Skip to main content

Heterologous Expression Systems for Lipases: A Review

  • Protocol
  • First Online:
Lipases and Phospholipases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 861))

Abstract

The production of heterologous lipases is one of the most promising strategies to increase the productivity of the bioprocesses and to reduce costs, with the final objective that more industrial lipase applications could be implemented.

In this chapter, an overview of the most common microbial expression systems for the overproduction of microbial lipases is presented. Prokaryotic system as Escherichia coli and eukaryotic systems as Saccharomyces cerevisiae and Pichia pastoris are analyzed and compared in terms of productivity, operational, and downstream processing facilities.

Finally, an overview of heterologous Candida rugosa and Rhizopus oryzae lipases, two of the most common lipases used in biocatalysis, is presented. In both cases, P. pastoris has been shown as the most promising host system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sharma R, Chisti Y, Banerjee UC (2001) Production, purification, characterization, and applications of lipases. Biotechnol Adv 19:627–662

    Article  PubMed  CAS  Google Scholar 

  2. Treichel H, de Oliveira D, Mazutti MA et al (2010) A review on microbial lipases production. Food Bioprocess Technol 3:182–196

    Article  CAS  Google Scholar 

  3. Pleiss J, Fischer M, Peiker M, Thiele C et al (2000) Lipase engineering data base. Understanding and exploiting sequence–structure–function relationships. J Mol Catal B Enzym 10:491–508

    Article  CAS  Google Scholar 

  4. Arpigny JL, Jaeger KE (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343:177–183

    Article  PubMed  CAS  Google Scholar 

  5. Jaeger KE, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13(4):390–397

    Article  PubMed  CAS  Google Scholar 

  6. Benjamin S, Pandey A (1998) Candida rugosa lipases: molecular biology and versatility in biotechnology. Yeast 14:1069–1087

    Article  PubMed  CAS  Google Scholar 

  7. Ferrer P, Montesinos JL, Valero F et al (2001) Production of native and recombinant lipases by Candida rugosa. Appl Biochem Biotechnol 95:221–255

    Article  PubMed  CAS  Google Scholar 

  8. Vakhlu J, Kour A (2006) Yeast lipases: enzyme purification, biochemical properties and gene cloning. Electron J Biotecnol 9:69–85

    Article  CAS  Google Scholar 

  9. White JS, White DC (1997) Source book of enzymes. CRC Press, Boca Raton

    Google Scholar 

  10. Jaeger KE, Reetz MT (1998) Microbial lipases from versatile tools for biotechnology. Trends Biotechnol 16:396–403

    Article  PubMed  CAS  Google Scholar 

  11. Shu Z-Y, Jiang H, Lin R-F et al (2010) Technical methods to improve yield, activity and stability in the development of microbial lipases. J Mol Catal B Enzym 62:1–8

    Article  CAS  Google Scholar 

  12. Schmidt-Dannert C (1999) Recombinant microbial lipases for Biotechnological applications. Bioorg Med Chem 7:2123–2130

    Article  PubMed  CAS  Google Scholar 

  13. Tsai S, Dordick JS (1996) Extraordinary enantioselectivity of lipase catalysis in organic media induced by purification and catalyst engineering. Biotechnol Bioeng 52:296–300

    Article  PubMed  CAS  Google Scholar 

  14. Gordillo MA, Montesinos JL, Casas C et al (1998) Improving lipase production from Candida rugosa by a biochemical engineering approach. Chem Phys Lipids 93:131–142

    Article  PubMed  CAS  Google Scholar 

  15. López N, Pérez R, Vázquez F et al (2002) Immobilisation of different Candida rugosa lipases by adsorption onto polypropylene powder: application to chiral synthesis of ibuprofen and trans-2-phenyl-1-cyclohexanol esters. J Chem Technol Biotechnol 77:175–182

    Article  CAS  Google Scholar 

  16. Sánchez A, Ferrer P, Serrano A et al (1999) Characterization of the lipase and esterase multiple forms in an enzyme preparation from a Candida rugosa pilot-plant scale fed-batch fermentation. Enzyme Microb Technol 25:214–223

    Article  Google Scholar 

  17. Olempska-Beer ZS, Merker RI, Ditto MD et al (2006) Food-processing enzymes from recombinant microorganisms – a review. Regul Toxicol Pharmacol 45:144–158

    Article  PubMed  CAS  Google Scholar 

  18. Rai M, Padh H (2001) Expression systems for production of heterologous proteins. Curr Sci 80:1121–1128

    CAS  Google Scholar 

  19. Itakura K, Hirose T, Crea R et al (1977) Expression in a Escherichia coli of a chemically synthesized gene for the hormone somatostatin. Science 198:1056–1063

    Article  PubMed  CAS  Google Scholar 

  20. Yin J, Li G, Ren X et al (2007) Select what you need: a comparative evaluation of the advantages and limitations of frequently used expression systems for foreign proteins. J Biotechnol 127:335–347

    Article  PubMed  CAS  Google Scholar 

  21. Maina CV, Riggs PD, Grandea AG et al (1988) An Escherichia coli vector to express and purify foreign protein by fusion to and separation from maltose binding protein. Gene 74:365–373

    Article  PubMed  CAS  Google Scholar 

  22. Magliery TJ, Wilson CG, Pan W et al (2005) Detecting protein-protein interactions with a green fluorescent protein fragment reassembly trap: scope and mechanism. J Am Chem Soc 127:146–157

    Article  PubMed  CAS  Google Scholar 

  23. Benito A, Valero F, Lafuente J et al (1993) Uses of β-galactosidase tag in on-line monitoring production of fusión proteins and gene expression in Escherichia coli. Enzyme Microb Technol 15:66–7

    Article  PubMed  CAS  Google Scholar 

  24. Daly R, Hearn MTW (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recogn 18:119–138

    Article  CAS  Google Scholar 

  25. Schein CH (1989) Production of soluble recombinant proteins in bacteria. Bio/Technology 7:1141–1148

    CAS  Google Scholar 

  26. Srinivasan S, Barnard GC, Gerngross TU (2002) A novel high-cell-density protein expression system based on Ralstonia eutropha. Appl Environ Microbiol 68:5925–5932

    Article  PubMed  CAS  Google Scholar 

  27. Eggert T, Pencreac’h G, Douchet I et al (2000) A novel extracellular esterase from Bacillus subtilis and its conversion to a monoacylglycerol hydrolase. Eur J Biochem 267:6459–6469

    Article  PubMed  CAS  Google Scholar 

  28. Rúa ML, Atomi C, Schmidt-Dannert C et al (1998) High level expression of thermoalkalophilic lipase from Bacillus thermocatenulatus in Escherichia coli. Appl Microbiol Biotechnol 49:405–410

    Article  PubMed  Google Scholar 

  29. Schmidt-Dannert C, Pleiss J, Scmid RD (1999) A toolbox of recombinant lipases for industrial applications. Ann N Y Acad Sci 864:14–22

    Article  Google Scholar 

  30. Mosbah H, Horchani H, Sayari A et al (2010) The insertion of (LK) residues at the N-terminus of Staphylococcus xylosus lipase affects its catalytic properties and its enantioselectivity. Process Biochem 45:777–785

    Article  CAS  Google Scholar 

  31. Rosenau F, Jaeger KE (2000) Bacterial lipases from Pseudomonas: regulation of gene expression and mechanisms of secretion. Biochimie 82:1–10

    Article  Google Scholar 

  32. Hitzeman RA, Hagie FF, Levine HL et al (1981) Expression of a human-gene for interferon in yeast. Nature 293:717–722

    Article  PubMed  CAS  Google Scholar 

  33. Madzac C, Gaillardin C, Beckerich JM (2004) Heterologous protein expression and secretion in the non-conventional yeast Yarrowia lipolytica: a review. J Biotechnol 109:63–81

    Article  CAS  Google Scholar 

  34. Gellisen G, Hollenberg CP (1997) Application of yeasts in gene expression studies: a comparison of Saccharomyces cerevisiae, Hansenula polymorpha and Kluyveromyces lactis – a review. Gene 190:87–97

    Article  Google Scholar 

  35. Goffeau A, Barrell BG, Bussey H et al (1996) Life with 6000 genes. Science 274:546–567

    Article  PubMed  CAS  Google Scholar 

  36. Böer E, Steinborg G, Kunze G et al (2007) Yeast expression platform. Appl Microbiol Biotechnol 77:513–523

    Article  PubMed  CAS  Google Scholar 

  37. Gellisen G, Kunze G, Gaillardin C et al (2005) Newyeast expression platforms based on methylotrophic Hansenula polymorpha and Pichia pastoris and on dimorphic Arxula adeninivorans and Yarrowia lipolytica – a comparison. FEMS Yeast Res 5:1079–1096

    Article  CAS  Google Scholar 

  38. Idiris A, Tohda H, Kumagai H, Takegawa K (2010) Engineering of protein secretion in yeast: strategies and impact on protein production. Appl Microbiol Biotechnol 86:403–417

    Article  PubMed  CAS  Google Scholar 

  39. Giga-Hama Y, Thoda H, Takegawa K et al (2007) Schizosaccharomyces pombe minimum genome factory. Biotechnol Appl Biochem 46:147–155

    Article  PubMed  CAS  Google Scholar 

  40. Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24:45–66

    Article  PubMed  CAS  Google Scholar 

  41. Sakai Y, Akiyama M, Kondoh H et al (1996) High level secretion of fungal glucoamylase using the Candida boindii gene expression system. Biochim Biophys Acta 1308:81–87

    PubMed  Google Scholar 

  42. Raymond CK, Bukowski T, Holderman SD et al (1998) Development of the methylotrophic yeast Pichia methanolica for the expression of the 65 kilodalton isoform of human glutamate decarboxylase. Yeast 14:11–23

    Article  PubMed  CAS  Google Scholar 

  43. Kang HA, Gellisen G (2005) Hansenula polymorpha. In: Gellison G (ed) Production of recombinant proteins – novel microbial and eukaryotic expression systems. Wiley-VCH, Weinheim

    Google Scholar 

  44. Van Ooyen AJ, Dekker P, Huang M et al (2006) Heterologous protein production in the yeast Kluyveromyces lactis. FEMS Yeast Res 6:381–392

    Article  PubMed  CAS  Google Scholar 

  45. Madzac C, Nicaud JM, Gaillardin C (2005) Yarrowia lipolytica. In: Gellison G (ed) Production of recombinant proteins – novel microbial and eukaryotic expression systems. Wiley-VCH, Weinheim

    Google Scholar 

  46. Böer E, Gellisen G, Kunze G (2005) Arxula adeninivorans. In: Gellison G (ed) Production of recombinant proteins – novel microbial and eukaryotic expression systems. Wiley-VCH, Weinheim

    Google Scholar 

  47. Wang L, Chi ZM, Wang XH et al (2007) Diversity of lipase-producing yeasts from marine environments and oil hydrolysis by their crude enzyme. Ann Microbiol 4:2–7

    Google Scholar 

  48. Sims AH, Gent ME, Lanthaler K et al (2005) Transcriptome analysis of recombinant protein secretion by Aspergillus nidulans and the unfolded-protein response in vivo. Appl Environ Microbiol 71:2737–2747

    Article  PubMed  CAS  Google Scholar 

  49. Iwashita K (2002) Recent studies of protein secretion by filamentous fungi. J Biosci Bioeng 94:530–535

    PubMed  CAS  Google Scholar 

  50. Cregg JM, Vedvick TS, Raschke WV (1993) Recent advances in the expression of foreign genes in Pichia pastoris. Bio/Technology 11:905–910

    Article  PubMed  CAS  Google Scholar 

  51. Lin Cereghino GP, Cregg JM (1999) Applications of yeast in biotechnology: protein production and genetic analysis. Curr Opin Biotechnol 10:422–427

    Article  CAS  Google Scholar 

  52. Cos O, Ramón R, Montesinos JL et al (2006) Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: a review. Microb Cell Fact 5:1–20

    Article  Google Scholar 

  53. Keck Graduate Institute. Heterologous proteins expressed in Pichia pastoris. 2004. http://www.kgi.edu/documents/faculty/James_Cregg/heterologous_proteins_expressed_in_pichia_pastoris.pdf. Accessed 13 January 2012

  54. Yokohama S (2003) Protein expression systems for structural genomics and proteomics. Curr Opin Chem Biol 7:39–43

    Article  CAS  Google Scholar 

  55. Mattanovich D, Graf A, Stadlmann J et al (2009) Genome, secretome and glucose transport highlight unique features of the protein production host Pichia pastoris. Microb Cell Fact 8:29

    Article  PubMed  CAS  Google Scholar 

  56. De Pourcq K, De Schutter K, Callewaert N (2010) Engineering of glycosylation in yeast and other fungi: current state and perspectives. Appl Microbiol Biotechnol 87:1617–1631

    Article  PubMed  CAS  Google Scholar 

  57. Beck A, Cochet O, Wurch T (2010) GlycoFi’s technology to control the glycosylation of recombinant therapeutic proteins. Expert Opin Drug Discov 5:95–111

    Article  CAS  Google Scholar 

  58. Cregg JM, Lin Cereghino J, Shi J, Higgins DR (2000) Recombinant protein expression in Pichia pastoris. Mol Biotechnol 16:23–52

    Article  PubMed  CAS  Google Scholar 

  59. Mochizuki S, Hamato N, Hirose M et al (2001) Expression and characterization of recombinant human antithrombin III in Pichia pastoris. Protein Expr Purif 23:55–65

    Article  PubMed  CAS  Google Scholar 

  60. Waterham HR, Digan ME, Koutz PJ et al (1997) Isolation of the Pichia pastoris glyceraldehydes-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene 186:37–44

    Article  PubMed  CAS  Google Scholar 

  61. Hohenblum H, Gasser B, Maurer M et al (2004) Effects of gene dosage, promoters, and substrates on unfolded protein stress of recombinant Pichia pastoris. Biotechnol Bioeng 85:367–375

    Article  PubMed  CAS  Google Scholar 

  62. Sreekrishna K, Brankamp RG, Kropp KE et al (1997) Strategies for optimal synthesis and secretion of heterologous proteins in the methylotrophic yeast Pichia pastoris. Gene 190:55–62

    Article  PubMed  CAS  Google Scholar 

  63. Cos O, Ramón R, Montesinos JL et al (2006) A simple model-based control for Pichia pastoris allows a more efficient heterologous protein production bioprocess. Biotechnol Bioeng 95:145–154

    Article  PubMed  CAS  Google Scholar 

  64. Lundell K, Raijola T, Kanerva LT (1998) Enantioselectivity of Pseudomonas cepacia and Candida rugosa lipases for the resolution of secondary alcohols: the effect of Candida rugosa isoenzymes. Enzyme Microb Technol 22:86–93

    Article  CAS  Google Scholar 

  65. Domínguez P, Martínez Alzamora F, Pérez S et al (2002) Heptyl oleate synthesis as useful tool to discriminate between lipases, proteases and other hydrolyses in crude preparations. Enzyme Microb Technol 31:283–288

    Article  Google Scholar 

  66. Lotti M, Alberghina A (1996) Candida rugosa lipase isoenzymes. In: Malcata FX (ed) Engineering of/with lipases. Kluwer Academic Publishers, Dordrecht, pp 115–124

    Google Scholar 

  67. Kawaguchi Y, Honda H (1990) 16:221–230. In: Alberghina A, Schmid RD, Verger R (eds) Lipases: structure, mechanism and genetic engineering GBF monographs. VCH, Weinheim

    Google Scholar 

  68. Rua ML, Díaz Mauriño T, Fernández VM et al (1993) Purification and characterization of two distinct lipases from Candida cylindracea. Biochim Biophys Acta 1156:181–189

    Article  PubMed  CAS  Google Scholar 

  69. Diczfalusy MA, Alexson SHE (1996) Isolation and characterization of novel long-chain Acyl-CoA thioesterase/carboxylesterase isoenzymes from Candida rugosa. Arch Biochem Biophys 334:104–112

    Article  PubMed  CAS  Google Scholar 

  70. Lee GC, Tang SL, Sun KH et al (1999) Analysis of the gene family encoding lipases in Candida rugosa by competitive reverse transcription-PCR. Appl Environ Microbiol 65:3888–3895

    PubMed  CAS  Google Scholar 

  71. Grochulski P, Li Y, Schrag JD, Bouthillier F, Smith P, Harrison D, Rubin B, Cygler M (1993) Insights into interfacial activation from an open structure of Candida rugosa lipase. J Biol Chem 268:12843–12847

    PubMed  CAS  Google Scholar 

  72. Kawaguchi Y, Honda H, Taniguchi-Morimura J et al (1989) The codon CUG is read as serine in an asporogenic yeast Candida cylindracea. Nature 341:164–166

    Article  PubMed  CAS  Google Scholar 

  73. Lotti M, Grandori R, Fusetti F, Longhi S, Brocca S, Tramontano A, Alberghina A (1993) Cloning and analysis of Candida cylindracea lipase sequences. Gene 124:45–55

    Article  PubMed  CAS  Google Scholar 

  74. Fusetti F, Brocca S, Porro D et al (1996) Effect of the leader sequence on the expression of recombinant C. rugosa lipase by S. cerevisiae cells. Biotechnol Lett 18:281–286

    Article  CAS  Google Scholar 

  75. Alberghina A, Lotti M (1996) Protein engineering of a fungal lipase. In: Malcata FX (ed) Engineering of/with lipases. Kluwer Academic Publishers, Dordrecht, pp 219–228

    Google Scholar 

  76. Akoh CC, Lee G-C, Shaw J-F (2004) Protein engineering and applications of Candida rugosa lipase isoforms. Lipids 39:513–526

    Article  PubMed  CAS  Google Scholar 

  77. Brocca S, Schmidt-Dannert C, Lotti M et al (1998) Design, total synthesis, and functional overexpression of the Candida rugosa lip1 gene coding for a major industrial lipase. Prot Sci 7:1415–1422

    Article  CAS  Google Scholar 

  78. Chang SW, Shieh CJ, Lee GC et al (2005) Multiple mutagenesis of the Candida rugosa LIP1 gene and optimum production of recombinant LIP1 expressed in Pichia pastoris. Appl Microbiol Biotechnol 67:215–224

    Article  PubMed  CAS  Google Scholar 

  79. Passolunghi S, Brocca S, Cannizzaro L et al (2003) Monitoring the transport of recombinant Candida rugosa lipase by a green fluorescent protein–lipase fusion. Biotechnol Lett 25:1945–1948

    Article  PubMed  CAS  Google Scholar 

  80. Mileto M, Brocca S, Lotti M et al (1998) Characterization of the Candida rugosa lipase system and overexpression of the lip1 isoenzyme in a non-conventional yeast. Chem Phys Lipids 93:47–55

    Article  PubMed  CAS  Google Scholar 

  81. Brocca S, Persson M, Wehtje E et al (2000) Mutants provide evidence of the importance of glycosydic chains in the activation of lipase 1 from Candida rugosa. Prot Sci 9:985–990

    Article  CAS  Google Scholar 

  82. Yen CC, Malmis CC, Lee GC et al (2010) Site-specific saturation mutagenesis on residues 132 and 450 of Candida rugosa LIP2 enhances catalytic efficiency and alters substrate specificity in various chain lengths of triglycerides and esters. J Food Agric Food Chem 58:10899–10905

    Article  CAS  Google Scholar 

  83. Lee GC, Lee LC, Sava V et al (2002) Multiple mutagenesis of non-universal serine codons of the Candida rugosa LIP2 gene and biochemical characterization of purified recombinant LIP2 lipase overexpressed in Pichia pastoris. Biochem J 366:603–611

    Article  PubMed  CAS  Google Scholar 

  84. Ferrer P, Alarcón M, Ramón R et al (2009) Recombinant Candida rugosa LIP2 expression in Pichia pastoris under the control of the AOX1 promoter. Biochem Eng J 46:271–277

    Article  CAS  Google Scholar 

  85. Gordillo MA, Sanz A, Sánchez A et al (1998) Enhancement of Candida rugosa lipase production by using different control fed-batch operational strategies. Biotechnol Bioeng 60:156–168

    Article  PubMed  CAS  Google Scholar 

  86. Chang SW, Lee GC, Shaw JF (2006) Efficient production of active recombinant Candida rugosa Lip3 lipase in Pichia pastoris and biochemical purification of the purified enzyme. J Agric Food Chem 54:831–838

    Google Scholar 

  87. Tang SJ, Shaw JF, Sun KH et al (2001) Recombinant expression and characteriza-tion of the Candida rugosa lip4 lipase in Pichia pastoris: comparison of glycosylation, activity, and stability. Arch Biochem Biophys 387:93–98

    Article  PubMed  CAS  Google Scholar 

  88. Tang SJ, Sun KH, Sun GH et al (2000) Recombinant expression of the Candida rugosa lip4 Lipase in Escherichia coli. Protein Expr Purif 20:308–313

    Article  PubMed  CAS  Google Scholar 

  89. Xu L, Jiang XQ, Yang JK et al (2010) Cloning of a novel lipase gene, lipJ08, from Candida rugosa and expression in Pichia pasoris by codon optimization. Biotechnol Lett 32:269–276

    Article  PubMed  CAS  Google Scholar 

  90. Zhao W, Wang JW, Deng RQ et al (2008) Scale-up fermentation of recombinant Candida rugosa lipase expressed in Pichia pastoris using the GAP promoter. J Ind Microbiol Biotechnol 35:189–195

    Article  PubMed  CAS  Google Scholar 

  91. Haas MJ, Joerger RD (1995) In: Hui YH, Khachatourians GG (eds) Food biotechnology microorganisms. Lipases of the genera Rhizopus and Rhizomucor: versatile catalysts in nature and the laboratory. VCH, Weinheim, pp 549–588

    Google Scholar 

  92. Oliveira P, Jares F, Ikegaki M (2006) Enzymatic resolution of (R, S)-Ibuprofen an (R, S)-Ketopren by microbial lipases from native and commercial sources Braz. J Microbiol 37:329–337

    Google Scholar 

  93. Ben Salah A, Fendri K, Gargoury Y (1994) La lipase de Rhizopus oryzae: production, purification et caractéristiques biochimiques. Rev Fr Corps Gras 5(6):133–137

    Google Scholar 

  94. Ben Salah A, Sayari A, Verger R et al (2001) Kinetic studies of Rhizopus oryzae lipase using monomolecular film technique. Biochimie 83:463–469

    Article  PubMed  CAS  Google Scholar 

  95. Hiol A, Jonzo MD, Rugani N et al (2000) Purification and characterization of an extracellular lipase from a thermophilic Rhizopus oryzae strain isolated from palm fruit. Enzyme Microb Technol 26:421–430

    Article  PubMed  CAS  Google Scholar 

  96. Méndez J, Oromi M, Cervero M et al (2007) Combining regio- and enantioselectivity of lipases for the preparation of (R)-4-chloro-2-butanol. Chirality 19:44–50

    Article  PubMed  CAS  Google Scholar 

  97. Beer HD, McCarthy JEG, Bornscheuer UT et al (1998) Cloning, expression, characterization and role of the leader sequence of a lipase from Rhizopus oryzae. Biochim Biophys Acta 1299:173–180

    Google Scholar 

  98. Sayari A, Frikha F, Miled N, Mtibaa H, Ali YB, Verger R, Gargouri Y (2005) N-terminal peptide of Rhizopus oryzae lipase is important for its catalytic properties. FEBS Lett 579:976–982

    Article  PubMed  CAS  Google Scholar 

  99. Beer HD, Hholfahrt G, Schmid RD et al (1996) The folding and activity of the extracellular lipase of Rhizopus oryzae are modulated by a prosequence. Biochem J 319:351–359

    PubMed  CAS  Google Scholar 

  100. Minning S, Schmidt-Dannert C, Schmid RD (1998) Functional expression of Rhizopus oryzae lipase in Pichia pastoris: high-level production and some properties. J Biotechnol 66:147–156

    Article  PubMed  CAS  Google Scholar 

  101. Di Lorenzo M, Hidalgo A, Haas M et al (2005) Heterologous production of functional forms of Rhizopus oryzae lipase in Escherichia coli. Appl Environ Microb 12:8974–8977

    Article  CAS  Google Scholar 

  102. Haalck L, Paltauf F, Pleiss J et al (1997) Stereoselectivity of lipase from Rhizopus oryzae towards triacylglycerols and analogs: computer-aided modeling and experimental validation. Methods Enzymol 184:353–376

    Article  Google Scholar 

  103. Takahashi S, Ueda M, Atomi H et al (1998) Extracellular production of active Rhizopus oryzae lipase by Saccharomyces cerevisiae. J Ferment Bioeng 86:164–168

    Article  CAS  Google Scholar 

  104. Takahashi S, Ueda M, Tanaka A (1999) Independent production of two molecular forms of a recombinant Rhizopus oryzae lipase by KEX2-engineered strains of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 52:534–540

    Article  PubMed  CAS  Google Scholar 

  105. Takahashi S, Ueda M, Tanaka A (2001) Function of the prosequence for in vivo folding and secretion of active Rhizopus oryzae lipase in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 55:454–462

    Article  PubMed  CAS  Google Scholar 

  106. Ueda M, Takahashi S, Washida M et al (2002) Independent production of two molecular forms of a recombinant Rhizopus oryzae lipase by KEX2-engineered strains of Saccharomyces cerevisiae. J Mol Catal B Enzym 17:113–124

    Article  CAS  Google Scholar 

  107. Niu W, Li Z, Tan T (2006) Secretion of pro- and mature Rhizopus arrhizus lipases by Pichia pastoris and properties of the proteins. Mol Biotecnol 32:73–81

    Article  CAS  Google Scholar 

  108. Hama S, Tamalampudi S, Shindo N, Numata T, Yamaji H, Fukuda H, Kondo A (2008) Role of N-terminal 28-amino-acid región of Rhizopus oryzae lipase in directing proteins to secretory pathway of Aspergillus niger. Appl Microbiol Biotechnol 79:1009–1018

    Article  PubMed  CAS  Google Scholar 

  109. Ben SR, Gargouri A, Verger R et al (2009) Expression in Pichia pastoris X33 of His-tagged lipase from a novel strain of Rhizopus oryzae and its mutant Asn 134 His: purification and characterization. World J Microbiol Biotechnol 25:1375–1384

    Article  CAS  Google Scholar 

  110. Cereghino GPL, Cereghino JL, Ilgen C, Cregg JM (2002) Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Curr Opin Biotechnol 13:329–332

    Article  PubMed  Google Scholar 

  111. Minning S, Serrano A, Ferrer P et al (2001) Optimization of the high-level production of Rhizopus oryzae lipase in Pichia pastoris. J Biotechnol 86:59–70

    Article  PubMed  CAS  Google Scholar 

  112. Cos O, Serrano A, Montesinos JL et al (2005) Combined effect of methanol utilization (Mut) phenotype and gene dosage on recombinant protein production in P. pastoris fed-batch cultures. J Biotechnol 116:321–335

    Article  PubMed  CAS  Google Scholar 

  113. Ramón R, Ferrer P, Valero F (2007) Sorbitol co-feeding reduces metabolic burden caused by the overexpression of a Rhizopus oryzae lipase in P. pastoris. J Biotechnol 130:39–46

    Article  PubMed  CAS  Google Scholar 

  114. Arnau A, Ramón R, Casas C et al (2010) Optimization of the heterologous production of a Rhizopus oryzae lipase in Pichia pastoris system using mixed substrates on controlled fed-batch bioprocess. Enzyme Microb Technol 46:494–500

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the ENZNUT network (http://www.enznut.org), action number 108RT0346, CYTED Pro-gram (http://www.cyted.org/?lang=en). CTQ2010-15131 of the Spanish Ministry of Science and Innovation, 2009-SGR-281 and the Reference Network in Biotechnology (XRB) (Generalitat de Catalunya).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Valero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Valero, F. (2012). Heterologous Expression Systems for Lipases: A Review. In: Sandoval, G. (eds) Lipases and Phospholipases. Methods in Molecular Biology, vol 861. Humana Press. https://doi.org/10.1007/978-1-61779-600-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-600-5_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-599-2

  • Online ISBN: 978-1-61779-600-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics