Skip to main content
Log in

Protein engineering and applications of Candida rugosa lipase isoforms

  • Review
  • Published:
Lipids

Abstract

Commercial preparations of Candida rugosa lipase (CRL) are mixtures of lipase isoforms used for the hydrolysis and synthesis of various esters. The presence of variable isoforms and the amount of lipolytic protein in the crude lipase preparations lead to a lack of reproducibility of biocatalytic reactions. Purification of crude CRL improve their substrate specificity, enantioselectivity, stability, and specific activities. The expression of the isoforms is governed by culture or fermentation conditions. Unfortunately, the nonsporogenic yeast C. rugosa does not utilize the universal codon CTG for leucine; therefore, most of the CTG codons were converted to universal serine triplets by site-directed mutagenesis to gain expression of functional lipase in heterologous hosts. Recombinant expressions by multiple-site mutagenesis or complete synthesis of the lipase gene are other possible ways of obtaining pure and different CRL isoforms, in addition to culture engineering. Protein engineering of purified CRL isoforms allows the tailoring of enzyme function. This involves computer modeling based on available 3-D structures of lipase isoforms. Lid swapping and DNA shuffling techniques can be used to improve the enantioselectivity, thermostability, and substrate specificity of CRL isoforms and increase their biotechnological applications. Lid swapping can result in chimera proteins with new functions. The sequence of the lid can affect the activity and specificity of recombinant CRL isoforms. Candida rugosa lipase is toxicologically safe for food applications. Protein engineering through lid swapping and rationally designed site-directed mutagenesis will continue to lead to the production of CRL isoforms with improved catalytic power, thermostability, enantioselectivity, and substrate specificity, while providing evidence for the mechanisms of actions of the various isoforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CRL:

Candida rugosa lipase

GRAS:

generally regarded as safe

RT-PCR:

reverse transcription-polymerase chain reaction

Trx:

thioredoxin

References

  1. Dominguez de Maria P., and Sinisterra Gago, J. (1999) Causes of Unreproducibility of C. rugosa Lipase-Catalyzed Reactions in Slightly Hydrated Organic Media, Tetrahedron 55, 8555–8566.

    Article  CAS  Google Scholar 

  2. Ghosh, P.K., Saxena, R.K., Gupta, R., Yadav, R.P., and Davidson, S. (1996) Microbial Lipases: Production and Applications, Sci. Prog. 79 (Pt. 2), 119–157.

    PubMed  CAS  Google Scholar 

  3. Benjamin, S., and Pandey, A. (1998) Candida rugosa Lipases: Molecular Biology and Versatility in Biotechnology, Yeast 14, 1069–1087.

    Article  PubMed  CAS  Google Scholar 

  4. Hube, B., Stehr, F., Bossenz, M., Mazur, A., Kretschmar, M., and Schafer, W. (2000) Secreted Lipases of Candida albicans: Cloning, Characterisation and Expression Analysis of a New Gene Family with at Least Ten Members, Arch. Microbiol. 174, 362–374.

    Article  PubMed  CAS  Google Scholar 

  5. Valero, F., del Rio, J.L., Poch, M., and Sola, C. (1991) Fermentation Behaviour of Lipase Production by Candida rugosa Growing on Different Mixtures of Glucose and Olive Oil, J. Ferment. Bioeng. 72, 399–401.

    Article  CAS  Google Scholar 

  6. Ferrer, P., Montesinos, J.L., Valero, F., and Sola, C. (2001) Production of Native and Recombinant Lipases by Candida rugosa: A Review, Appl. Biochem. Biotechnol. 95, 221–255.

    Article  PubMed  CAS  Google Scholar 

  7. Gordillo, M.A., Obradors, N., Montesinos, J.L., Valero, F., Lafuente, J., and Sola, C. (1995) Stability Studies and Effect of the Initial Oleic Acid Concentration on Lipase Production by Candida rugosa, Appl. Microbiol. Biotechnol. 43, 38–41.

    Article  PubMed  CAS  Google Scholar 

  8. Thomson, C.A., Delaquis, P.J., and Mazza, G. (1999) Detection and Measurement of Microbial Lipase Activity: A Review, Crit. Rev. Food Sci. Nutr. 39, 165–187.

    Article  PubMed  CAS  Google Scholar 

  9. Chang, R.C., Chou, S.J., and Shaw, J.F. (1994) Multiple Forms and Functions of Candida rugosa Lipase, Biotechnol. Appl. Biochem. 19, 93–97.

    CAS  Google Scholar 

  10. Lee, G.C., Tang, S.J., Sun, K.H., and Shaw, J.F. (1999) Analysis of the Gene Family Encoding Lipases in Candida rugosa by Competitive Reverse Transcription-PCR, Appl. Environ. Microbiol. 65, 3888–3895.

    PubMed  CAS  Google Scholar 

  11. Shaw, J.F., Chang, C.H., and Wang, Y.J. (1989) Characterization of Three Distinct Forms of Lipolytic Enzyme in a Commercial Candida Lipase Preparation, Biotechnol. Lett. Surrey Sci. Technol. Lett. (11) 779–784.

    Article  CAS  Google Scholar 

  12. Hernaiz, M.J., Rua, M., Celda, B., Medina, P., Sinisterra, J.V., and Sanchez-Montero, J.M. (1994) Contribution to the Study of the Alteration of Lipase Activity of Candida rugosa by Ions and Buffers, Appl. Biochem. Biotechnol. 44, 213–229.

    PubMed  CAS  Google Scholar 

  13. Grochulski, P., Li, Y., Schrag, J.D., Bouthillier, F., Smith, P., Harrison, D., Rubin, B., and Cygler, M. (1993) Insights into Interfacial Activation from an Open Structure of Candida rugosa Lipase, J. Biol. Chem. 268, 12843–12847.

    PubMed  CAS  Google Scholar 

  14. Rua, L., Diaz-Maurino, T., Fernandez, V.M., Otero, C., and Ballesteros, A. (1993) Purification and Characterization of Two Distinct Lipases from Candida cylindracea, Biochim. Biophys. Acta 1156, 181–189.

    PubMed  CAS  Google Scholar 

  15. Kaiser, R., Erman, M., Duax, W.L., Ghosh, D., and Jornvall, H. (1994) Monomeric and Dimeric Forms of Cholesterol Esterase from Candida cylindracea. Primary Structure, Identity in Peptide Patterns, and Additional Microheterogeneity, FEBS Lett. 337, 123–127.

    Article  PubMed  CAS  Google Scholar 

  16. Diczfalusy, M.A., Hellman, U., and Alexson, S.E. (1997) Isolation of Carboxylester Lipase (Cel) Isoenzymes from Candida rugosa and Identification of the Corresponding Genes, Arch. Biochem. Biophys. 348, 1–8.

    Article  PubMed  CAS  Google Scholar 

  17. Tang, S.-J., Sun, K.-H., Sun, G.-H., Chang, T.-Y., and Lee, G.-C. (2000) Recombinant Expression of the Candida rugosa Lip4 Lipase in Escherichia coli, Protein Express. Purification 20, 308–313.

    Article  CAS  Google Scholar 

  18. Kawaguchi, Y., Honda, H., Taniguchi-Morimura, J., and Iwasaki, S. (1989) The Codon CUG Is Read as Serine in an Asporogenic Yeast Candida cylindracea, Nature 341, 164–166.

    Article  PubMed  CAS  Google Scholar 

  19. Tang, S.-J., Shaw, J.-F., Sun, K.-H., Sun, G.-H., Chang, T.-Y., Lin, C.-K., Lo, Y.-C., and Lee, G.-C. (2001) Recombinant Expression and Characterization of the Candida rugosa Lip4 Lipase in Pichia pastoris: Comparison of Glycosylation, Activity, and Stability, Arch. Biochem. Biophys. 387, 93–98.

    Article  PubMed  CAS  Google Scholar 

  20. Lee, G.C., Lee, L.C., Sava, V., and Shaw, J.F. (2002) Multiple Mutagenesis of Non-universal Serine Codons of the Candida rugosa Lip2 Gene and Biochemical Characterization of Purified Recombinant Lip2 Lipase Overexpressed in Pichia pastoris, Biochem. J. 366, 603–611.

    Article  PubMed  CAS  Google Scholar 

  21. Brocca, S., Schmidt-Dannert, C., Lotti, M., Alberghina, L., and Schmid, R.D. (1998) Design, Total Synthesis, and Functional Overexpression of the Candida rugosa Lip1 Gene Coding for a Major Industrial Lipase, Protein Sci. 7, 1415–1422.

    PubMed  CAS  Google Scholar 

  22. Longhi, S., Fusetti, F., Grandori, R., Lotti, M., Vanoni, M., and Alberghina, L. (1992) Cloning and Nucleotide Sequences of Two Lipase Genes from Candida cylindracea, Biochim. Biophys. Acta 1131, 227–232.

    PubMed  CAS  Google Scholar 

  23. Lotti, M., Grandori, R., Fusetti, F., Longhi, S., Brocca, S., Tramontano, A., and Alberghina, L. (1993) Cloning and Analysis of Candida cylindracea Lipase Sequences Gene 124, 45–55.

    Article  PubMed  CAS  Google Scholar 

  24. Diczfalusy, M.A., and Alexson, S.E.H. (1996) Isolation and Characterization of Novel Long-Chain Acyl-CoA Thioesterase/Carboxylesterase Isoenzymes from Candida rugosa, Arch. Biochem. Biophys. 334, 104–112.

    Article  PubMed  CAS  Google Scholar 

  25. Lotti, M., Monticelli, S., Luis Montesinos, J., Brocca, S., Valero, F., and Lafuente, J. (1998) Physiological Control on the Expression and Secretion of Candida rugosa Lipase, Chem. Phys. Lipids 93, 143–148.

    Article  PubMed  CAS  Google Scholar 

  26. Shaw, J.F., Lee, G.C., and Tang, S.J. (2002) Recombinant Candida rugosa Lipases, EPC European Patent Application 02009616. 02009610.

  27. Rua, M.L., Diaz-Maurino, T., Fernandez, V.M., Otero, C., and Ballesteros, A. (1993) Purification and Characterization of Two Distinct Lipases from Candida cylindracea, Biochim. Biophys. Acta (BBA) 1156, 181–189.

    CAS  Google Scholar 

  28. Brahimi-Horn, M.C., Guglielmino, M.L., Elling, L., and Sparrow, L.G. (1990) The Esterase Profile of a Lipase from Candida cylindracea, Biochim. Biophys. Acta 1042, 51–54.

    PubMed  CAS  Google Scholar 

  29. Schmidt-Dannert, C., Pleiss, J., and Schmid, R.D. (1998) A Toolbox of Recombinant Lipases for Industrial Applications, Ann. N.Y. Acad. Sci. 864, 14–22.

    Article  PubMed  CAS  Google Scholar 

  30. Lotti, M., Tramontano, A., Longhi, S., Fusetti, F., Brocca, S., Pizzi, E., and Alberghina, L. (1994) Variability Within the Candida rugosa Lipases Family, Protein Eng. 7, 531–535.

    PubMed  CAS  Google Scholar 

  31. Grochulski, P., Li, Y., Schrag, J.D., and Cygler, M. (1994) Two Conformational States of Candida rugosa Lipase, Protein Sci. 3, 82–91.

    Article  PubMed  CAS  Google Scholar 

  32. Brocca, S., Persson, M., Wehtje, E., Adlercreutz, P., Alberghina, L., and Lotti, M. (2000) Mutants Provide Evidence of the Importance of Glycosydic Chains in the Activation of Lipase 1 from Candida rugosa, Protein Sci. 9, 985–990.

    PubMed  CAS  Google Scholar 

  33. Pernas, M.A., Lopez, C., Pastrana, L., and Rua, M.L. (2000) Purification and Characterization of Lip2 and Lip3 Isoenzymes from a Candida rugosa Pilot-Plant Scale Fed-Batch Fermentation, J. Biotechnol. 84, 163–174.

    Article  CAS  Google Scholar 

  34. Ghosh, D., Wawrzak, Z., Pletnev, V.Z., Li, N., Kaiser, R., Pangborn, W., Jornvall, H., Erman, M., and Duax, W.L. (1995) Structure of Uncomplexed and Linoleate-Bound Candida cylindracea Cholesterol Esterase, Structure 3, 279–288.

    Article  PubMed  CAS  Google Scholar 

  35. Mancheño, J.M., Pernas, M.A., Martínez, M.J., Ochoa, B., Rúa, M.L., and Hermoso, J.A. (2003) Structural Insights into the Lipase/Esterase Behavior in the Candida rugosa Lipases Family: Crystal Structure of the Lipase 2 Isoenzyme at 1.97 Å Resolution, J. Mol. Biol. 332, 1059–1069.

    Article  PubMed  CAS  Google Scholar 

  36. Grochulski, P., Bouthillier, F., Kazlauskas, R.J., Serreqi, A.N., Schrag, J.D., Ziomek, E., and Cygler, M. (1994) Analogs of Reaction Intermediates Identify a Unique Substrate Binding Site in Candida rugosa Lipase, Biochemistry 33, 3494–3500.

    Article  PubMed  CAS  Google Scholar 

  37. Cygler, M., Grochulski, P., Kazlauskas, R.J., Schrag, J.D., Bouthillier, F., Rubin, B., Serreqi, A.N., and Gupta, A.K. (1994) A Structural Basis for the Chiral Preferences of Lipases, J. Am. Chem. Soc. 116, 3180–3186.

    Article  CAS  Google Scholar 

  38. Pletnev, V., Addlagatta, A., Wawrzak, Z., and Duax, W. (2003) Three-Dimensional Structure of Homodimeric Cholesterol Esterase-Ligand Complex at 1.4 Å Resolution, Acta Crystallogr. D. Biol. Crystallogr. 59, 50–56.

    Article  PubMed  CAS  Google Scholar 

  39. Cygler, M., and Schrag, J.D. (1999) Structure and Conformational Flexibility of Candida rugosa Lipase, Biochim. Biophys. Acta 1441, 205–214.

    PubMed  CAS  Google Scholar 

  40. Ollis, D.L., Cheah, E., Cygler, M., Dijkstra, B., Frolow, F., Franken, S.M., Harel, M., Remington, S.J., Silman, I., Schrag, J., et al. (1992) The Alpha/Beta Hydrolase Fold, Protein Eng. 5, 197–211.

    PubMed  CAS  Google Scholar 

  41. Schwede, T., Kopp, J., Guex, N., and Peitsch, M.C. (2003) SWISS-MODEL: An Automated Protein Homology-Modeling Server, Nucleic Acids Res. 31, 3381–3385.

    Article  PubMed  CAS  Google Scholar 

  42. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne, P.E. (2000) The Protein Data Bank, Nucleic Acids Res. 28, 235–242.

    Article  PubMed  CAS  Google Scholar 

  43. Verger, R. (1997) “Interfacial Activation” of Lipases: Facts and Artificats, Trends Biotechnol. 15, 32–38.

    Article  CAS  Google Scholar 

  44. Malcata, F.X., Reyes, H.R., Garcia, H.S., Hill, C.G., Jr., and Amundson, C.H. (1992) Kinetics and Mechanisms of Reactions Catalysed by Immobilized Lipases, Enzyme Microb. Technol. 14, 426–446.

    Article  PubMed  CAS  Google Scholar 

  45. Marangoni, A.G. (1994) Enzyme Kinetics of Lipolysis Revisited: The Role of Lipase Interfacial Binding, Biochem. Biophys. Res. Commun. 200, 1321–1328.

    Article  PubMed  CAS  Google Scholar 

  46. Janssen, A.E.M., Vaidya, A.M., and Halling, P.J. (1996) Substrate Specificity and Kinetics of Candida rugosa Lipase in Organic Media, Enzyme Microb. Technol. 18, 340–346.

    Article  PubMed  CAS  Google Scholar 

  47. Uppenberg, J., Ohrner, N., Norin, M., Hult, K., Kleywegt, G.J., Patkar, S., Waagen, V., Anthonsen T., and Jones, T.A. (1995) Crystallographic and Molecular-Modeling Studies of Lipase B from Candida antarctica Reveal a Stereospecificity Pocket for Secondary Alcohols, Biochemistry 34, 16838–16851.

    Article  PubMed  CAS  Google Scholar 

  48. Schrag, J.D., Li, Y., Cygler, M., Lang, D., Burgdorf, T., Hecht, H.J., Schmid, R., Schomburg, D., Rydel, T.J., Oliver, J.D., et al. (1997) The Open Conformation of a Pseudomonas Lipase, Structure 5, 187–202.

    Article  PubMed  CAS  Google Scholar 

  49. van Tilbeurgh, H., Egloff, M.P., Martinez, C., Rugani, N., Verger, R., and Cambillau, C. (1993) Interfacial Activation of the Lipase-Procolipase Complex by Mixed Micelles Revealed by X-ray Crystallography, Nature 362, 814–820.

    Article  PubMed  Google Scholar 

  50. Manetti, F., Mileto, D., Corelli, F., Soro, S., Palocci, C., Cernia, E., D'Acquarica, I., Lotti, M., Alberghina, L., and Botta, M. (2000) Design and Realization of a Tailor-Made Enzyme to Modify the Molecular Recognition of 2-Arylpropionic Esters by Candida rugosa Lipase, Biochim. Biophys. Acta 1543, 146–158.

    PubMed  CAS  Google Scholar 

  51. Schmitt, J., Brocca, S., Schmid, R.D., and Pleiss, J. (2002) Blocking the Tunnel: Engineering of Candida rugosa Lipase Mutants with Short Chain Length Specificity, Protein Eng. 15, 595–601.

    Article  PubMed  CAS  Google Scholar 

  52. Lee, G.C., Tang, S.J., and Shaw, J.F. (1999) Structure and Function of Candida rugosa Lipase, presented at the 90th Annual Meeting of the American Oil Chemists' Society, May 9–13, Orlando.

  53. Brocca, S., Secundo, F., Ossola, M., Alberghina, L., Carrea, G., and Lotti, M. (2003) Sequence of the Lid Affects Activity and Specificity of Candida rugosa Lipase Isoenzymes, Protein Sci. 12, 2312–2319.

    Article  PubMed  CAS  Google Scholar 

  54. Secundo, F., Carrea, G., Tarabiono, C., Brocca, S., and Lotti, M. (2004) Activity and Enantioselectivity of Wildtype and Lid-Mutated Candida rugosa Lipase Isoform 1 in Organic Solvents, Biotechnol. Bioeng. 86, 236–240.

    Article  PubMed  CAS  Google Scholar 

  55. Stemmer, W.P. (1994) DNA Shuffling by Random Fragmentation and Reassembly: In vitro Recombination for Molecular Evolution, Proc. Natl. Acad. Sci. USA 91, 10747–10751.

    Article  PubMed  CAS  Google Scholar 

  56. Reetz, M.T. (2004) Controlling the Enantioselectivity of Enzymes by Directed Evolution: Practical and Theoretical Ramifications, Proc. Natl. Acad. Sci. USA 101, 5716–5722.

    Article  PubMed  CAS  Google Scholar 

  57. Arnold, F.H., Giver, L., Gershenson, A., Zhao, H., and Miyazaki, K. (1999) Directed Evolution of Mesophilic Enzymes into Their Thermophilic Counterparts, Ann. N.Y. Acad. Sci. 870, 400–403.

    Article  PubMed  CAS  Google Scholar 

  58. Song, J.K., Chung, B., Oh, Y.H., and Rhee, J.S. (2002) Construction of DNA-Shuffled and Incrementally Truncated Libraries by a Mutagenic and Unidirectional Reassembly Method: Changing from a Substrate Specificity of Phospholipase to That of Lipase, Appl. Environ. Microbiol. 68, 6146–6151.

    Article  PubMed  CAS  Google Scholar 

  59. Lalonde, J.J., Govardhan, C., Khalaf, N., Martinez, A.G., Visuri, K., and Margolin, A.L. (1995) Cross-Linked Crystals of Candida rugosa Lipase: Highly Efficient Catalysts for the Resolution of Chiral Esters, J. Am. Chem. Soc. 117, 6845–6852.

    Article  CAS  Google Scholar 

  60. Henke, E., Pleiss, J., and Bornscheuer, U.T. (2002) Activity of Lipases and Esterases Towards Tertiary Alcohols: Insights into Structure-Function Relationships, Angew. Chem. Int. Ed. Engl. 41, 3211–3213.

    Article  PubMed  CAS  Google Scholar 

  61. Flood, M.T., and Kondo, M. (2001) Safety Evaluation of Lipase Produced from Candida rugosa: Summary of Toxicological Data, Regul. Toxicol. Pharmacol. 33, 157–164.

    Article  PubMed  CAS  Google Scholar 

  62. Basri, M., Ampon, K., Yunus, W., Razak, C.N.A., and Salleh, A.B. (1995) Enzymatic Synthesis of Fatty Esters by Hydrophobic Lipase Derivatives Immobilized on Organic Polymer Beads, J. Am. Oil Chem. Soc. 72, 407–411.

    CAS  Google Scholar 

  63. Hayes, D.G., and Kleiman, R. (1995) Lipase-Catalyzed Synthesis and Properties of Estolides and Their Esters, J. Am. Oil Chem. Soc. 72, 1309–1316.

    CAS  Google Scholar 

  64. Hoq, M.M., Yamane, T., Shimizu, S., Funada, T., and Ishida, S. (1984) Continuous Synthesis of Glycerides by Lipase in a Microporous Membrane Bioreactor, J. Am. Oil Chem. Soc. 61, 776–781.

    CAS  Google Scholar 

  65. Linfield, W.M., O'Brien, D.J., Serota, S., and Barauskas, R.A. (1984) Lipid-Lipase Interactions. 1. Fat Splitting with Lipase from Candida rugosa, J. Am. Oil Chem. Soc. 61, 1067–1071.

    CAS  Google Scholar 

  66. Marangoni, A.G. (1994) Candida and Pseudomonas Lipase-Catalyzed Hydrolysis of Butteroil in the Absence of Organic Solvents, J. Food Sci. 59, 1096–1099.

    Article  CAS  Google Scholar 

  67. Virto, M.D., Agud, I., Montero, S., Blanco, A., Solozabal, R., Lascaray, J.M., Llama, M.J., Serra, J.L., Landeta, L.C., and Derenobales, M. (1994) Hydrolysis of Animal Fats by Immobilized Candida rugosa Lipase, Enzyme Microb. Technol. 16, 61–65.

    Article  CAS  Google Scholar 

  68. Wang, Y.J., Sheu, J.Y., Wang, F.F., and Shaw, J.F. (1988) Lipase-Catalyzed Oil Hydrolysis in the Absence of Added Emulsifier, Biotechnol. Bioeng. 31, 628–633.

    Article  CAS  PubMed  Google Scholar 

  69. Watanabe, T., Suzuki, Y., Sagesaka, Y., and Kohashi, M. (1995) Immobilization of Lipases on Polyethylene and Application to Perilla Oil Hydrolysis for Production of Alpha-Linolenic Acid, J. Nutr. Sci. Vitaminol. 41, 307–312.

    PubMed  CAS  Google Scholar 

  70. Murty, V.R., Bhat, J., and Muniswaran, P.K. (2004) Hydrolysis of Rice Bran Oil Using an Immobilized Lipase from Candida rugosa in Isooctane, Biotechnol. Lett. 26, 563–567.

    Article  PubMed  CAS  Google Scholar 

  71. Mukherjee, K.D., Kiewitt, I., and Hills, M.J. (1993) Substrate Specificities of Lipases in View of Kinetic Resolution of Unsaturated Fatty Acids, Appl. Microbiol. Biotechnol. 40, 489–493.

    Article  CAS  Google Scholar 

  72. Osterberg, E., Blomstrom, A.C., and Holmberg, K. (1989) Lipase Catalyzed Transesterification of Unsaturated Lipids in a Microemulsion, J. Am. Oil Chem. Soc. 66, 1330–1333.

    Article  CAS  Google Scholar 

  73. Rangheard, M.S., Langrand, G., Triantaphylides, C., and Baratti, J. (1989) Multi-competitive Enzymatic Reactions in Organic Media: A Simple Test for the Determination of Lipase Fatty Acid Specificity, Biochim. Biophys. Acta 1004, 20–28.

    PubMed  CAS  Google Scholar 

  74. McNeill, G.P., and Sonnet, P.E. (1995) Isolation of Erucic Acid from Rapeseed Oil by Lipase-Catalyzed Hydrolysis, J. Am. Oil Chem. Soc. 72, 213–218.

    CAS  Google Scholar 

  75. Kaimal, T.N.B., Prasad, R.B.N., and Rao, T.C. (1993) A Novel Lipase Hydrolysis Method to Concentrate Erucic Acid Glycerides in Cruciferae Oils, Biotechnol. Lett. 15, 353–356.

    Article  CAS  Google Scholar 

  76. Kim, M.G., and Lee, S.B. (1996) Enzymatic Resolution of Racemic Ibuprofen by Lipase-Catalyzed Esterification Reaction: Effects of Water Content and Solid Supports, J. Ferment. Bioeng. 81, 269–271.

    Article  CAS  Google Scholar 

  77. Tsai, S.W., Lu, C.C., and Chang, C.S. (1996) Surfactant Enhancement of (S)-Naproxen Ester Productivity from Racemic Naproxen by Lipase in Isooctane, Biotechnol. Bioeng. 51, 148–156.

    Article  PubMed  Google Scholar 

  78. Lalonde, J. (1995) The Preparation of Homochiral Drugs and Peptides Using Cross-Linked Enzyme Crystals, Chim. Oggi-Chem. Today 13, 31–35.

    Google Scholar 

  79. Garcia, H.S., Arcos, J.A., Ward, D.J., and Hill, C.G. (2000) Synthesis of Glycerides Containing n−3 Fatty Acids and Conjugated Linoleic Acid by Solvent-Free Acidolysis of Fish Oil, Biotechnol. Bioeng. 70, 587–591.

    Article  PubMed  CAS  Google Scholar 

  80. Nagao, T., Yamauchi-Sato, Y., Sugihara, A., Iwata, T., Nagao, K., Yanagita, T., Adachi, S., and Shimada, Y. (2003) Purification of Conjugated Linoleic Acid Isomers Through a Process Including Lipase-Catalyzed Selective Esterification, Biosci. Biotechnol. Biochem. 67, 1429–1433.

    Article  PubMed  CAS  Google Scholar 

  81. Weber, N., Weitkamp, P., and Mukherjee, K.D. (2001) Fatty Acid Steryl, Stanyl, and Steroid Esters by Esterification and Transesterification in vacuo Using Candida rugosa Lipase as Catalyst, J. Agric. Food Chem. 49, 67–71.

    Article  PubMed  CAS  Google Scholar 

  82. Benjamin, S., and Pandey, A. (1998) Candida rugosa and Its Lipases—A Retrospect, J. Sci. Ind. Res. 57, 1–9.

    CAS  Google Scholar 

  83. Calleri, E., Temporini, C., Furlanetto, S., Loiodice, F., Fracchiolla, G., and Massolini, G. (2003) Lipases for Biocatalysis: Development of a Chromatographic Bioreactor, J. Pharmaceut. Biomed. Anal. 32, 715–724.

    Article  CAS  Google Scholar 

  84. Wang, D.L., Nag, A., Lee, G.C., and Shaw, J.F. (2002) Factors Affecting the Resolution of Dl-Menthol by Immobilized Lipase-Catalyzed Esterification in Organic Solvent, J. Agric. Food Chem. 50, 262–265.

    Article  PubMed  CAS  Google Scholar 

  85. Wu, W.H., Akoh, C.C., and Phillips, R.S. (1996) Lipase-Catalyzed Stereoselective Esterification of Dl-Menthol in Organic Solvents Using Acid Anhydrides as Acylating Agents, Enzyme Microb. Technol. 18, 536–539.

    Article  CAS  Google Scholar 

  86. Chattopadhyay, S., Sivalingam, G., and Madras, G. (2003) Lipase Specificity for the Hydrolysis of Poly(vinyl acetate), Polymer Degrad. Stability 80, 477–483.

    Article  CAS  Google Scholar 

  87. Lee, K.T., and Akoh, C.C. (1998) Immobilization of Lipases on Clay, Celite 545, Diethylaminoethyl-, and Carboxymethyl-Sephadex and Their Interesterification Activity, Biotechnol. Techn. 12, 381–384.

    Article  CAS  Google Scholar 

  88. Shieh, C.J., Akoh, C.C., and Yee, L.N. (1996) Optimized Enzymatic Synthesis of Geranyl Butyrate with Lipase AY from Candida rugosa, Biotechnol. Bioeng. 51, 371–374.

    Article  CAS  PubMed  Google Scholar 

  89. Mutua, L.N., and Akoh, C.C. (1993) Synthesis of Alkyl Glycoside Fatty Acid Esters in Nonaqueous Media by Candida sp. Lipase, J. Am. Oil Chem. Soc. 70, 43–46.

    CAS  Google Scholar 

  90. Lopez, N., Pernas, M.A., Pastrana, L.M., Sanchez, A., Valero, F., and Rua, M.L. (2004) Reactivity of Pure Candida rugosa Lipase Isoenzymes (Lip1, Lip2, and Lip3) in Aqueous and Organic Media. Influence of the Isoenzymatic Profile on the Lipase Performance in Organic Media, Biotechnol. Prog. 20, 65–73.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jei-Fu Shaw.

About this article

Cite this article

Akoh, C.C., Lee, GC. & Shaw, JF. Protein engineering and applications of Candida rugosa lipase isoforms. Lipids 39, 513–526 (2004). https://doi.org/10.1007/s11745-004-1258-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-004-1258-7

Keywords

Navigation