Skip to main content

Impact of Culture Conditions on Neutral Lipid Production by Oleaginous Yeast

  • Protocol
  • First Online:
Microbial Lipid Production

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1995))

Abstract

Oleaginous yeasts have the ability to accumulate and store triacylglycerides (TAGs) to more than 20% of their cell mass. Oleaginous yeasts have advantages over oil seed plants and microalgae because they grow much faster (doubling time is usually less than an hour), accumulate cell mass to much higher densities, and are less affected by seasonal or weather conditions. The TAGs synthesized by oleaginous yeasts are often rich in polyunsaturated fatty acids and can be used either for biodiesel production or as edible oils. “Red” yeasts are oleaginous yeasts that can synthesize and accumulate high concentrations of TAGs. Many factors affect the growth of red yeasts and subsequent yields of TAGs. These factors include carbon and nitrogen sources, their concentrations, the C/N ratio, temperature, pH, aeration rate, mineral elements, inorganic salts, and inhibitors. The effect of each factor varies with the yeast strain and its growth phase. Rhodosporidium diobovatum is a “red” yeast that can utilize low-cost substrates, such as waste glycerol derived from biodiesel production as a carbon source, and can synthesize and accumulate high concentrations of both TAGs and carotenoids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ridley CE, Clark CM, Leduc SD, Bierwagen BG, Lin BB, Mehl A, Tobias DA (2012) Biofuels: network analysis of the literature reveals key environmental and economic unknowns. Environ Sci Technol 46:1309–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Koroneos C, Spachos T, Moussiopoulos N (2003) Exergy analysis of renewable energy sources. Renew Energy 28:295–231

    Article  CAS  Google Scholar 

  3. Shafiee S, Topal E (2009) When will fossil fuel reserves be diminished? Energy Policy 37(1):181–118

    Article  Google Scholar 

  4. Abdullah M, Mehmet IY (2015) World energy outlook and place of renewable resources. Int J Sci Technol Res 1:10–17

    Google Scholar 

  5. Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian Q (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34:1–5. https://doi.org/10.1016/j.renene.2008.04.01

    Article  Google Scholar 

  6. Saxena V, Sharma CD, Bhagat SD, Saini VS, Adhikari DK (1998) Lipid and fatty acid biosynthesis by Rhodotorula minuta. J Am Oil Chem Soc 75(4):501–505

    Article  CAS  Google Scholar 

  7. Muniyappa PR, Brammer SC, Noureddini H (1996) Improved conversion of plant oils and animal fats into biodiesel and co-product. Bioresour Technol 56:19–24

    Article  CAS  Google Scholar 

  8. Vicente G, Bautista LF, Rodriguez R, Gutierrez FJ, Sadaba I, Ruiz-Vazquez RM, Torres-Martinez S, Garre V (2009) Biodiesel production from biomass of an oleaginous fungus. Biochem Eng J 48(1):22–27

    Article  CAS  Google Scholar 

  9. Chhetri AB, Tango MS, Budge SM, Watts CK, Islam RM (2008) Non-edible plant oils as new sources for biodiesel production. Int J Mol Sci 9(2):169–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Donot F, Fontana A, Baccou JC, Strub C, Schorr-Galindo S (2014) Single cell oils (SCOs) from oleaginous yeasts and moulds: production and genetics. Biomass Bioenergy 68:135–150

    Article  CAS  Google Scholar 

  11. Ryu BG, Kim J, Kim K, Choi YE, Han JI, Yang JW (2012) High-cell-density cultivation of oleaginous yeast Cryptococcus curvatus for biodiesel production using organic waste from the brewery industry. Bioresour Technol 135:357–364

    Article  PubMed  CAS  Google Scholar 

  12. Ratledge C (1992) Microbial lipids: commercial realities or academic curiosities. In: Kyle DJ, Ratledge C (eds) Industrial applications of single cell oil. AOCS, Illinois, pp 1–15

    Google Scholar 

  13. Li Y, Zhao Z, Bai F (2007) High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzym Microb Technol 41(3):312–317

    Article  CAS  Google Scholar 

  14. Papanikolaou S (2012) Oleaginous yeasts: biochemical events related with lipid synthesis and potential biotechnological applications. Ferment Technol 1:e103

    Article  Google Scholar 

  15. Yang X, Jin G, Gong Z, Shen H, Song Y, Bai F, Zhao ZK (2014) Simultaneous utilization of glucose and mannose from spent yeast cell mass for lipid production by Lipomyces starkeyi. Bioresour Technol 158:383–387

    Article  CAS  PubMed  Google Scholar 

  16. Saenge C, Cheirsilp B, Suksaroge TT, Bourtoom T (2010) Potential use of oleaginous red yeast Rhodotorula glutinis for the bioconversion of crude glycerol from diesel plant to lipids and carotenoids. Process Biochem 46:210–218

    Article  CAS  Google Scholar 

  17. Munch G, Sestric R, Sparling R, Levin DB, Cicek N (2015) Lipid production in the under-characterized oleaginous yeasts, Rhodosporidium babjevae and Rhodosporidium diobovatum from biodiese-derived waste glycerol. Bioresour Technol 185:49–55

    Article  CAS  PubMed  Google Scholar 

  18. Cheirsilp B, Louhasakul Y (2013) Industrial wastes as a promising renewable source for production of microbial lipid and direct transesterification of lipid to biodiesel. Bioresour Technol 142:329–337

    Article  CAS  PubMed  Google Scholar 

  19. Sestric R, Munch G, Cicek N, Sparling R, Levin DB (2014) Growth and neutral lipid synthesis by Yarrowia lipolytica on various carbon substrates under nutrient-sufficient and nutrient-limited conditions. Bioresour Technol 164:41–46

    Article  CAS  PubMed  Google Scholar 

  20. Gong Z, Wang QH, Hu C, Jin G, Zhao ZK (2013) Co-fermentation of cellobiose and xylose by Lipomyces starkeyi for lipid production. Bioresour Technol 117:20–24

    Article  CAS  Google Scholar 

  21. Cohen Z, Ratledge C (2005) Single cell oils. AOCS Press, Champaign, IL

    Google Scholar 

  22. Sperstad S, Lutnaes BF, Stormo SK, Liaaen-Jensen S, Landfald B (2006) Torularhodin and torulene are the major contributors to the carotenoid pool of marine Rhodosporidium babjevae (Golubev). J Ind Microbiol Biotechnol 33:269–273

    Article  CAS  PubMed  Google Scholar 

  23. Moline M, Libkind D, van Broock M (2012) Production of torularhodin, torulene, and B-carotene by Rhodotorula yeasts. In: Barredo J (ed) Microbial carotenoids from fungi: methods and protocols, Methods in molecular biology, vol 898. Springer, New York, pp 275–284

    Chapter  Google Scholar 

  24. Yurkov AM, Vustin MM, Tyaglov BV, Maksimova IA, Sineokiy SP (2008) Pigmented basidiomycetous yeasts are a promising source of carotenoids and ubiquinone Q10. Microbiology 77(1):5–10

    Google Scholar 

  25. Sitepu IR, Sestric R, Ignatia L, Levin D, German JB, Gillies LA, Boundy-Mills KL (2013) Manipulation of culture conditions alters lipid content and fatty acid profiles of a wide variety of known and new oleaginous yeast species. Bioresour Technol 144:360–369

    Article  CAS  PubMed  Google Scholar 

  26. Sitepu I, Ignatia L, Franz A, Wong D, Faulina S, Tsui M, Kanti A, Boundy-Mills K (2012) An improved high-throughput Nile red fluorescence assay for estimating intracellular lipids in a variety of yeast specie. J Microbiol Methods 91:321–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kitcha S, Cheirsilp B (2011) Screening of oleaginous yeasts and optimization for lipid production using crude glycerol as a carbon source. Energy Procedia 9:274–282

    Article  CAS  Google Scholar 

  28. Tanimura A, Takashima M, Sugita T, Endoh R, Kikukawa M, Yamaguchi S, Sakuradani E, Ogawa J, Shima J (2014) Selection of oleaginous yeasts with high lipid productivity for practical biodiesel production. Bioresour Technol 153:230–235

    Article  CAS  PubMed  Google Scholar 

  29. Sriwongchai S, Pokethitiyook P, Kruatrachue M, Bajwa PK, Lee H (2013) Screening of selected oleaginous yeasts for lipid production from glycerol and some factors which affect lipid production by Yarrowia Lipolytica strains. J Microbiol Biotechnol Food Sci 2(5):2344–2348

    CAS  Google Scholar 

  30. Ageitos JM, Vallejo JA, Veiga-Crespo P, Villa TG (2011) Oily yeasts as oleaginous cell factories. Appl Microbiol Biotechnol 90:1219–1227

    Article  CAS  PubMed  Google Scholar 

  31. Sitepu I, Selby T, Lin T, Zhu S, Boundy-Mills K (2014) Carbon source utilization and inhibitor tolerance of 45 oleaginous yeast species. J Ind Microbiol Biotechnol 41(7):1061–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Iassonova DR, Hammond EG, Beattie SE (2008) Oxidative stability of polyunsaturated triacylglycerols encapsulated in oleaginous yeast. J Am Oil Chem Soc 85:711–716

    Article  CAS  Google Scholar 

  33. Li Q, Du W, Liu D (2008) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80:749–756

    Article  CAS  PubMed  Google Scholar 

  34. Ratledge C (2002) Regulation of lipid accumulation in oleaginous microorganisms. Biochem Soc Trans 30(6):1047–1050

    Article  CAS  PubMed  Google Scholar 

  35. Rattray J (1988) Yeast. In: Ratledge C, Wilkinson S (eds) Microbial lipids, vol 1. Academic Press, London, pp 555–697

    Google Scholar 

  36. Rattray J, Scheibeci A, Kidby D (1975) Lipids of yeasts. Bacteriol Rev 39:197–231

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Thiru M, Sankh S, Rangaswamy V (2011) Process for biodiesel production from Cryptococcus curvatus. Bioresour Technol 102(22):10436–10440

    Article  CAS  PubMed  Google Scholar 

  38. Woodbine M (1959) Microbial fat: microorganisms as potential fat producers. Prog Ind Microbiol 1:181–245

    Google Scholar 

  39. Alvarez HM, Mayer F, Fabritius D, Steinbüchel A (1996) Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol 165:377–386

    Article  CAS  PubMed  Google Scholar 

  40. Alvarez H, Steinbüchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60:367–376

    Article  CAS  PubMed  Google Scholar 

  41. Freitas C, Parreira TM, Roseiro J, Reis A, da Silva TL (2014) Selecting low-cost carbon sources for carotenoid and lipid production by the pink yeast Rhodosporidium toruloides NCYC 921 using flow cytometry. Bioresour Technol 158:355–359

    Article  CAS  PubMed  Google Scholar 

  42. Füchtenbusch B, Wullbrandt D, Steinbüchel A (2000) Production of polyhydroxyalkanoic acids by Ralstonia eutropha and Pseudomonas oleovorans from an oil remaining from biotechnological rhamnose production. Appl Microbiol Biotechnol 53(2):167–172

    Article  PubMed  Google Scholar 

  43. Kavadia A, Komaitis M, Chevalot I, Blanchard F, Marc I, Aggelis G (2001) Lipid and γ-linolenic acid accumulation in strains of Zygomycetes growing on glucose. J Am Oil Chem Soc 78(4):341–346

    Article  CAS  Google Scholar 

  44. Makula RA, Lockwood PJ, Finnerty WR (1975) Comparative analysis of the lipids of Acinetobacter species grown on hexadecane. J Bacteriol 121(1):250–258

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Olukoshi ER, Packter NM (1994) Importance of stored triacylglycerols in Streptomyces: possible carbon source for antibiotics. Microbiology 140(4):931–943

    Article  CAS  PubMed  Google Scholar 

  46. Xian M, Yan J, Kang Y, Liu J, Bi Y, Zhen K (2001) Production of γ-linolenic acid by Mortierella isabellina grown on hexadecanol. Lett Appl Microbiol 33(5):367–370

    Article  CAS  PubMed  Google Scholar 

  47. Zhao X, Kong X, Hua Y, Feng B, Zhao ZK (2008) Medium optimization for lipid production through co-fermentation of glucose and xylose by the oleaginous yeast Lipomyces starkeyi. Eur J Lipid Sci Technol 110(5):405–412

    Article  CAS  Google Scholar 

  48. Kurtzman C, Fell J, Boekhout T (2011) The yeasts: a taxonomic study, 5th edn. Elsevier, Amsterdam

    Google Scholar 

  49. Wiebe MG, Koivuranta K, Penttilä M, Ruohonen L (2012) Lipid production in batch and fed-batch cultures of Rhodosporidium toruloides from 5 and 6 carbon carbohydrates. BMC Biotechnol 12(1):1

    Article  CAS  Google Scholar 

  50. Hansson L, Dostálek M (1986) Effect of culture conditions on fatty acid composition in lipids produced by the yeast Cryptococcus albidus var. albidus. J Am Oil Chem Soc 63(9):1179–1184

    Article  CAS  Google Scholar 

  51. Zhang J, Zhu Z, Wang X, Wang N, Wang W, Bao J (2010) Biodetoxification of toxins generated from lignocellulose pretreatment using a newly isolated fungus, Amorphotheca resinae ZN1, and the consequent ethanol fermentation. Biotechnol Biofuels 3(26):1–15

    Google Scholar 

  52. Gong Z, Wang Q, Shen H, Hu C, Jin G, Zhao ZK (2012) Co-fermentation of cellobiose and xylose by Lipomyces starkeyi for lipid production. Bioresour Technol 117:20–24

    Article  CAS  PubMed  Google Scholar 

  53. Heredia L, Ratledge C (1988) Simultaneous utilization of glucose and xylose by Candida curvata D in continuous culture. Biotechnol Lett 10(1):25–30

    Article  CAS  Google Scholar 

  54. Hu C, Wu S, Wang Q, Jin G, Shen H, Zhao ZK (2011) Simultaneous utilization of glucose and xylose for lipid production by Trichosporon cutaneum. Biotechnol Biofuels 4(1):1

    Article  CAS  Google Scholar 

  55. Daniel HJ, Otto RT, Binder M, Reuss M, Syldatk C (1999) Production of 4 sophorolipids from whey: development of a two-stage process with Cryptococcus curvatus 5 ATCC 20509 and Candida bombicola ATCC 22214 using deproteinized whey concentrates as 6 substrates. Appl Microbiol Biotechnol 51(1):40–45

    Article  CAS  PubMed  Google Scholar 

  56. Liang MH, Jiang JG (2013) Advancing oleaginous microorganisms to produce lipid via 34 metabolic engineering technology. Prog Lipid Res 52(4):395–408

    Article  CAS  PubMed  Google Scholar 

  57. Moon N, Hammond E, Glatz B (1978) Conversion of cheese whey and whey permeate to oil and single-cell protein. J Dairy Sci 61:1537–1547

    Article  CAS  Google Scholar 

  58. Guerzoni M, Lambertini P, Lercker G, Marchetti R (1985) Technological potential of some starch degrading yeasts. Starch 37(2):52–57

    Article  CAS  Google Scholar 

  59. Morita T, Konishi M, Fukuoka T, Imura T, Kitamoto D (2007) Microbial conversion of glycerol into glycolipid biosurfactants, mannosylerythritol lipids, by a basidiomycete yeast, Pseudozyma antarctica JCM 10317T. J Biosci Bioeng 104:78–81

    Article  CAS  PubMed  Google Scholar 

  60. Zhu C, Chen B, Fang B (2013) Pretreatment of raw glycerol with activated carbon for 1,3-propanediol production by Clostridium butyricum. Eng Life Sci 13:376–384

    Article  CAS  Google Scholar 

  61. Leoneti AB, Aragão-Leoneti V, Oliveira SVWB (2012) Glycerol as a by-product of biodiesel production in Brazil: alternatives for the use of unrefined glycerol. Renew Energy 45:138–145

    Article  CAS  Google Scholar 

  62. Papanikolaou S, Aggelis G (2009) Biotechnological valorization of biodiesel derived glycerol waste through production of single cell oil and citric acid by Yarrowia lipolytica. Lipid Technol 21:83–87

    Article  CAS  Google Scholar 

  63. Papanikolaou S, Muniglia L, Chevalot I, Aggelis G, Marc I (2002) Yarrowia lipolytica as a potential producer of citric acid from raw glycerol. J Appl Microbiol 92:737–744

    Article  CAS  PubMed  Google Scholar 

  64. Panikolaou S, Fakas S, Fick M, Chevalot I, Galiotou-Panayotou M, Komaitis M, Marc I, Aggelis G (2008) Biotechnological valorisation of raw glycerol discharged after bio-diesel (fatty acid methyl esters) manufacturing process: production of 1,3-propanediol, citric acid and single cell oil. Biomass Bioenergy 32:60–71

    Article  CAS  Google Scholar 

  65. Santos EO, Michelon M, Furlong EB, Burkert JFM, Kalil SJ, Burkert CAV (2012) Evaluation of the composition of culture medium for yeast biomass production using raw glycerol from biodiesel synthesis. Braz J Microbiol 43:432–440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Santos EO, Michelon M, Gallas JA, Kalil SJ, Burkert CAV (2013) Raw glycerol as substrate for the production of yeast biomass. Int J Food Eng 9:413–420

    CAS  Google Scholar 

  67. Silva CM, Borba TM, Burkert CAV, Burkert JFM (2012) Carotenoid production by Phaffia rhodozyma using raw glycerol as an additional carbon source. Int J Food Eng 8(4):1556–3758

    Article  CAS  Google Scholar 

  68. Lundin H (1950) Fat synthesis by microorganisms and its possible applications in industry. J Inst Brew 56:17–28

    Article  CAS  Google Scholar 

  69. Ratledge C (1989) Biotechnology of oils and fats. In: Ratledge C, Wilkinson S (eds) Microbial lipids, vol 2. Academic Press, London, pp 567–668

    Google Scholar 

  70. Turcotte G, Kosaric N (1989) Lipid biosynthesis in oleaginous yeasts. In: Bioprocesses and engineering. Springer, Heidelberg, pp 73–92

    Chapter  Google Scholar 

  71. Beopoulos A, Cescut J, Haddouche R, Uribelarrea JL, Molina-Jouve C, Nicaud JM (2009) Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 48:375–387

    Article  CAS  PubMed  Google Scholar 

  72. Galafassi S, Cucchetti D, Pizza F, Franzosi G, Bianchi D, Compagno C (2012) Lipid production for second generation biodiesel by the oleaginous yeast Rhodotorula graminis. Bioresour Technol 111:398–403

    Article  CAS  PubMed  Google Scholar 

  73. Kraisintu P, Yongmanitchai W, Limtong S (2010) Selection and optimization for lipid production of a newly isolated oleaginous yeast, Rhodosporidium toruloides DMKU3-TK16. Kasetsart J Nat Sci 44:436–445

    CAS  Google Scholar 

  74. Angerbauer C, Siebenhofer M, Mittelbach M, Guebitz GM (2008) Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production. Bioresour Technol 99:3051–3056

    Article  CAS  PubMed  Google Scholar 

  75. Chang YH, Chang KS, Hsu CL, Chuang LT, Chen CY, Huang FY, Jang HD (2013) A comparative study on batch and fed-batch cultures of oleaginous yeast Cryptococcus sp. in glucose-based media and corncob hydrolysate for microbial oil production. Fuel 105:711–717

    Article  CAS  Google Scholar 

  76. Chatzifragkou A, Makri A, Belka A, Bellou S, Mavrou M, Mastoridou M (2011) Biotechnological conversions of biodiesel derived waste glycerol by yeast and fungal species. Energy 36:1097–1108

    Article  CAS  Google Scholar 

  77. Karatay SE, Dönmez G (2010) Improving the lipid accumulation properties of the yeast cells for biodiesel production using molasses. Bioresour Technol 101:7988–7990

    Article  CAS  PubMed  Google Scholar 

  78. Kumar SV, Kumutha K, Krishnan PS, Gopal H (2010) Influence of nitrogen on lipid and biomass production by oleaginous yeast culture. Asian J Biol Sci 5:87–91

    Google Scholar 

  79. Pedersen TA (1961) Lipid formation in Cryptococcus terricolus. Acta Chem Scand 15:651–662

    Article  CAS  Google Scholar 

  80. Pedersen T (1962) Lipid formation in Cryptococcus terricolus. III. Extraction and purification of lipids. Acta Chem Scand 16:374–382

    Article  CAS  Google Scholar 

  81. Raimondi S, Rossi M, Leonardi A, Bianchi MM, Rinaldi T, Amaretti A (2014) Getting lipids from glycerol: new perspectives in biotechnological exploration of Candida freyschussii. Microb Cell Factories 13:83

    Article  CAS  Google Scholar 

  82. Evans CT, Ratledge C (1984) Effect of nitrogen source on lipid accumulation in oleaginous yeasts. Microbiology 130(7):1693–1704

    Article  CAS  Google Scholar 

  83. Fei Q, Chang HN, Shang LA, Choi JDR, Kim N, Kang J (2011) The effect of volatile fatty acids as a sole carbon source on lipid accumulation by Cryptococcus albidus for biodiesel production. Bioresour Technol 102:2695–2701

    Article  CAS  PubMed  Google Scholar 

  84. Huang JZ, Shi QQ, Zhou XL, Lin YX, Xie BF, Wu SG (1998) Studies on the breeding of Mortierella isabellina mutant high producing lipid and its fermentation conditions. Microbiology 25:187–191

    CAS  Google Scholar 

  85. Husain SS, Hardin MM (1952) Influence of carbohydrate and nitrogen sources upon lipid production by certain yeasts. J Food Sci 17(1–6):60–66

    Article  CAS  Google Scholar 

  86. Li YH, Liu B, Zhao ZB, Bai FW (2006) Optimized culture medium and fermentation conditions for lipid production by Rhodosporidium toruloides. Chin J Biotechnol 22:650–656

    Article  CAS  Google Scholar 

  87. Spencer JFT, Spencer DM, Figueroa LIC (1997) Yeasts as living objects: yeast nutrition. In: Yeasts in natural and artificial habitats. Springer, Berlin, pp 68–79

    Chapter  Google Scholar 

  88. Somashekar D, Venkateshwaran G, Sambaiah K, Lokesh BR (2003) Effect of culture 27 conditions on lipid and gamma-linolenic acid production by mucoraceous fungi. Process Biochem 38(12):1719–1724

    Article  CAS  Google Scholar 

  89. Wu S, Hu C, Jin G, Zhao X, Zhao ZK (2010) Phosphate-limitation mediated lipid production by Rhodosporidium toruloides. Bioresour Technol 101:6124–6129

    Article  CAS  PubMed  Google Scholar 

  90. Choi SY, Ryu DD, Rhee JS (1982) Production of microbial lipid: effects of growth rate and oxygen on lipid synthesis and fatty acid composition of Rhodotorula gracilis. Biotechnol Bioeng 24(5):1165–1172

    Article  CAS  PubMed  Google Scholar 

  91. Duarte SH, Ansolin M, Maugeri F (2014) Cultivation of Candida sp. LEB-M3 in glycerol: lipid accumulation and prediction of biodiesel quality parameters. Bioresour Technol 161:416–422

    Article  CAS  PubMed  Google Scholar 

  92. Valero E, Millan C, Ortega JM (2001) Influence of oxygen addition during growth phase on the biosynthesis of lipids in Saccharomyces cerevisiae (M(3)30-9) in enological fermentations. J Biosci Bioeng 92:33–38

    Article  CAS  PubMed  Google Scholar 

  93. Amaretti A, Raimondi S, Sala M, Roncaglia L, De Lucia M, Leonardi A, Rossi M (2010) Single cell oils of the cold-adapted oleaginous yeast Rhodotorula glacialis DBVPG 4785. Microb Cell Factories 9:73

    Google Scholar 

  94. Bass A, Hospodka J (1952) Biosynthesis of fats by yeast. II. Composition of fat at various temperatures. Chem List 46:243–245

    CAS  Google Scholar 

  95. Kates M, Baxter R (1962) Lipid composition of mesophilic and psychrophilic yeasts (Candida species) as influenced by environmental temperature. Can J Biochem Physiol 40(9):1213–1227

    Article  CAS  PubMed  Google Scholar 

  96. Kates M, Paradis M (1973) Phospholipid desaturation in Candida lipolytica as a function of temperature and growth. Can J Biochem 51(2):184–197

    Article  CAS  PubMed  Google Scholar 

  97. McMurrough I, Rose AH (1973) Effects of temperature variation on the fatty acid composition of a psychrophilic Candida species. J Baceriol 114(1):451

    CAS  Google Scholar 

  98. Kessell RHJ (1968) Fatty acids of Rhodotorula gracilis: fat production in submerged culture and the particular effect of pH value. J Appl Bacteriol 31(2):220–231

    Article  CAS  PubMed  Google Scholar 

  99. Miller JJ, Webb NS (1954) Isolation of yeasts from soil with the aid of acid, rose bengal, and oxgall. Soil Sci 77(3):197–204

    Article  CAS  Google Scholar 

  100. Chen W, Zhang C, Song L, Sommerfeld M, Hu Q (2009) A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J Microbiol Methods 77:41–47

    Article  CAS  PubMed  Google Scholar 

  101. Hu C, Zhao X, Zhao J, Wu S, Zongbao K (2009) Effects of biomass hydrolysis by-products on oleaginous yeast Rhodosporidium toruloides. Bioresour Technol 100:4843–4847

    Article  CAS  PubMed  Google Scholar 

  102. Yu X, Zheng Y, Dorgan KM, Chen S (2011) Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid. Bioresour Technol 102:6134–6140

    Article  CAS  PubMed  Google Scholar 

  103. Sitepu IR, Garay LA, Sestric R, Levin D, Block DE, German JB, Boundy-Mills KL (2014) Oleaginous yeasts for biodiesel: current and future trends in biology and production. Biotechnol Adv 32(7):1336–1360

    Article  CAS  PubMed  Google Scholar 

  104. Zhao X, Peng F, Du W, Liu C, Liu D (2012) Effects of some inhibitors on the growth and lipid accumulation of oleaginous yeast Rhodosporidium toruloides and preparation of biodiesel by enzymatic transesterification of the lipid. Bioprocess Biosyst Eng 35(6):993–1004

    Article  CAS  PubMed  Google Scholar 

  105. Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol 74(1):17–24

    Article  CAS  Google Scholar 

  106. Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74(1):25–33

    Article  CAS  Google Scholar 

  107. Parawira W, Tekere M (2011) Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review. Crit Rev Biotechnol 31(1):20–31

    Article  CAS  PubMed  Google Scholar 

  108. Qi F, Kitahara Y, Wang Z, Zhao X, Du W, Liu D (2014) Novel mutant strains of Rhodosporidium toruloides by plasma mutagenesis approach and their tolerance for inhibitors in lignocellulosic hydrolyzate. J Chem Technol Biotechnol 89(5):735–742

    Article  CAS  Google Scholar 

  109. Bligh E, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada through an NSERC Discovery Grant (award #: RGPIN 05961-16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Levin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fakankun, I., Mirzaei, M., Levin, D.B. (2019). Impact of Culture Conditions on Neutral Lipid Production by Oleaginous Yeast. In: Balan, V. (eds) Microbial Lipid Production. Methods in Molecular Biology, vol 1995. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9484-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9484-7_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9483-0

  • Online ISBN: 978-1-4939-9484-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics