Skip to main content

Advertisement

Log in

Chromosomal instability (CIN): what it is and why it is crucial to cancer evolution

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Results of various cancer genome sequencing projects have “unexpectedly” challenged the framework of the current somatic gene mutation theory of cancer. The prevalence of diverse genetic heterogeneity observed in cancer questions the strategy of focusing on contributions of individual gene mutations. Much of the genetic heterogeneity in tumors is due to chromosomal instability (CIN), a predominant hallmark of cancer. Multiple molecular mechanisms have been attributed to CIN but unifying these often conflicting mechanisms into one general mechanism has been challenging. In this review, we discuss multiple aspects of CIN including its definitions, methods of measuring, and some common misconceptions. We then apply the genome-based evolutionary theory to propose a general mechanism for CIN to unify the diverse molecular causes. In this new evolutionary framework, CIN represents a system behavior of a stress response with adaptive advantages but also serves as a new potential cause of further destabilization of the genome. Following a brief review about the newly realized functions of chromosomes that defines system inheritance and creates new genomes, we discuss the ultimate importance of CIN in cancer evolution. Finally, a number of confusing issues regarding CIN are explained in light of the evolutionary function of CIN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Atkin, N. B., & Baker, M. C. (1990). Are human cancers ever diploid—or often trisomic? Conflicting evidence from direct preparations and cultures. Cytogenetics Cell Genetics, 53(1), 58–60.

    CAS  PubMed  Google Scholar 

  2. Albertson, D. G., Collins, C., McCormick, F., & Gray, J. W. (2003). Chromosome aberrations in solid tumors. Nature Genetics, 34, 369–376.

    CAS  PubMed  Google Scholar 

  3. Heng, H. H., Stevens, J. B., Liu, G., Bremer, S. W., & Ye, C. J. (2004). Imaging genome abnormalities in cancer research. Cell Chromosome, 3(1), 1.

    PubMed  Google Scholar 

  4. Ye, C. J., Liu, G., Bremer, S. W., & Heng, H. H. (2007). The dynamics of cancer chromosomes and genomes. Cytogenetics Genome Research, 118, 237–246.

    CAS  PubMed  Google Scholar 

  5. Bayani, J., Selvarajah, S., Maire, G., Vukovic, B., Al-Romaih, K., Zielenska, M., et al. (2007). Genomic mechanisms and measurement of structural and numerical instability in cancer cells. Seminal Cancer Biology, 17, 5–18.

    CAS  Google Scholar 

  6. Heng, H. H. (2007). Cancer genome sequencing: the challenges ahead. BioEssays, 29, 783–794.

    PubMed  Google Scholar 

  7. Heng, H.H. (2013a). 4D-Genomics: the genome dynamics and constraint in evolution. New York: Springer.

  8. Rowley, J. D. (1998). The critical role of chromosome translocations in human leukemias. Annual Review of Genetics, 32, 495–519.

    CAS  PubMed  Google Scholar 

  9. Hahn, W. C., & Weinberg, R. A. (2002). Modeling the molecular circuitry of cancer. Nat Rev Cancer, 2(5), 331–341.

    CAS  PubMed  Google Scholar 

  10. Vogelstein, B., & Kinzler, K. W. (1993). The multistep nature of cancer. Trends in Genetics, 9, 138–141.

    CAS  PubMed  Google Scholar 

  11. Vogelstein, B., & Kinzler, K. W. (2004). Cancer genes and the pathways they control. Nature Medicine, 10, 789–799.

    CAS  PubMed  Google Scholar 

  12. Mitelman, F. (2006). 50,000 tumors, 40,000 aberrations, and 300 fusion genes: how much remains? 50 years of 46 human chromosomes: progress in cytogenetics. National Cancer Institute, National Institutes of Health, USA.

  13. Sjoblom, T., Jones, S., Wood, L. D., Parsons, D. W., Lin, J., Barber, T. D., et al. (2006). The consensus coding sequences of human breast and colorectal cancers. Science, 314(5797), 268–274.

    PubMed  Google Scholar 

  14. Wood, L. D., Parsons, D. W., Jones, S., Lin, J., Sjöblom, T., Leary, R. J., et al. (2007). The genomic landscapes of human breast and colorectal cancers. Science, 318(5853), 1108–1113.

    CAS  PubMed  Google Scholar 

  15. Stratton, M. R., Campbell, P. J., & Futreal, P. A. (2009). The cancer genome. Nature, 458, 719–724.

    CAS  PubMed  Google Scholar 

  16. Yates, L. R., & Campbell, P. J. (2012). Evolution of the cancer genome. Nat Rev Genet, 13(11), 795–806.

    CAS  PubMed  Google Scholar 

  17. Vincent, M. D. (2011). Cancer: beyond speciation. Adv Cancer Res, 112, 283–350.

    CAS  PubMed  Google Scholar 

  18. Stepanenko, A. A., & Kavsan, V. M. (2012). Evolutionary karyotypic theory of cancer versus conventional cancer gene mutation theory. Biopolymers and Cell, 28, 267–280.

    Google Scholar 

  19. Miklos, G. L. (2005). The human cancer genome project—one more misstep in the war on cancer. Nat Biotech., 23, 535–537.

    Google Scholar 

  20. Heng, H. H., Stevens, J. B., Liu, G., Bremer, S. W., Ye, K. J., Reddy, P. V., et al. (2006). Stochastic cancer progression driven by nonclonal chromosome aberrations. Journal Cell Physiology, 208, 461–472.

    CAS  Google Scholar 

  21. Heppner, H. G. (1984). Tumor heterogeneity. Cancer Research, 44(6), 2259–2265.

    CAS  PubMed  Google Scholar 

  22. Heng, H. H., Liu, G., Stevens, J. B., Bremer, S. W., Ye, K. J., Abdallah, B. Y., et al. (2011). Decoding the genome beyond sequencing: the next phase of genomic research. Genomics, 98, 242–252.

    CAS  PubMed  Google Scholar 

  23. Ye, C. J., Stevens, J. B., Liu, G., Bremer, S. W., Jaiswal, A. S., Ye, K. J., et al. (2009). Genome based cell population heterogeneity promotes tumorigenicity: the evolutionary mechanism of cancer. Journal Cell Physiology, 219, 288–300.

    CAS  Google Scholar 

  24. Heng, H. H., Stevens, J. B., Lawrenson, L., Liu, G., Ye, K. J., Bremer, S. W., et al. (2008). Patterns of genome dynamics and cancer evolution. Cell Oncology, 30, 513–514.

    Google Scholar 

  25. Heng, H. H., Stevens, J. B., Bremer, S. W., Ye, K. J., Liu, G., & Ye, C. J. (2010). The evolutionary mechanism of cancer. Journal Cell Biochemistry, 220, 538–547.

    Google Scholar 

  26. Boveri, T. (1914). Zur Frage der Entstehung maligner Tumoren. Jena: Fisher. Translation Boveri, T. (1929). The origin of malignant tumors. Baltimore: Williams and Wilkins.

  27. Nowell, P. C., & Hungerford, D. A. (1960). Chromosome studies on normal and leukemic human leukocytes. Journal National Cancer Institute, 25, 85–109.

    CAS  Google Scholar 

  28. Weemaes, C. M., Hustinx, T. W., Scheres, J. M., van Munster, P. J., Bakkeren, J. A., & Taalman, R. D. (1981). A new chromosomal instability disorder: the Nijmegen breakage syndrome. Acta Paediatrica Scandinavica, 70(4), 557–564.

    CAS  PubMed  Google Scholar 

  29. Högstedt, B., & Mitelman, F. (1981). The interrelations of micronuclei, chromosomal instability, and mutational activity in acute non-lymphocytic leukemia—a hypothesis. Hereditas, 95, 165–167.

    PubMed  Google Scholar 

  30. Nowell, P. C. (1976). The clonal evolution of tumor cell populations. Science, 194, 23–28.

    CAS  PubMed  Google Scholar 

  31. Loeb, L. A., Springgate, C. F., & Battula, N. (1974). Errors in DNA replication as a basis of malignant change. Cancer Research, 34, 2311–2321.

    CAS  PubMed  Google Scholar 

  32. Hartwell, L. (1992). Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell, 71(4), 543–546.

    CAS  PubMed  Google Scholar 

  33. Lengauer, C., Kinzler, K. W., & Vogelstein, B. (1998). Genetic instabilities in human cancers. Nature, 396, 643–649.

    CAS  PubMed  Google Scholar 

  34. Cahill, D. P., Kinzler, K. W., Vogelstein, B., & Lengauer, C. (1999). Genetic instability and darwinian selection in tumours. Trends Cell Biology, 9, M57–M60.

    CAS  Google Scholar 

  35. Artandi, S. E., Chang, S., Lee, S. L., Alson, S., Gottlieb, G. J., Chin, L., et al. (2000). Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature, 406, 641–645.

    CAS  PubMed  Google Scholar 

  36. Ferguson, D. O. (2000). The nonhomologous end-joining pathway of DNA repair is required for genomic stability and the suppression of translocations. Proceedings National Academy Sciences U S A, 97, 6630–6633.

    CAS  Google Scholar 

  37. Bassing, C. H., Suh, H., Ferguson, D. O., Chua, K. F., Manis, J., Eckersdorff, M., et al. (2003). Histone H2AX: a dosage-dependent suppressor of oncogenic translocations and tumors. Cell, 114, 359–370.

    CAS  PubMed  Google Scholar 

  38. Shen, K. C., Heng, H., Wang, Y., Lu, S., Liu, G., Deng, C. H., et al. (2005). ATM and p21 cooperate to suppress aneuploidy and subsequent tumor development. Cancer Research, 65(19), 8747–8753.

    CAS  PubMed  Google Scholar 

  39. Hanks, S., Coleman, K., Reid, S., Plaja, A., Firth, H., Fitzpatrick, D., et al. (2004). Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nature Genetics, 36, 1159–1161.

    CAS  PubMed  Google Scholar 

  40. Duesberg, P. (1999). How aneuploidy may cause cancer and genetic instability. Anticancer Research, 19, 4887–4906.

    CAS  PubMed  Google Scholar 

  41. Li, R., Sonik, A., Stindl, R., Rasnick, D., & Duesberg, P. (2000). Aneuploidy vs. gene mutation hypothesis of cancer: recent study claims mutation but is found to support aneuploidy. Proceedings National Academy Sciences U S A, 97, 3236–3241.

    CAS  Google Scholar 

  42. Marx, J. (2002). Debate surges over the origins of genetic defects in cancer. Science, 297, 544–546.

    CAS  PubMed  Google Scholar 

  43. Sieber, O. M., Heinimann, K., & Tomlinson, I. P. (2003). Genomic instability—the engine of tumorigenesis? Nature Reviews Cancer, 3(9), 701–708.

    CAS  PubMed  Google Scholar 

  44. Gisselsson, D. (2003). Chromosome instability in cancer: how, when, and why? Advances Cancer Research, 87, 1–29.

    CAS  Google Scholar 

  45. Rajagopalan, H., Nowak, M. A., Vogelstein, B., & Lengauer, C. (2003). The significance of unstable chromosomes in colorectal cancer. Nature Reviews Cancer, 3, 695–701.

    CAS  PubMed  Google Scholar 

  46. Matzke, M. A., Mette, M. F., Kanno, T., & Matzke, A. J. (2003). Does the intrinsic instability of aneuploidy genomes have a causal role in cancer? Trends in Genetics, 19, 253–256.

    CAS  PubMed  Google Scholar 

  47. Gibbs, W. W. (2003). Untangling the roots of cancer. Scientific American, 289, 56–65.

    CAS  PubMed  Google Scholar 

  48. Heng, H. H., Bremer, S. W., Stevens, J., Ye, K. J., Miller, F., Liu, G., et al. (2006). Cancer progression by non-clonal chromosome aberrations. Journal Cell Biochemistry, 98, 1424–1435.

    CAS  Google Scholar 

  49. Heng, H. H., Liu, G., Bremer, S., Ye, K. J., Stevens, J., & Ye, C. J. (2006). Clonal and nonclonal chromosome aberrations and genome variation and aberration. Genome, 49, 195–204.

    CAS  PubMed  Google Scholar 

  50. Mitelman, F. (2000). Recurrent chromosome aberrations in cancer. Mutation Research, 462(2–3), 247–453.

    CAS  PubMed  Google Scholar 

  51. Gisselsson, D., Jonson, T., Petersén, A., Strömbeck, B., Dal Cin, P., Höglund, M., et al. (2001). Telomere dysfunction triggers extensive DNA fragmentation and evolution of complex chromosome abnormalities in human malignant tumors. Proceedings National Academy Sciences U S A, 98(22), 12683–12688.

    CAS  Google Scholar 

  52. Mitelman, F., Johansson, B., & Mertens, F. (2007). The impact of translocations and gene fusions on cancer causation. Nature Reviews Cancer, 7, 233–245.

    CAS  PubMed  Google Scholar 

  53. Mai, S. (2010). Initiation of telomere-mediated chromosomal rearrangements in cancer. J Cell Biochem, 109(6), 1095–1102.

    CAS  PubMed  Google Scholar 

  54. Negrini, S., Gorgoulis, V. G., & Halazonetis, H. D. (2010). Genomic instability—an evolving hallmark of cancer. Nature Reviews Molecular Cell Biology, 11, 225.

    Google Scholar 

  55. Rasnick, D. (2011). The chromosomal imbalance theory of cancer: the autocatalyzed progression of aneuploidy is carcinogenesis. Boca Raton: Science Publishers.

  56. Gordon, D. J., Resio, B., & Pellman, D. (2012). Causes and consequences of aneuploidy in cancer. Nature Reviews Genetics, 13, 189–203.

    CAS  PubMed  Google Scholar 

  57. Chen, G., Rubinstein, B., & Li, R. (2012). Whole chromosome aneuploidy: big mutations drive adaptation by phenotypic leap. BioEssays, 34(10), 893–900.

    PubMed  Google Scholar 

  58. Heng, H. H. (2009). The genome-centric concept: re-synthesis of evolutionary theory. BioEssays, 31, 512–525.

    PubMed  Google Scholar 

  59. Heng, H. H., Bremer, S. W., Stevens, J. B., Ye, K. J., Liu, G., & Ye, C. J. (2009). Genetic and epigenetic heterogeneity in cancer: a genome-centric perspective. Journal Cellular Physiology, 220, 538–547.

    CAS  Google Scholar 

  60. Stevens, J. B., Liu, G., Bremer, S. W., Ye, K. J., Xu, W., Xu, J., et al. (2007). Mitotic cell death by chromosome fragmentation. Cancer Research, 67, 7686–7694.

    CAS  PubMed  Google Scholar 

  61. Stevens, J. B., Abdallah, B. Y., Liu, G., Ye, C. J., Horne, S. D., Wang, G., et al. (2011). Diverse system stresses: common mechanisms of chromosome fragmentation. Cell Death Disease, 2, e178.

    CAS  PubMed  Google Scholar 

  62. Heng, H. H., Spyropoulos, B., & Moens, P. B. (1997). FISH technology in chromosome and genome research. BioEssays, 19(1), 75–84.

    CAS  PubMed  Google Scholar 

  63. Heng, H. H., Ye, C. J., Yang, F., Ebrahim, S., Liu, G., Bremer, S. W., et al. (2003). Analysis of marker or complex chromosomal rearrangements present in pre- and post-natal karyotypes utilizing a combination of G-banding, spectral karyotyping and fluorescence in situ hybridization. Clinical Genetics, 63(5), 358–367.

    CAS  PubMed  Google Scholar 

  64. Heng, H. Q., Chen, W. Y., & Wang, Y. C. (1988). Effects of pingyanymycin on chromosomes: a possible structural basis for chromosome aberration. Mutation Research, 199(1), 199–205.

    CAS  PubMed  Google Scholar 

  65. Stevens, J.B., Horne, S.D., Abdallah, B.Y., Ye, C.J., & Heng, H.H. (2013). Chromosomal instability and transcriptome dynamics in cancer. Cancer and Metastasis Review (in press).

  66. Kitada, K., Taima, A., Ogasawara, K., Metsugi, S., & Aikawa, S. (2011). Chromosome-specific segmentation revealed by structural analysis of individually isolated chromosomes. Genes Chromosomes Cancer, 50(4), 217–227.

    CAS  PubMed  Google Scholar 

  67. Yuen, K. W. (2010). Chromosome instability (CIN). Aneuploidy and Cancer. doi:10.1002/9780470015902.a0022413.

    Google Scholar 

  68. 1000 Genomes Project Consortium. (2010). A map of human genome variation from population-scale sequencing. Nature, 467(7319), 1061–1073.

    Google Scholar 

  69. Beerenwinkel, N., Antal, T., Dingli, D., Traulsen, A., Kinzler, K. W., Velculescu, V. E., et al. (2007). Genetic progression and the waiting time to cancer, 3(11), e225.

    Google Scholar 

  70. Heng, H. H., Stevens, J. B., Bremer, S. W., Liu, G., Abdallah, B. Y., & Ye, C. J. (2011). Evolutionary mechanisms and diversity in cancer. Advances Cancer Research, 112, 217–253.

    CAS  Google Scholar 

  71. Merlo, L. M., Pepper, J. W., Reid, B. J., & Maley, C. C. (2006). Cancer as an evolutionary and ecological process. Nature Reviews Cancer, 6(12), 924–935.

    CAS  PubMed  Google Scholar 

  72. Heng, H, H., Liu, G., Stevens, J.B., Abdallah, B.Y., Horne, S.D., Ye, K.J., et al. (2013). Karyotype heterogeneity and unclassified chromosomal abnormalities. Cytogenetic and Genome Research. doi:10.1159/000348682.

  73. Duncan, A. W., Taylor, M. H., Hickey, R. D., Hanlon Newell, A. E., Lenzi, M. L., Olson, S. B., et al. (2010). The ploidy conveyor of mature hepatocytes as a source of genetic variation. Nature, 467(7316), 707–710.

    CAS  PubMed  Google Scholar 

  74. Duncan, A. W., Hanlon, Newell, A. E., Bi, W., Finegold, M. J., Olson, S. B., et al. (2012). Aneuploidy as a mechanism for stress-induced liver adaptation. Journal Clinical Investigation, 122, 3307–3315.

    CAS  Google Scholar 

  75. Wilkins, A. S. (2010). The enemy within: an epigenetic role of retrotransposons in cancer initiation. BioEssays, 32, 856–865.

    CAS  PubMed  Google Scholar 

  76. Aguilera, A., & Gomez-Gonzalez, B. (2008). Genome instability: a mechanistic view of its causes and consequences. Nature Reviews Genetics, 9(3), 204–217.

    CAS  PubMed  Google Scholar 

  77. Heng, H. H. (2007). Elimination of altered karyotypes by sexual reproduction preserves species identity. Genome, 50, 517–524.

    PubMed  Google Scholar 

  78. Wilkins, A. S., & Holliday, R. (2009). The evolution of meiosis from mitosis. Genetics, 181, 3–12.

    PubMed  Google Scholar 

  79. Gorelick, R., & Heng, H. H. (2011). Sex reduces genetic variation: a multidisciplinary review. Evolution, 65, 1088–1098.

    PubMed  Google Scholar 

  80. Horne, S.D., Abdallah, B.Y., Stevens, J.B., Liu, G., Ye, K.J., Bremer, S.W., et al. (2013a). Genome constraint through sexual reproduction: application of 4D-Genomics in reproductive biology. Systems Biology in Reproductive Medicine. doi:10.3109/19396368.2012.754969.

  81. Colson, I., Delneri, D., & Oliver, S. G. (2004). Effects of reciprocal chromosomal translocations on the fitness of Saccharomyces cerevisiae. EMBO Reports, 5, 392–398.

    CAS  PubMed  Google Scholar 

  82. Blount, Z. D., Barrick, J. E., Davidson, C. J., & Lenski, R. E. (2012). Genomic analysis of a key innovation in an experimental Escherichia coli population. Nature, 489, 513–518.

    CAS  PubMed  Google Scholar 

  83. Rancati, G., Pavelka, N., Fleharty, B., Noll, A., Trimble, R., Walton, K., et al. (2008). Aneuploidy underlies rapid adaptive evolution of yeast cells deprived of a conserved cytokinesis motor. Cell, 135(5), 879–893.

    CAS  PubMed  Google Scholar 

  84. Vincent, M. D. (2010). The animal within: carcinogenesis and the clonal evolution of cancer cells are speciation events sensu stricto. Evolution, 64(4), 1173–1183.

    PubMed  Google Scholar 

  85. Duesberg, P., Mandrioli, D., McCormack, A., & Nicholson, J. M. (2011). Is carcinogenesis a form of speciation? Cell Cycle, 10, 2100–2114.

    CAS  PubMed  Google Scholar 

  86. Pavelka, N., Rancati, G., Zhu, J., Bradford, W. D., Saraf, A., Florens, L., et al. (2010). Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast. Nature, 468, 321–325.

    CAS  PubMed  Google Scholar 

  87. Greaves, M., & Maley, C. C. (2012). Clonal evolution in cancer. Nature, 481(7381), 306–313.

    CAS  PubMed  Google Scholar 

  88. Navin, N., Kendall, J., Troge, J., Andrews, P., Rodgers, L., McIndoo, J., et al. (2011). Tumour evolution inferred by single-cell sequencing. Nature, 472, 90–94.

    CAS  PubMed  Google Scholar 

  89. Horne, S. D., Stevens, J. B., Abdallah, B. Y., Liu, G., Bremer, S. W., Ye, C. J., et al. (2013). Why imatinib remains an exception of cancer research. Journal of Cellular Physiology, 228, 665–670.

    CAS  PubMed  Google Scholar 

  90. Heng, H.H. (2007c). Karyotypic chaos, a form of non-clonal chromosome aberrations, plays a key role for cancer progression and drug resistance. FASEB Meeting: Nuclear Structure and Cancer, Vermont Academy, Saxtons River, Vermont, June 16–21.

  91. Heng, H. H., Liu, G., Stevens, J. B., Bremer, S. W., Ye, K. J., & Ye, C. J. (2010). Genetic and epigenetic heterogeneity in cancer: the ultimate challenge for drug therapy. Current Drug Targets, 11, 1304–1316.

    CAS  PubMed  Google Scholar 

  92. Ao, P. (2009). Global view of bionetwork dynamics: adaptive landscape. Journal Genetics Genomics, 36, 63–73.

    Google Scholar 

  93. Huang, S., Ernberg, I., & Kauffman, S. (2009). Cancer attractors: a systems view of tumors from a gene network dynamics and developmental perspective. Seminars in Cell and Developmental Biology, 20, 869–876.

    CAS  PubMed  Google Scholar 

  94. Johansson, B., Mertens, F., & Mitelman, F. (1996). Primary vs. secondary neoplasia-associated chromosomal abnormalities—balanced rearrangements vs. genomic imbalances? Genes Chromosomes Cancer, 16(3), 155–163.

    CAS  PubMed  Google Scholar 

  95. Zimonjic, D., Brooks, M. W., Popescu, N., Weinberg, R. A., & Hahn, W. C. (2001). Derivation of human tumor cells in vitro without widespread genomic instability. Cancer Research, 61(24), 8838–8844.

    CAS  PubMed  Google Scholar 

  96. Li, R., Rasnick, D., & Duesberg, P. (2002). Correspondence re: D. Zimonjic et al., Derivation of human tumor cells in vitro without widespread genomic instability. Cancer Research, 62(21), 6345–6348.

    CAS  PubMed  Google Scholar 

  97. Bodmer, W. (2008). Genetic instability is not a requirement for tumor development. Cancer Research, 68, 3558–3561.

    CAS  PubMed  Google Scholar 

  98. Harris, H. (2005). A long view of fashions in cancer research. BioEssays, 27(8), 833–838.

    PubMed  Google Scholar 

  99. Garber, J. E., & Offit, K. (2005). Hereditary cancer predisposition syndromes. Journal Clinical Oncology, 23(2), 276–292.

    Google Scholar 

  100. Issa, J. P., & Garber, J. E. (2011). Time to think outside the (genetic) box. Cancer Prevention Research, 4, 6–8.

    PubMed  Google Scholar 

  101. Nana-Sinkam, S. P., & Croce, C. M. (2011). Non-coding RNAs in cancer initiation and progression and as novel biomarkers. Mol Oncol, 5(6), 483–491.

    CAS  PubMed  Google Scholar 

  102. Gibb, E. A., Brown, C. J., & Lam, W. L. (2011). The functional role of long non-coding RNA in human carcinomas. Mol Cancer, 10, 38.

    CAS  PubMed  Google Scholar 

  103. Gatenby, R. (2012). Perspective: finding cancer's first principles. Nature, 491, S55.

    PubMed  Google Scholar 

  104. Weaver, B. A., Silk, A. D., Montagna, C., Verdier-Pinard, P., & Cleveland, D. W. (2007). Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell, 11(1), 25–36.

    CAS  PubMed  Google Scholar 

  105. Weaver, B. A., & Cleveland, D. W. (2008). The aneuploidy paradox in cell growth and tumorigenesis. Cancer Cell, 14(6), 431–433.

    CAS  PubMed  Google Scholar 

  106. Sheltzer, J. M., & Amon, A. (2011). The aneuploidy paradox: costs and benefits of an incorrect karyotype. Trends in Genetics, 27(11), 446–453.

    CAS  PubMed  Google Scholar 

  107. Heng, H. H. (2010). Missing heritability and stochastic genome alterations. Nature Reviews Genetics, 11, 813.

    PubMed  Google Scholar 

  108. Hultén, M. A., Jonasson, J., Iwarsson, E., Uppal, P., Vorsanova, S. G., Yurov, Y. B., et al. (2013). Trisomy 21 mosaicism: we may all have a touch of Down syndrome. Cytogenetic and Genome Research. doi:10.1159/000346028.

    PubMed  Google Scholar 

  109. Yurov, Y. B., Vorsanova, S. G., & Iourov, I. Y. (2009). GIN'n'CIN hypothesis of brain aging: deciphering the role of somatic genetic instabilities and neural aneuploidy during ontogeny. Molecular Cytogenetics, 2, 23.

    PubMed  Google Scholar 

  110. Heng HH (2013b). Preface: back to the future. Cytogenetic and Genome Research. doi:10.1159/000347035.

  111. Williams, B. R., Prabhu, V. R., Hunter, K. E., Glazier, C. M., Whittaker, C. A., Housman, D. E., et al. (2008). Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells. Science, 322(5902), 703–709.

    CAS  PubMed  Google Scholar 

  112. Torres, E. M., Sokolsky, T., Tucker, C. M., Chan, L. Y., Boselli, M., Dunham, M. J., et al. (2007). Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science., 317, 916–924.

    CAS  PubMed  Google Scholar 

  113. Brock, A., Chang, H., & Huang, S. (2009). Non-genetic heterogeneity—a mutation-independent driving force for the somatic evolution of tumours. Nat Rev Genet, 10(5), 336–342.

    CAS  PubMed  Google Scholar 

  114. Okochi, E., Mochizuki, M., Sugimura, T., & Ushijima, T. (2001). The presence of single nucleotide instability in human breast cancer cell lines. Can Res, 61, 7739–7742.

    Google Scholar 

  115. Watanabe, N., Okochi, E., Mochizuki, M., Sugimura, T., & Ushijima, T. (2001). The presence of single nucleotide instability in human breast cancer cell lines. Cancer Research, 61(21), 7739–7742.

    CAS  PubMed  Google Scholar 

  116. Grady, W. M., & Carethers, J. M. (2008). Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology, 135(4), 1079–1099.

    CAS  PubMed  Google Scholar 

  117. Alabert, C., & Groth, A. (2012). Chromatin replication and epigenome maintenance. Nature Reviews Molecular Cell Biology, 13(3), 153–167.

    CAS  PubMed  Google Scholar 

  118. Gadji, M., Vallente, R., Klewes, L., Righolt, C., Wark, L., Kongruttanachok, N., et al. (2011). Nuclear remodeling as a mechanism for genomic instability in cancer. Advances in Cancer Research, 112, 77–126.

    CAS  PubMed  Google Scholar 

  119. Carone, D.M, & Lawrence, J.B. (2013). Heterochromatin instability in cancer: From the Barr body to satellites and the nuclear periphery. Seminars in Cancer Biology, 23(2), 99–108.

    Google Scholar 

  120. Chida, Y., Hamer, M., Wardle, J., & Steptoe, A. (2008). Do stress-related psychological factors contribute to cancer incidence and survival? Nature Clinical Practice Oncology, 5(8), 466–475.

    PubMed  Google Scholar 

  121. Andersen, B. L., Yang, H. C., Farrar, W. B., Golden-Kreutz, D. M., Emery, C. F., Thornton, L. M., et al. (2008). Psychological intervention improves survival for breast cancer patients. Cancer, 113(12), 3450–3458.

    PubMed  Google Scholar 

  122. Stepanenko, A. A., & Kavsan, V. M. (2012). Immortalization and malignant transformation of eukaryotic cells, 46(2), 36–75.

    CAS  Google Scholar 

  123. Watson, J. (2013). Oxidants, antioxidants and the current incurability of metastatic cancers. Open Biol, 3(1), 120144.

    PubMed  Google Scholar 

  124. Galipeau, P. C., Li, X., Blount, P. L., Maley, C. C., Sanchez, C. A., Odze, R. D., et al. (2007). NSAIDs modulate CDKN2A, TP53, and DNA content risk for progression to esophageal adenocarcinoma. PLoS Medicine, 4(2), e67.

    PubMed  Google Scholar 

  125. Li, X., Blount, P. L., Vaughan, T. L., & Reid, B. J. (2011). Application of biomarkers in cancer risk management: evaluation from stochastic clonal evolutionary and dynamic system optimization points of view. PLoS Computational Biology, 7, e1001087.

    CAS  PubMed  Google Scholar 

  126. Park, S. Y., Gönen, M., Kim, H. J., Michor, F., & Polyak, K. (2010). Cellular and genetic diversity in the progression of in situ human breast carcinomas to an invasive phenotype. The Journal of Clinical Investigation, 120(2), 636–644.

    CAS  PubMed  Google Scholar 

  127. Chandrakasan, S., Ye, C. J., Chitlur, M., Mohamed, A. N., Rabah, R., Konski, A., et al. (2011). Malignant fibrous histiocytoma two years after autologous stem cell transplant for Hodgkin lymphoma: evidence for genomic instability. Pediatric Blood Cancer, 56(7), 1143–1145.

    PubMed  Google Scholar 

  128. Burrell, R. A., Juul, N., Johnston, S. R., Reis-Filho, J. S., Szallasi, Z., & Swanton, C. (2010). Targeting chromosomal instability and tumour heterogeneity in HER2-positive breast cancer. Journal of Cellular Biochemistry, 111(4), 782–790.

    CAS  PubMed  Google Scholar 

  129. Roschke, A. V., & Kirsch, I. R. (2010). Targeting karyotypic complexity and chromosomal instability of cancer cells. Current Drug Targets, 11(10), 1341–1350.

    CAS  PubMed  Google Scholar 

  130. Duesberg, P. (2007). Chromosomal chaos and cancer. Scientific American, 296(5), 52–59.

    CAS  PubMed  Google Scholar 

  131. Stephens, P. J., Greenman, C. D., Fu, B., Yang, F., Bignell, G. R., Mudie, L. J., et al. (2011). Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell, 144, 27–40.

    CAS  PubMed  Google Scholar 

  132. Heng, H. H. (2008). The conflict between complex system and reductionism. Journal American Medical Association, 300, 1580–1581.

    CAS  Google Scholar 

  133. Gatenby, R. A., Gillies, R. J., & Brown, J. S. (2010). Evolutionary dynamics of cancer prevention. Nature Reviews Cancer, 10(8), 526–527.

    CAS  PubMed  Google Scholar 

  134. Breivik, J. (2005). The evolutionary origin of genetic instability in cancer development. Seminars Cancer Biology, 15(1), 51–60.

    CAS  Google Scholar 

  135. Bissell, M. J., & Hines, W. C. (2011). Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nature Medicine, 17, 320–329.

    CAS  PubMed  Google Scholar 

  136. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144, 646–674.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This review/synthesis is part of a series of studies entitled, “The mechanisms of somatic cell and organismal evolution.” We would like to thank Gloria Heppner, Gary Stein, O.J. Miller, and Avraham Raz for their continuous support. This work was partially supported by grants from the DOD (GW093028), the National CFIDS Foundation, the Nancy Taylor Foundation for Chronic Diseases, and SeeDNA Biotech Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry H. Heng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heng, H.H., Bremer, S.W., Stevens, J.B. et al. Chromosomal instability (CIN): what it is and why it is crucial to cancer evolution. Cancer Metastasis Rev 32, 325–340 (2013). https://doi.org/10.1007/s10555-013-9427-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-013-9427-7

Keywords

Navigation