Skip to main content

Preparation of Proteoliposomes with Purified TMEM16 Protein for Accurate Measures of Lipid Scramblase Activity

  • Protocol
  • First Online:
Intracellular Lipid Transport

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1949))

Abstract

The distribution of different lipid species between the two leaflets is tightly regulated and underlies the concerted action of distinct catalytic entities. While flippases and floppases establish membrane asymmetry, scramblases randomize the lipid distribution and play pivotal roles during blood clotting, apoptosis, and in processes such as N-linked glycosylation of proteins. The recent discovery of TMEM16 family members acting as scramblases has led to an increasing demand for developing protocols tailored for TMEM16 proteins to enable functional investigations of their scrambling activity. Here we describe a protocol for the expression, purification, and functional reconstitution of TMEM16 proteins into preformed liposomes and measurement of their scrambling activity using fluorescence-labeled lipid derivatives. The reconstitution involves extrusion of liposomes through a membrane, destabilization of liposomes using Triton X-100, and stepwise detergent removal by adsorption on styryl-beads. The scrambling assay is based on the selective bleaching of nitrobenzoxadiazol fluorescent lipids on the outer leaflet of liposomes by the membrane-impermeant reducing agent sodium dithionite. The assay allows conclusions on the substrate specificity and on the kinetics of the transported lipids as shown with the example of a Ca2+-activated TMEM16 scramblase from the fungus Nectria haematococca (nhTMEM16).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. López-Marqués RL, Poulsen LR, Bailly A et al (2015) Structure and mechanism of ATP-dependent phospholipid transporters. Biochim Biophys Acta 1850:461–475

    Article  Google Scholar 

  2. Pomorski TG, Menon AK (2016) Lipid somersaults: uncovering the mechanisms of protein-mediated lipid flipping. Prog Lipid Res 64:69–84

    Article  CAS  Google Scholar 

  3. Lopez-Marques RL, Theorin L, Palmgren MG et al (2014) P4-ATPases: lipid flippases in cell membranes. Pflugers Arch 466:1227–1240

    Article  CAS  Google Scholar 

  4. Lemmon MA (2008) Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol 9:99–111

    Article  CAS  Google Scholar 

  5. Hankins HM, Baldridge RD, Xu P et al (2015) Role of flippases, scramblases, and transfer proteins in phosphatidylserine subcellular distribution. Traffic (Copenhagen, Denmark) 16:35–47

    Article  CAS  Google Scholar 

  6. Schick PK, Kurica KB, Chacko GK (1976) Location of phosphatidylethanolamine and phosphatidylserine in the human platelet plasma membrane. J Clin Invest 57:1221–1226

    Article  CAS  Google Scholar 

  7. Higgins JA, Evans WH (1978) Transverse organization of phospholipids across the bilayer of plasma-membrane subfractions of rat hepatocytes. Biochem J 174:563–567

    Article  CAS  Google Scholar 

  8. Williamson P (2015) Phospholipid scramblases. Lipid Insights 8:41–44

    PubMed  Google Scholar 

  9. Brunner JD, Schenck S, Dutzler R (2016) Structural basis for phospholipid scrambling in the TMEM16 family. Curr Opin Struct Biol 39:61–70

    Article  CAS  Google Scholar 

  10. Suzuki J, Umeda M, Sims PJ et al (2010) Calcium-dependent phospholipid scrambling by TMEM16F. Nature 468:834–838

    Article  CAS  Google Scholar 

  11. Suzuki J, Fujii T, Imao T et al (2013) Calcium-dependent phospholipid scramblase activity of TMEM16 protein family members. J Biol Chem 288:13305–13316

    Article  CAS  Google Scholar 

  12. Griffin DA, Johnson RW, Whitlock JM et al (2016) Defective membrane fusion and repair in Anoctamin5-deficient muscular dystrophy. Hum Mol Genet 25:1900–1911

    Article  CAS  Google Scholar 

  13. Majumder R, Quinn-Allen MA, Kane WH et al (2008) A phosphatidylserine binding site in factor Va C1 domain regulates both assembly and activity of the prothrombinase complex. Blood 112:2795–2802

    Article  CAS  Google Scholar 

  14. Ehlen HWA, Chinenkova M, Moser M et al (2013) Inactivation of anoctamin-6/Tmem16f, a regulator of phosphatidylserine scrambling in osteoblasts, leads to decreased mineral deposition in skeletal tissues. J Bone Miner Res 28:246–259

    Article  CAS  Google Scholar 

  15. Malvezzi M, Chalat M, Janjusevic R et al (2013) Ca2+−dependent phospholipid scrambling by a reconstituted TMEM16 ion channel. Nat Commun 4:2367

    Article  Google Scholar 

  16. Gyobu S, Miyata H, Ikawa M et al (2016) A role of TMEM16E carrying a scrambling domain in sperm motility. Mol Cell Biol 36:645–659

    Article  CAS  Google Scholar 

  17. Brunner JD, Lim NK, Schenck S et al (2014) X-ray structure of a calcium-activated TMEM16 lipid scramblase. Nature 516:207–212

    Article  CAS  Google Scholar 

  18. Menon I, Huber T, Sanyal S et al (2011) Opsin is a phospholipid flippase. Curr Biol 21:149–153

    Article  CAS  Google Scholar 

  19. Comfurius P, Williamson P, Smeets EF et al (1996) Reconstitution of phospholipid scramblase activity from human blood platelets. Biochemistry 35:7631–7634

    Article  CAS  Google Scholar 

  20. McIntyre JC, Sleight RG (1991) Fluorescence assay for phospholipid membrane asymmetry. Biochemistry 30:11819–11827

    Article  CAS  Google Scholar 

  21. Sahu SK, Gummadi SN (2008) Flippase activity in proteoliposomes reconstituted with Spinacea oleracea endoplasmic reticulum membrane proteins: evidence of biogenic membrane flippase in plants. Biochemistry 47:10481–10490

    Article  CAS  Google Scholar 

  22. Goren MA, Morizumi T, Menon I et al (2014) Constitutive phospholipid scramblase activity of a G Protein-coupled receptor. Nat Commun 5:5115

    Article  CAS  Google Scholar 

  23. Ernst OP, Menon AK (2015) Phospholipid scrambling by rhodopsin. Photochem Photobiol Sci 14:1922–1931

    Article  CAS  Google Scholar 

  24. Marek M, Günther-Pomorski T (2016) Assay of flippase activity in proteoliposomes using fluorescent lipid derivatives. Methods Mol Biol 1377:181–191

    Article  CAS  Google Scholar 

  25. Sleight R (1994) Assay of flippase activity in proteoliposomes using fluorescent lipid derivatives. Methods Mol Biol 27:143–160

    CAS  PubMed  Google Scholar 

  26. Rigaud JL, Lévy D (2003) Reconstitution of membrane proteins into liposomes. Methods Enzymol 372:65–86

    Article  CAS  Google Scholar 

  27. Geertsma ER, Nik Mahmood NA, Schuurman-Wolters GK et al (2008) Membrane reconstitution of ABC transporters and assays of translocator function. Nat Protoc 3:256–266

    Article  CAS  Google Scholar 

  28. Lambert O, Levy D, Ranck JL et al (1998) A new “gel-like” phase in dodecyl maltoside-lipid mixtures: implications in solubilization and reconstitution studies. Biophys J 74(2 Pt 1):918–930

    Article  CAS  Google Scholar 

  29. Su Z, Brown EC, Wang W et al (2016) Novel cell-free high-throughput screening method for pharmacological tools targeting K(+) channels. Proc Natl Acad Sci U S A 113:5748–5753

    Article  CAS  Google Scholar 

  30. Schenck S, Wojcik SM, Brose N et al (2009) A chloride conductance in VGLUT1 underlies maximal glutamate loading into synaptic vesicles. Nat Neurosci 12:156–162

    Article  CAS  Google Scholar 

  31. Marek M, Günther-Pomorski T (2016) Assay of flippase activity in proteoliposomes using fluorescent lipid derivatives. In: Bublitz M (ed) P-type ATPases: methods and protocols. Springer, New York, NY, pp 181–191

    Chapter  Google Scholar 

  32. Terashima H, Picollo A, Accardi A (2013) Purified TMEM16A is sufficient to form Ca(2+)-activated Cl(−) channels. Proc Natl Acad Sci U S A 110:19354–19359

    Article  CAS  Google Scholar 

  33. Lim NK, Lam AKM, Dutzler R (2016) Independent activation of ion conduction pores in the double-barreled calcium-activated chloride channel TMEM16A. J Gen Physiol 148:375–392

    Article  CAS  Google Scholar 

  34. Scudieri P, Caci E, Venturini A et al (2015) Ion channel and lipid scramblase activity associated with expression of TMEM16F/ANO6 isoforms. J Physiol 593:3829–3848

    Article  CAS  Google Scholar 

  35. Paulino C, Neldner Y, Lam AKM et al (2017) Structural basis for anion conduction in the calcium-activated chloride channel TMEM16A. elife 6:e26232

    Article  Google Scholar 

  36. Paulino C, Kalienkova V, Lam AKM et al (2017) Activation mechanism of the calcium-activated chloride channel TMEM16A revealed by cryo-EM. Nature 552:421–425

    Article  CAS  Google Scholar 

  37. Watanabe R, Sakuragi T, Noji H et al (2018) Single-molecule analysis of phospholipid scrambling by TMEM16F. Proc Natl Acad Sci U S A 115:3066–3071

    Article  CAS  Google Scholar 

  38. Dang S, Feng S, Tien J et al (2017) Cryo-EM structures of the TMEM16A calcium-activated chloride channel. Nature 552:426–429

    Article  CAS  Google Scholar 

  39. Dekkers DWC, Comfurius P, Bevers EM et al (2002) Comparison between Ca2+−induced scrambling of various fluorescently labelled lipid analogues in red blood cells. Biochem J 362:741–747

    Article  CAS  Google Scholar 

  40. López-Montero I, Rodriguez N, Cribier S et al (2005) Rapid transbilayer movement of ceramides in phospholipid vesicles and in human erythrocytes. J Biol Chem 280:25811–25819

    Article  Google Scholar 

  41. Contreras FX, Sánchez-Magraner L, Alonso A et al (2010) Transbilayer (flip-flop) lipid motion and lipid scrambling in membranes. FEBS Lett 584:1779–1786

    Article  CAS  Google Scholar 

  42. Vishwakarma RA, Vehring S, Mehta A et al (2005) New fluorescent probes reveal that flippase-mediated flip-flop of phosphatidylinositol across the endoplasmic reticulum membrane does not depend on the stereochemistry of the lipid. Org Biomol Chem 3:1275–1283

    Article  CAS  Google Scholar 

  43. Colleau M, Hervé P, Fellmann P et al (1991) Transmembrane diffusion of fluorescent phospholipids in human erythrocytes. Chem Phys Lipids 57:29–37

    Article  CAS  Google Scholar 

  44. Fellmann P, Hervé P, Pomorski T et al (2000) Transmembrane movement of diether phospholipids in human erythrocytes and human fibroblasts. Biochemistry 39:4994–5003

    Article  CAS  Google Scholar 

  45. Kubelt J, Menon AK, Müller P et al (2002) Transbilayer movement of fluorescent phospholipid analogues in the cytoplasmic membrane of Escherichia coli. Biochemistry 41:5605–5612

    Article  CAS  Google Scholar 

  46. Chang QL, Gummadi SN, Menon AK (2004) Chemical modification identifies two populations of glycerophospholipid flippase in rat liver ER. Biochemistry 43:10710–10718

    Article  CAS  Google Scholar 

  47. Marx U, Lassmann G, Holzhütter HG et al (2000) Rapid flip-flop of phospholipids in endoplasmic reticulum membranes studied by a stopped-flow approach. Biophys J 78:2628–2640

    Article  CAS  Google Scholar 

  48. Dawidowicz EA (1987) Dynamics of membrane lipid metabolism and turnover. Annu Rev Biochem 56:43–57

    Article  CAS  Google Scholar 

  49. Ploier B, Menon AK (2016) A fluorescence-based assay of phospholipid scramblase activity. J Vis Exp. https://doi.org/10.3791/54635

Download references

Acknowledgments

We thank Prof. Raimund Dutzler (University of Zurich) for support of this work and critically reading the manuscript.

Competing Financial Interests

The authors declare that they have no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janine Denise Brunner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Brunner, J.D., Schenck, S. (2019). Preparation of Proteoliposomes with Purified TMEM16 Protein for Accurate Measures of Lipid Scramblase Activity. In: Drin, G. (eds) Intracellular Lipid Transport. Methods in Molecular Biology, vol 1949. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9136-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9136-5_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9135-8

  • Online ISBN: 978-1-4939-9136-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics