Skip to main content
Log in

Transformation of Wolffia arrhiza (L.) Horkel ex Wimm

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

To date, Lemna and Spirodela species of the family Lemnaceae are the only species that have been used to produce recombinant proteins for pharmaceutical and veterinary purposes. Wolffia arrhiza is the most evolutionarily advanced species of the Lemnaceae. A rootless duckweed, it is the most promising target for biopharmingas a candidate for submerged cultivation in a fermenter. As a first step toward future biotechnological use of Wolffia, we established a stable transformation system for it based on Agrobacterium-mediated transformation. Following inoculation with the bacteria, Wolffia cluster explants were cultured for 2 weeks on media containing 2.0 mg l−1 2,4-dichlorophenoxyacetic acid and 2.0 mg l−1 N6-benzyladenine. Explants were then transferred to growth regulator-free media in the presence of 5.0 mg l−1 hygromycin B to select antibiotic-resistant plants. Other selective agents—kanamycin and phosphinothricin—were not suitable for Wolffia, nor was application of particle bombardment for the delivery of foreign DNA to Wolffia explants. The developed agro transformation conditions yielded stably transformed lines of Wolffia, confirmed by Southern blotting, with an efficiency of 0.2–0.4 % transgenes per 100 explants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

BA:

N6-benzyladenine

GFP:

Green fluorescent protein

GUS:

β-Glucuronidase

Hpt:

Hygromycin phosphotransferase

Hyg:

Hygromycin B

Km:

Kanamycin sulfate

NptII:

Neomycin phosphotransferase

PCL (Picloram):

4-Amino-3,5,6-trichloropicolinic acid

PPT (Phosphinothricin):

Glufosinate ammonium

Rif:

Rifampicin

SH:

Schenk and Hildebrandt medium

TLP:

Thaumatin-like protein

References

  • Boehm R, Kruse C, Veste D, Barth S, Schnabl H (2001) A transient transformation system for duckweed Wolffia columbiana using Agrobacterium-mediated gene transfer. J Appl Bot 75:107–111

    Google Scholar 

  • Chang WC, Chiu PL (1976) Induction of callus from fronds of duckweed (Lemna gibba L.). Bot Bull Acad Sinica 17:106–109

    Google Scholar 

  • Chang WC, Chiu PL (1978) Regeneration of Lemna gibba G3 through callus culture. Zeitschrift Schriftfür Pflanzen Ph 89:91–94

    Article  CAS  Google Scholar 

  • Dellaporta SL, Chomet PS, Mottinger JR, Wood J, Yu SM, Hicks JB (1984) Endogenous transposable elements associated with virus infection in maize. Cold Spring Harbor Symp Quant Biol. 49:321–327

    Article  CAS  PubMed  Google Scholar 

  • Edelman M, Perl A, Flaishman M, Blumenthal A (1998) Transgenic Lemnaceae. Australian Patent Publication AU759570C

  • Frick H (1991) Callogenesis and carbohydrate utilization in Lemna minor. Plant Physiol 137:397–401

    Article  CAS  Google Scholar 

  • Friedrich AS (2005) Transformation und fermentation von Wolffia spec. Dissertation, Untersuchungenzu Kultivierung. Vorgelegt am 31:154

    Google Scholar 

  • Gasdaska JR, Spenser D, Dickey L (2003) Advantages of the rapeutic protein production in the aquatic plant Lemna. Bio Process J 2:49–56

    Google Scholar 

  • Haseloff J, Siemering KR, Prasher DC, Hodge S (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein a rerequired to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci USA 94:2122–2127

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgen Res 2:208–218

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed Central  CAS  PubMed  Google Scholar 

  • Khvatkov P, Chernobrovkina M, Okuneva A, Shvedova A, Chaban I, Dolgov S (2015) Callus induction and regeneration in Wolffia arrhiza (L.) Horkel ex Wimm. Plant Cell Tiss Org Cult 120:263–273

    Article  CAS  Google Scholar 

  • Kikkert JR (1993) The Biolistic® PDA-1000/He device. Plant Cell Tiss Org Cult 33:221–226

    Article  CAS  Google Scholar 

  • Kruse C, Boehm R, Veste D, Barth S, Schnabl H (2001) Transient transformation of Wolffia columbiana by particle bombardment. AquatBot 72:175–181

    Google Scholar 

  • Les DH, Crawford DJ, Landolt E, Gabel JD, Kimball RT (2002) Phylogeny and systematics of Lemnaceae, the duckweed family. Syst Bot 27:221–240

    Google Scholar 

  • Li J, Jain M, Vunsh R, Vishnevetsky J, Hanania U, Flaishman M, Perl A, Edelman M (2004) Callus induction and regeneration in Spirodela and Lemna. Plant Cell Rep 22:457–464

    Article  CAS  PubMed  Google Scholar 

  • Li C, Zhang H, Wang X, Liao H (2014) A comparison study of Agrobacterium-mediated transformation methods for root-specific promoter analysis in soybean. Plant Cell Rep 33:1921–1932

    Article  CAS  PubMed  Google Scholar 

  • Lynn D (2005) Expression of plasminogen and microplasminogen in duckweed. United States Patent US2005262592

  • Moon HK, Stomp AM (1997) Effect of medium components and light on callus induction, growth and frond regeneration in Lemna gibba (duckweed) in vitro. Cell Dev Biol 33:20–25

    Google Scholar 

  • Pham TLT, Nguyen HA, Pham TH, Nguyen TH, Le HH (2010) Improvement of transformation procedure into duckweed (Wolffia sp.) via Agrobacterium tumefaciens. Tapchí Côngnghê Sinhhoc 8:53–60

    Google Scholar 

  • Revenkova EV, Kraev AS, Skryabin KG (1993) Construction of a disarmed derivative of the supervirulent Ti plasmid pTiBo542, Plant biotechnology and molecular biology. Pushchino Res Centre, Moscow, pp 67–76

    Google Scholar 

  • Rival S, Wisniewski JP, Langlais A, Kaplan H, Freyssinet G, Vancanneyt G, Vunsh R, Perl A, Edelman M (2008) Spirodela (duckweed) as an alternative production system for pharmaceuticals: a case study, aprotinin. Transgen Res 17:503–513

    Article  CAS  Google Scholar 

  • Santarem ER, Trick HN, Essig JS, Finer JJ (1998) Sonication-assisted Agrobacterium-mediated transformation of soybean immature cotyledons: optimization of transient expression. Plant Cell Rep 17:752–759

    Article  CAS  Google Scholar 

  • Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204

    Article  CAS  Google Scholar 

  • Stomp AM, Rajbhandari N (2000) Genetically engineered duckweed. US Patent 6,040,498

  • Subramanian M, Kondeti S, Muthukrishnan A, Manoharan R, Gnanajothi KD, Ganeshan S, Balusamy J, Markandan M, Natesan S, Ganapathi A (2013) Agrobacterium tumefaciens-mediated in planta seed transformation strategy in sugarcane. Plant Cell Rep 32:1557–1574

    Article  Google Scholar 

  • Toldi O, Tóth S, Oreifig AS, Kiss E, Jenes B (2000) Production of phosphinothricin-tolerant rice (Oryza sativa L.) through the application of phosphinothricin as growth regulator. Plant Cell Rep 19:1226–1231

    Article  CAS  Google Scholar 

  • Velazhahan R, Chen-Cole K, Anuratha CS, Muthukrishnan S (1998) Induction of thaumatin-like proteins (TLPs) in Rhizoctonia solani-infected rice and characterization of two new cDNA clones. Physiol Plant 102:21–28

    Article  CAS  Google Scholar 

  • Vunsh R, Li J, Hanania U, Edelman M, Flaishman M, Perl A, Wisniewski JP, Freyssinet G (2007) High expression of transgene protein in Spirodela. Plant Cell Rep 26:1511–1519

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Sparks C, Amoah B, Jones HD (2003) Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Rep 21:659–668

    CAS  PubMed  Google Scholar 

  • Yamamoto YT, Rajbhandari N, Lin XH, Bergmann BA, Nishimura Y, Stomp AM (2001) Genetic transformation of duckweed Lemna gibba and Lemna minor. In Vitro Cell Dev Biol Plant 37:349–353

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by a grant from the Ministry of Education and Science of the Russian Federation (Government Contract No. 14.B25.31.0027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Khvatkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khvatkov, P., Chernobrovkina, M., Okuneva, A. et al. Transformation of Wolffia arrhiza (L.) Horkel ex Wimm. Plant Cell Tiss Organ Cult 123, 299–307 (2015). https://doi.org/10.1007/s11240-015-0834-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0834-z

Keywords

Navigation