Skip to main content
Log in

Callus induction and regeneration in Spirodela and Lemna

  • Cell Biology and Morphogenesis
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The development of tissue culture systems in duckweeds has, to date, been limited to species of the genus Lemna. We report here the establishment of an efficient tissue culture cycle (callus induction, callus growth and plant regeneration) for Spirodela oligorrhiza Hegelm SP, Spirodela punctata 8717 and Lemna gibba var. Hurfeish. Significant differences were found among the three duckweed species pertaining to carbohydrate and phytohormone requirements for callus induction, callus growth and frond regeneration. In vitro incubation with poorly assimilated carbohydrates such as galactose (S. oligorrhiza SP and L. gibba var. Hurfeish) and sorbitol (S. punctata 8717) as sole carbon source yielded high levels of callus induction on phytohormone-supplemented medium. Sorbitol is required for optimal callus growth of S. oligorrhiza SP and S. punctata 8717, while sucrose is required for callus growth of L. gibba var. Hurfeish. Sucrose either alone (S. oligorrhiza SP, L. gibba var. Hurfeish) or in addition to sorbitol (S. punctata 8717) is required for frond regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6a–d
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ABA::

(±)-Abscisic acid

BA::

N6-Benzyladenine

2,4-D :

2,4-Dichlorophenoxyacetic acid

Dicamba::

3,6-Dichloro-2-methoxybenzoic acid

2iP::

N6-(2-Isopentenyl)adenine

NAA::

α-Naphthaleneacetic acid

PCA::

p-Chlorophenoxy acetic acid

Picloram::

4-Amino-3,5,6-trichloropicolinic acid

TDZ::

Thidiazuron

References

  • Avni A, Mehta RA, Mattoo AK, Greenberg BM, Chattoo BB, Heller D, Edelman M (1991) Nucleotide sequence of the Spirodela oligorrhiza chloroplast psbA gene coding for the D1 (32 kDa) photosystem II protein. Plant Mol Biol 17:919–921

    CAS  PubMed  Google Scholar 

  • Chang SM, Yang CC, Sung SC (1977) The cultivation and the nutritional value of Lemnaceae. Bull Inst Chem Acad Sin 24:19–30

    CAS  Google Scholar 

  • Chang WC, Chiu PL (1976) Induction of callus from fronds of duckweed (Lemna gibba L.). Bot Bull Acad Sin 17:106–109

    Google Scholar 

  • Chang WC, Chiu PL (1978) Regeneration of Lemna gibba G3 through callus cultures. Z Pflanzenphysiol 89:91–94

    CAS  Google Scholar 

  • Chang WC, Hsing YI (1978) Callus formation and regeneration of frond-like structures in Lemna perpusilla 6746 on a defined medium. Plant Sci Lett 13:133–136

    Article  Google Scholar 

  • Decock PC, Cheshire MV, Mundie CM, Inkson RHE (1979) The effect of galactose on the growth of Lemna. New Phytol 82:679–685

    Google Scholar 

  • Frick H (1991) Callogenesis and carbohydrate utilization in Lemna minor. J Plant Physiol 137:397–401

    CAS  Google Scholar 

  • Frick H (1994) Heterotrophy in Lemnaceae. J Plant Physiol 144:189–193

    CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    CAS  PubMed  Google Scholar 

  • Ghirardi ML, Mahajan S, Sopory SK, Edelman M, Mattoo AK (1993) Photosystem II reaction center particles from Spirodela stroma lamellae. J Biol Chem 268:5357–5360

    CAS  PubMed  Google Scholar 

  • Jain RK, Davey MR, Cocking EC, Wu R (1997) Carbohydrate and osmotic requirements for high frequency plant regeneration from protoplast derived colonies of indica and japonica rice varieties. J Exp Bot 48:751–758

    CAS  Google Scholar 

  • Jansen MAK, Babu TS, Heller D, Mattoo AK, Edelman M (1996) Ultraviolet-B effects on Spirodela oligorrhiza: induction of different protection mechanisms. Plant Sci 115:217–223

    Article  CAS  Google Scholar 

  • Jeannin G, Bronner R, Hahne G (1995) Somatic embryogenesis and organogenesis induced on the immature zygotic embryo of sunflower (Helianthus annuus L.) cultivated in vitro: role of sugar. Plant Cell Rep 15:200–204

    CAS  Google Scholar 

  • Landolt E (1986a) The family of Lemnaceae—a monographic study, vol 1. Veroff Geobot Inst ETH, Stiftung Rubel, Zurich, pp 13–31

  • Landolt E (1986b) The family of Lemnaceae—a monographic study, vol 1. Veroff Geobot Inst ETH, Stiftung Rubel, Zurich, pp 417–435

  • Landolt E, Kandeler R (1987) The family of Lemnaceae—a monographic study, vol 2. Veroff Geobot Inst ETH, Stiftung Rubel, Zurich, pp 65–69

  • Lemos EEP, Baker DE (1998) Shoot regeneration in response to carbon source on internodal explants of Annona muricata L. Plant Growth Regul 25:105–112

    Article  CAS  Google Scholar 

  • Lloyd G, McCown B (1980) Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Int Plant Propagation Soc Proc 30:421–427

    Google Scholar 

  • Moon HK, Stomp A-M (1997) Effects of medium components and light on callus induction, growth, and frond regeneration in Lemna gibba (duckweed). In Vitro 33:20–25

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Nitsch JP (1972) Haploid plants from pollen. Z Pflanzenzuecht 67:3–18

    Google Scholar 

  • Porat D, Hepher B, Koton A (1979) Duckweeds as an aquatic crop: evaluation of clones for aquaculture. Aquat Bot 7:273–278

    Article  Google Scholar 

  • Posner HB (1967) Aquatic vascular plants. In: Witt FA, Wessels NK (eds) Methods in developmental biology. Crowell, New York, pp 301–317

  • Przetakiewicz A, Orczyk W (2003) The effect of auxin on plant regeneration of wheat, barley and Triticale. Plant Cell Tissue Organ Cult 73:245–256

    Article  CAS  Google Scholar 

  • Rimon D (1964) Bud initiation in Spirodela oligorrhiza. Isr J Bot 13:24–39

    Google Scholar 

  • Slovin JP, Cohen JD (1985) Generation of variant lines of Lemna gibba G3 via tissue culture, for use in selecting auxin metabolism mutants. Plant Physiol Suppl Am Soc Plant Physiol 77:11

    Google Scholar 

  • Strickland GS, Nichol JW, McCall CM, Stuart DA (1987) Effect of carbohydrate source on alfalfa somatic embryogenesis. Plant Sci 48:113–121

    CAS  Google Scholar 

  • Swedlund B, Locy RD (1993) Sorbitol as the primary carbon source for the growth of embryogenic callus of maize. Plant Physiol 103:1339–1346

    CAS  Google Scholar 

  • Tillberg E, Holmvall M, Ericsson T (1979) Growth cycles in Lemna gibba cultures and their effects on growth rate and ultrastructure. Physiol Plant 46:5–12

    CAS  Google Scholar 

  • Yamamoto YT, Rajbhandari N, Lin X, Bergmann BA, Nishimura Y, Stomp A-M (2001) Genetic transformation of duckweed Lemna gibba and Lemna minor. In Vitro 37:349–353

    CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Heller for expert assistance. The research was supported in part by Bayer CropScience AG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Edelman.

Additional information

Communicated by A. Altman

J. Li and M. Jain contributed equally to the research reported in this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Jain, M., Vunsh, R. et al. Callus induction and regeneration in Spirodela and Lemna . Plant Cell Rep 22, 457–464 (2004). https://doi.org/10.1007/s00299-003-0724-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-003-0724-4

Keywords

Navigation