Skip to main content

Experimental Induction of Genome Chaos

  • Protocol
  • First Online:
Chromothripsis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1769))

Abstract

Genome chaos, or karyotype chaos, represents a powerful survival strategy for somatic cells under high levels of stress/selection. Since the genome context, not the gene content, encodes the genomic blueprint of the cell, stress-induced rapid and massive reorganization of genome topology functions as a very important mechanism for genome (karyotype) evolution. In recent years, the phenomenon of genome chaos has been confirmed by various sequencing efforts, and many different terms have been coined to describe different subtypes of the chaotic genome including “chromothripsis,” “chromoplexy,” and “structural mutations.” To advance this exciting field, we need an effective experimental system to induce and characterize the karyotype reorganization process. In this chapter, an experimental protocol to induce chaotic genomes is described, following a brief discussion of the mechanism and implication of genome chaos in cancer evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heng HH (2015) Debating cancer: the paradox in cancer research. World Scientific, Singapore

    Book  Google Scholar 

  2. Heng HH, Stevens JB, Liu G et al (2004) Imaging genome abnormalities in cancer research. Cell Chromosome 3:1

    Article  PubMed  PubMed Central  Google Scholar 

  3. Heng HH, Stevens JB, Liu G et al (2006) Stochastic cancer progression driven by nonclonal chromosome aberrations. J Cell Physiol 208:461–472

    Article  CAS  PubMed  Google Scholar 

  4. Heng HH, Stevens JB, Bremer SW et al (2011) Evolutionary mechanisms and diversity in cancer. Adv Cancer Res 112:217–253

    Article  CAS  PubMed  Google Scholar 

  5. Heng HH, Liu G, Stevens JB et al (2011) Decoding the genome beyond sequencing: the new phase of genomic research. Genomics 98(4):242–252

    Article  CAS  PubMed  Google Scholar 

  6. Heng HH, Bremer SW, Stevens JB et al (2013) Chromosomal instability (CIN): what it is and why it is crucial to cancer evolution. Cancer Metastasis Rev 32(3–4):325–340

    Article  PubMed  Google Scholar 

  7. Heng HH, Liu G, Stevens JB et al (2013) Karyotype heterogeneity and unclassified chromosomal abnormalities. Cytogenet Genome Res 139(3):144–157

    Article  CAS  PubMed  Google Scholar 

  8. Stephens PJ, Greenman CD, Fu B et al (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144(1):27–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Horne SD, Heng HH (2014) Genome chaos, chromothripsis and cancer evolution. J Cancer Stud Ther 1:1–6

    Google Scholar 

  10. Heng HH (2017) Cancer genomic landscape. In: Ujvari B, Roche B, Thomas F (eds) Ecology and evolution of cancer. Academic Press, Elsevier, pp 69–86

    Chapter  Google Scholar 

  11. Baca SC, Prandi D, Lawrence MS et al (2013) Punctuated evolution of prostate cancer genomes. Cell 153(3):666–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Crasta K, Ganem NJ, Dagher R et al (2012) DNA breaks and chromosome pulverization from errors in mitosis. Nature 482(7383):53–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Forment JV, Kaidi A, Jackson SP (2012) Chromothripsis and cancer: causes and consequences of chromosome shattering. Nat Rev Cancer 12(10):663–670

    Article  CAS  PubMed  Google Scholar 

  14. Holland AJ, Cleveland DW (2012) Chromoanagenesis and cancer: mechanisms and consequences of localized, complex chromosomal rearrangements. Nat Med 18(11):1630–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Inaki K, Liu ET (2012) Structural mutations in cancer: mechanistic and functional insights. Trends Genet 28(11):550–559

    Article  CAS  PubMed  Google Scholar 

  16. Jones MJ, Jallepalli PV (2012) Chromothripsis: chromosomes in crisis. Dev Cell 23(5):908–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu P, Erez A, Nagamani SC et al (2011) Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell 146(6):889–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Malhotra A, Lindberg M, Faust GG et al (2013) Breakpoint profiling of 64 cancer genomes reveals numerous complex rearrangements spawned by homology-independent mechanisms. Genome Res 23:762–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Righolt C, Mai S (2012) Shattered and stitched chromosomes-chromothripsis and chromoanasynthesis-manifestations of a new chromosome crisis? Genes Chromosomes Cancer 51(11):975–981

    Article  CAS  PubMed  Google Scholar 

  20. Setlur SR, Lee C (2012) Tumor archaeology reveals that mutations love company. Cell 149(9):959–961

    Article  CAS  PubMed  Google Scholar 

  21. Tubio JM, Estivill X (2011) Cancer: when catastrophe strikes a cell. Nature 470(7335):476–477

    Article  CAS  PubMed  Google Scholar 

  22. Heng HH (2007) Karyotypic chaos, a form of non-clonal chromosome aberrations, plays a key role for cancer progression and drug resistance. FASEB: Nuclear Structure and Cancer. Vermont Academy, Saxtons River, VT

    Google Scholar 

  23. Duesberg P (2007) Chromosomal chaos and cancer. Sci Am 296(5):52–59

    Google Scholar 

  24. Zhang CZ, Spektor A, Cornils H et al (2015) Chromothripsis from DNA damage in micronuclei. Nature 522(7555):179–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Maciejowski J, Li Y, Bosco N, Campbell PJ, de Lange T (2015) Chromothripsis and Kataegis induced by telomere crisis. Cell 163(7):1641–1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Morishita M, Muramatsu T, Suto Y et al (2016) Chromothripsis-like chromosomal rearrangements induced by ionizing radiation using proton microbeam irradiation system. Oncotarget 7(9):10182–10192

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mardin BR, Drainas AP, Waszak SM et al (2015) A cell-based model system links chromothripsis with hyperploidy. Mol Syst Biol 11(9):828

    Article  PubMed  PubMed Central  Google Scholar 

  28. Stevens JB, Liu G, Bremer SW et al (2007) Mitotic cell death by chromosome fragmentation. Cancer Res 67(16):7686–7694

    Article  CAS  PubMed  Google Scholar 

  29. Stevens JB, Abdallah BY, Liu G et al (2011) Diverse system stresses: common mechanisms of chromosome fragmentation. Cell Death Dis 2:e178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stevens JB, Abdallah BY, Liu G et al (2013) Heterogeneity of cell death. Cytogenet Genome Res 139(3):164–173

    Article  CAS  PubMed  Google Scholar 

  31. Ye CJ, Stevens JB, Liu G et al (2009) Genome based cell population heterogeneity promotes tumorigenicity: the evolutionary mechanism of cancer. J Cell Physiol 219(2):288–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Horne SD, Chowdhury SK, Heng HH (2014) Stress, genomic adaptation, and the evolutionary trade-off. Front Genet 5:92

    Article  PubMed  PubMed Central  Google Scholar 

  33. Heng HH, Regan S, Ye CJ (2016) Genotype, environment, and evolutionary mechanism of diseases. Environ Dis 1:14–23

    Article  Google Scholar 

  34. Heng HH (2007) Cancer genome sequencing: the challenges ahead. BioEssays 29(8):783–794

    Article  PubMed  Google Scholar 

  35. Heng HH (2009) The genome-centric concept: resynthesis of evolutionary theory. BioEssays 31(5):512–525

    Article  PubMed  Google Scholar 

  36. Horne SD, Ye CJ, Heng HH (2015) Chromosomal instability (CIN) in cancer. eLS:1–9

    Google Scholar 

  37. Horne SD, Pollick SA, Heng HH (2015) Evolutionary mechanism unifies the hallmarks of cancer. Int J Cancer 136(9):2012–2021

    Article  CAS  PubMed  Google Scholar 

  38. Liu G, Stevens JB, Horne SD et al (2014) Genome chaos: survival strategy during crisis. Cell Cycle 13(4):528–537

    Article  CAS  PubMed  Google Scholar 

  39. Manolio TA, Collins FS, Cox NJ et al (2009) Finding the missing heritability of complex diseases. Nature 461(7265):747–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Heng HH (2011) Missing heritability and stochastic genome alterations. Nat Rev Genet 11(11):813

    Google Scholar 

  41. Stevens JB, Liu G, Abdallah BY et al (2014) Unstable genomes elevate transcriptome dynamics. Int J Cancer 134(9):2074–2087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stepanenko AA, Kavsan VM (2012) Evolutionary karyotypic theory of cancer versus conventional cancer gene mutation theory. Biopolym Cell 28(4):267–280

    Article  Google Scholar 

  43. Duesberg P, McCormack A (2013) Immortality of cancers: a consequence of inherent karyotypic variations and selections for autonomy. Cell Cycle 12(5):783–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Poot M, Haaf T (2015) Mechanisms of origin, phenotypic effects and diagnostic implications of complex chromosome rearrangements. Mol Syndromol 6:109–133

    Google Scholar 

  45. Li P, Cui C (2016) A broader view of cancer cytogenetics: from nuclear aberrations to cytogenetic abnormalities. J Mol Genet Med 10:e108

    Article  Google Scholar 

  46. Poot M (2017) Of simple and complex genome rearrangements, chromothripsis, chromoanasynthesis, and chromosome chaos. Mol Syndromol 8:115–117

    Article  PubMed  PubMed Central  Google Scholar 

  47. Heng HH, Regan SM, Liu G et al (2016) Why is it crucial to analyze non clonal chromosomal aberrations or NCCAs? Mol Cytogenet 9:15

    Article  PubMed  PubMed Central  Google Scholar 

  48. Rangel N, Forero-Castro M, Rondón-Lagos M (2017) New insights in the cytogenetic practice: karyotypic chaos, non-clonal chromosomal alterations and chromosomal instability in human cancer and therapy response. Genes (Basel) 8(6):E155

    Article  Google Scholar 

  49. Heng HH, Horne SD, Chaudhry S et al (2018) A postgenomic perspective on molecular cytogenetics. Current Genomics (in press)

    Google Scholar 

  50. Heng HH, Squire J, Tsui LC (1992) High-resolution mapping of mammalian genes by in situ hybridization to free chromatin. Proc Natl Acad Sci U S A 89(20):9509–9513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Heng HH, Tsui LC, Moens PB (1994) Organization of heterologous DNA inserts on the mouse meiotic chromosome core. Chromosoma 103(6):401–407

    Article  CAS  PubMed  Google Scholar 

  52. Ye CJ, Heng HH (2017) High resolution fiber-fluorescence in situ hybridization. Methods Mol Biol 1541:151–166

    Article  CAS  PubMed  Google Scholar 

  53. Ye CJ, Liu G, Heng HH (2016) Simultaneous fluorescence immunostaining and FISH. In: Liehr T (ed) Fluorescence in situ hybridization (FISH). Springer, New York, pp 301–325

    Google Scholar 

  54. Heng HH, Ye CJ, Yang F et al (2003) Analysis of marker or complex chromosomal rearrangements present in pre- and post-natal karyotypes utilizing a combination of G-banding, spectral karyotyping and fluorescence in situ hybridization. Clin Genet 63(5):358–367

    Article  CAS  PubMed  Google Scholar 

  55. Ye CJ, Lu W, Liu G et al (2001) The combination of SKY and specific loci detection with FISH or immunostaining. Cytogenet Cell Genet 93(3–4):195–202

    Article  CAS  PubMed  Google Scholar 

  56. Heng HH (2018) Genome chaos: rethinking genomics, evolution and molecular medicine. Academic Press, Elsevier, (in press)

    Google Scholar 

  57. Gorelick R, Heng HH (2011) Sex reduces genetic variation: a multidisciplinary review. Evolution 65(4):1088–1098

    Article  PubMed  Google Scholar 

  58. Heng HH, Horne SD, Stevens SB et al (2016) Heterogeneity mediated system complexity: the ultimate challenge for studying common and complex diseases. In: Sturmberg JP (ed) The value of systems and complexity sciences for healthcare. Springer, New York, pp 107–120

    Chapter  Google Scholar 

  59. Heng HH (2017) Heterogeneity-mediated cellular adaptation and its trade-off: searching for the general principles of diseases. J Eval Clin Pract 23(1):233–237

    Article  PubMed  Google Scholar 

  60. Pellestor F, Gatinois V, Puechberty J et al (2014) Chromothripsis: potential origin in gametogenesis and preimplantation cell divisions. A review. Fertil Steril 102(6):1785–1796

    Article  PubMed  Google Scholar 

  61. Furgason JM, Koncar RF, Michelhaugh SK et al (2015) Whole genome sequence analysis links chromothripsis to EGFR, MDM2, MDM4, and CDK4 amplification in glioblastoma. Oncoscience 2(7):618–628. eCollection

    Article  PubMed  PubMed Central  Google Scholar 

  62. de Pagter MS, van Roosmalen MJ, Baas AF et al (2015) Chromothripsis in healthy individuals affects multiple protein-coding genes and can result in severe congenital abnormalities in offspring. Am J Hum Genet 96(4):651–656

    Article  PubMed  PubMed Central  Google Scholar 

  63. Pellestor F (2014) Chromothripsis: how does such a catastrophic event impact human reproduction? Hum Reprod 29(3):388–393

    Article  CAS  PubMed  Google Scholar 

  64. McDermott DH, Gao JL, Liu Q et al (2015) Chromothriptic cure of WHIM syndrome. Cell 160(4):686–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This manuscript is part of our series of publications on the subject of “the mechanisms of cancer and organismal evolution.” This work was also partially supported by the start-up fund for Christine J. Ye from the Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan. Thanks to Julie Heng for editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry H. Heng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ye, C.J., Liu, G., Heng, H.H. (2018). Experimental Induction of Genome Chaos. In: Pellestor, F. (eds) Chromothripsis. Methods in Molecular Biology, vol 1769. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7780-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7780-2_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7779-6

  • Online ISBN: 978-1-4939-7780-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics