Cheng JJ, Himmel ME, Skory CD, Adney WS, Thomas SR et al (2007) Expression and characterization of Acidothermus cellulolyticus E1 endoglucanase in transgenic duckweed Lemna minor 8627. Biores Technol 98(15):2866–2872

    Article  CAS  Google Scholar 

  • Swarnapiria R (2009) Genetic transformation in ornamentals—a review. Agric Rev 30(2):120–131

    Google Scholar 

  • Teles CC, Mohedano RA, Tonon G, Filho PB, Rhr C (2017) Ecology of duckweed ponds used for nutrient recovery from wastewater. Water Sci Technol 75(12):2926–2934

    Article  CAS  PubMed  Google Scholar 

  • Thu PTL, Huong PT, Tien VV, Le HH, Khanh TD (2015) Regeneration and transformation of gene encoding the hemagglutinin antigen of the h5n1 virus in frond of duckweed (Spirodela polyrhizaL.). J Agric Stud 3(1):48

    Article  Google Scholar 

  • Tiwari S, Verma PC, Singh PK, Tuli R (2009) Plants as bioreactors for the production of vaccine antigens. Biotechnol Adv 27:449–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tremblay R, Wang D, Jevnikar AM, Ma S (2010) Tobacco, a highly efficient green bioreactor for production of therapeutic proteins. Biotechnol Adv 28:214–221

    Article  CAS  PubMed  Google Scholar 

  • Tsvetkov I, Tsolova V, Atanassov A (1997) Genetic transformation of grape (review). Biotechnol Biotechnol Equip 11(1–2):23–28

    Article  Google Scholar 

  • Van HA, Horemans N, Monsieurs P, Cao HX, Vandenhove H, Blust R (2015) The first draft genome of the aquatic model plant Lemna minor opens the route for future stress physiology research and biotechnological applications. Biotechnol Biofuels 8:188

    Article  CAS  Google Scholar 

  • Vunsh R, Li J, Hanania U, Edelman M, Flaishman M, Perl A et al (2007) High expression of transgene protein in Spirodela. Plant Cell Rep 26(9):1511–1519

    Article  CAS  PubMed  Google Scholar 

  • Wang Y (2016) Callus induction and frond regeneration in Spirodela polyrhiza. Czech J Genet Plant Breed 52(3):114–119

    Article  CAS  Google Scholar 

  • Wang W, Messing J (2015) Status of duckweed genomics and transcriptomics. Plant Biol 17(Suppl 1 s1):10

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Haberer G, Gundlach H, Gläßer C, Nussbaumer T, Luo MC, Lomsadze A, Borodovsky M, Kerstetter RA, Shanklin J et al (2011a) The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle. Nat Commun 5:3311

    Article  CAS  Google Scholar 

  • Wang W, Kerstetter RA, Michael TP (2011b) Evolution of genome size in duckweeds (Lemnaceae). J Botany 2011:9

    Article  CAS  Google Scholar 

  • Werr W, Lörz H (1986) Transient gene expression in a gramineae cell line. Mol Gen Genet MGG 202(3):471–475

    Article  CAS  Google Scholar 

  • White SL, Wise RR (1998) Anatomy and ultrastructure of Wolffia columbiana and Wolffia borealis, two nonvascular aquatic angiosperms. Int J Plant Sci 159(2):297–304

    Article  Google Scholar 

  • Xu JL, Cheng JJ, Stomp AM (2012) Growing Spirodela polyrhiza in swine wastewater for the production of animal feed and fuel ethanol: a pilot study. Clean-Soil Air Water 40(7):760–765

    Article  CAS  Google Scholar 

  • Yamamoto YT, Rajbhandari N, Lin X, Bergmann BA, Nishimura Y, Stomp AM (2001) Genetic transformation of duckweed Lemna gibba, and Lemna minor. Vitro Cell Dev Biol Plant 37(3):349–353

    Article  CAS  Google Scholar 

  • Yang L, Han H, Liu M, Zuo Z, Zhou K, Lü J et al (2013) Overexpression of the Arabidopsis, photorespiratory pathway gene, serine: glyoxylate aminotransferase (AtAGT1), leads to salt stress tolerance in transgenic duckweed (Lemna minor). Plant Cell Tissue Organ Cult 113(3):407–416

    Article  CAS  Google Scholar 

  • Zhao H, Appenroth K, Landesman L, Salmean AA, Lam E (2012) Duckweed rising at Chengdu: summary of the 1st international conference on duckweed application and research. Plant Mol Biol 78:627–632

    Article  CAS  PubMed  Google Scholar 

  • Ziegelhoffer T, Raasch JA, Austin-Phillips S (2001) Dramatic effects of truncation and sub-cellular targeting on the accumulation of recombinant microbial cellulase in tobacco. Mol Breed 8(2):147–158

    Article  CAS  Google Scholar 

  • Ziegler P, Adelmann K, Zimmer S, Schmidt C, Appenroth KJ (2015) Relative in vitro growth rates of duckweeds (Lemnaceae)—the most rapidly growing higher plants. Plant Biol 17(Suppl 1 s1):33–41

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Hou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, J. et al. (2020). Transformation Development in Duckweeds. In: Cao, X., Fourounjian, P., Wang, W. (eds) The Duckweed Genomes. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-11045-1_15

Download citation

Publish with us

Policies and ethics