Skip to main content

Heterogeneity Mediated System Complexity: The Ultimate Challenge for Studying Common and Complex Diseases

  • Chapter
  • First Online:
The Value of Systems and Complexity Sciences for Healthcare

Abstract

Influenced by the gene-centric conceptual framework, current genetic studies of disease mainly focus on the characterization of gene mutations or other molecular mechanisms. It is generally accepted that gene mutations are the drivers of diseases. However, it has been very hard to identify these common drivers for most common and complex diseases, despite extensive efforts spanning decades. Furthermore, various—omics based studies have illustrated that the common feature of most common diseases is genetic and non-genetic heterogeneity at multiple levels of organization.

Heterogeneity is traditionally considered to be insignificant “noise”, and carefully designed research strategies are often needed to reduce or eliminate this in order to determine the signal pattern. However, if heterogeneity represents a key feature of disease, such approaches are fundamentally limited. It is challenging to translate this “noise free” knowledge back into “noise rich” systems. This paradoxical situation is reflective of the current status of disease research. On the one hand, we know much about the genes linked to these common diseases, and yet, it is extremely difficult to apply this gene-based knowledge to effectively treat these diseases.

The key to solving this dilemma is to directly study system heterogeneity, the key contributor to biological complexity. For example, without heterogeneity, cancer would not form in the first place. It is only when the degree of heterogeneity is used as an index of system instability or evolutionary potential that cancer evolution can be realistically studied. In fact, monitoring system behaviours such as stability often results in better prediction power than focusing on lower level components, as most disease systems are highly dynamic by nature.

Here we use cancer, Gulf War Illness and chronic fatigue syndrome as examples of complex diseases/illnesses to briefly illustrate these concepts. We will discuss how system inheritance and fuzzy inheritance or inherited heterogeneity contribute to diseases more strongly than individual genes, and why the time factor must be incorporated within the multiple level landscape model in order to explain the stochastic behaviour of disease progression and response to treatment. Stress-induced heterogeneity serves not only as a tool of cellular adaptation, but as a trade-off that also contributes to diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davidoff F. Heterogeneity is not always noise: lessons from improvement. JAMA. 2009;302(23):2580–86.

    Article  CAS  PubMed  Google Scholar 

  2. Heng HH. The conflict between complex systems and reductionism. JAMA. 2008;300(13):1580–81.

    Article  CAS  PubMed  Google Scholar 

  3. Heng HH, et al. Genetic and epigenetic heterogeneity in cancer: a genome-centric perspective. J Cell Physiol. 2009;220(3):538–47.

    Article  CAS  PubMed  Google Scholar 

  4. Heppner GH. Tumor heterogeneity. Cancer Res. 1984;44(6):2259–65.

    CAS  PubMed  Google Scholar 

  5. Heng HH. The genome-centric concept: resynthesis of evolutionary theory. BioEssays. 2009;31(5): 512–25.

    Article  PubMed  Google Scholar 

  6. Ye CJ, et al. The dynamics of cancer chromosomes and genomes. Cytogenet Genome Res. 2007; 118(2–4):237–46.

    Article  CAS  PubMed  Google Scholar 

  7. Heng HH, et al. Chromosomal instability (CIN): what it is and why it is crucial to cancer evolution. Cancer Metastasis Rev. 2013;32(3–4):325–40.

    Article  PubMed  Google Scholar 

  8. Heng HH, et al. Evolutionary mechanisms and diversity in cancer. Adv Cancer Res. 2011;112:217–53.

    Article  CAS  PubMed  Google Scholar 

  9. Heng HH, et al. The evolutionary mechanism of cancer. J Cell Biochem. 2010;109(6):1072–84.

    CAS  PubMed  Google Scholar 

  10. Heng HH, et al. Cancer progression by non-clonal chromosome aberrations. J Cell Biochem. 2006;98(6):1424–35.

    Article  CAS  PubMed  Google Scholar 

  11. Heng HH, et al. Clonal and non-clonal chromosome aberrations and genome variation and aberration. Genome. 2006;49(3):195–204.

    Article  CAS  PubMed  Google Scholar 

  12. Heng HH. Cancer genome sequencing: the challenges ahead. Bioessays. 2007;29(8):783–94.

    Article  PubMed  Google Scholar 

  13. Nesse RM. How is Darwinian medicine useful? West J Med. 2001;174(5):358–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Podlaha O, et al. Evolution of the cancer genome. Trends Genet. 2012;28(4):155–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Heng HH. Debating cancer: the paradox in cancer research. Singapore: World Scientific Publishing Company; 2015.

    Book  Google Scholar 

  16. Heng HH. Missing heritability and stochastic genome alterations. Nat Rev Genet. 2010;11(11):813.

    Article  PubMed  Google Scholar 

  17. Yurov YB, et al. X chromosome aneuploidy in the Alzheimer’s disease brain. Mol Cytogenet. 2014;7(1):20.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Heng HH, et al. Karyotype heterogeneity and unclassified chromosomal abnormalities. Cytogenet Genome Res. 2013;139(3):144–57.

    Article  CAS  PubMed  Google Scholar 

  19. Heng HH, et al. Decoding the genome beyond sequencing: the new phase of genomic research. Genomics. 2011;98(4):242–52.

    Article  CAS  PubMed  Google Scholar 

  20. Wahab MA, et al. Elevated chromosome translocation frequencies in New Zealand nuclear test veterans. Cytogenet Genome Res. 2008;121(2):79–87.

    Article  CAS  PubMed  Google Scholar 

  21. Horne SD, Chowdhury SK, Heng HH. Stress, genomic adaptation, and the evolutionary trade-off. Front Genet. 2014;5:92.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhang K, et al. The unfolded protein response sensor IRE1alpha is required at 2 distinct steps in B cell lymphopoiesis. J Clin Invest. 2005;115(2):268–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Astolfi PA, Salamini F, Sgaramella V. Are we genomic mosaics? Variations of the genome of somatic cells can contribute to diversify our phenotypes. Curr Genomics. 2010;11(6):379–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Duncan AW. Aneuploidy, polyploidy and ploidy reversal in the liver. Semin Cell Dev Biol. 2013;24(4):347–56.

    Article  PubMed  Google Scholar 

  25. Duncan AW, et al. Aneuploidy as a mechanism for stress-induced liver adaptation. J Clin Invest. 2012; 122(9):3307–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Horne SD, et al. Genome constraint through sexual reproduction: application of 4D-Genomics in reproductive biology. Syst Biol Reprod Med. 2013;59(3):124–30.

    Article  PubMed  Google Scholar 

  27. Dewhurst SM, et al. Tolerance of whole-genome doubling propagates chromosomal instability and accelerates cancer genome evolution. Cancer Discov. 2014;4(2):175–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Duesberg P, et al. The chromosomal basis of cancer. Cell Oncol. 2005;27(5–6):293–318.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Heng HH. Bio-complexity: challenging reductionism. In: Sturmberg JP, Martin CM, editors. Handbook on systems and complexity in health. New York: Springer; 2013. p. 193–208.

    Chapter  Google Scholar 

  30. Gorelick R, Heng HH. Sex reduces genetic variation: a multidisciplinary review. Evolution. 2011;65(4):1088–98.

    Article  PubMed  Google Scholar 

  31. Heng HH. Elimination of altered karyotypes by sexual reproduction preserves species identity. Genome. 2007;50(5):517–24.

    Article  PubMed  Google Scholar 

  32. Wilkins AS, Holliday R. The evolution of meiosis from mitosis. Genetics. 2009;181(1):3–12.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Horne SD, Pollick SA, Heng HH. Evolutionary mechanism unifies the hallmarks of cancer. Int J Cancer 2015;136(9):2012–21.

    Article  CAS  PubMed  Google Scholar 

  34. Heng HH, et al. Stochastic cancer progression driven by non-clonal chromosome aberrations. J Cell Physiol. 2006;208(2):461–72.

    Article  CAS  PubMed  Google Scholar 

  35. Ye CJ, et al. Genome based cell population heterogeneity promotes tumorigenicity: the evolutionary mechanism of cancer. J Cell Physiol. 2009;219(2):288–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Heng HH. Karyotypic Chaos, A form of non-clonal chromosome aberrations, plays a key role for cancer progression and drug resistance. In: FASEB: nuclear structure and cancer. Saxtons River, Vermont: Vermont Academy; 2007.

    Google Scholar 

  37. Heng HH, et al. Genetic and epigenetic heterogeneity in cancer: the ultimate challenge for drug therapy. Curr Drug Targets. 2010;11(10):1304–16.

    Article  CAS  PubMed  Google Scholar 

  38. Gatenby RA, et al. Adaptive therapy. Cancer Res. 2009;69(11):4894–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu G, et al. Genome chaos: survival strategy during crisis. Cell Cycle. 2014;13(4):528–37.

    Article  CAS  PubMed  Google Scholar 

  40. Xu J, et al. Molecular cytogenetics of autism. Curr Genomics. 2004;5(4):347–64.

    Article  CAS  Google Scholar 

  41. Iourov IY, Vorsanova SG, Yurov YB. Chromosomal mosaicism goes global. Mol Cytogenet. 2008;1:26.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kinne RW, et al. Mosaic chromosomal aberrations in synovial fibroblasts of patients with rheumatoid arthritis, osteoarthritis, and other inflammatory joint diseases. Arthritis Res. 2001;3(5):319–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Heng HH, Stevens JB, Liu G, Bremer SW, Ye CJ. Imaging genome abnormalities in cancer research. Cell Chromosome. 2004;3:1.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Research Advisory Committee on Gulf War Veterans’ Illnesses, Gulf War Illness and the Health of Gulf War Veterans: Research Update and Recommendations. Boston: U.S. Government Printing Office; 2009–2013, 2014.

    Google Scholar 

  45. Ye CJ, Stevens JB, Liu G, Ye KJ, Yang F, Bremer SW, Heng HH. Combined multicolor-FISH and immunostaining. Cytogenet Genome Res. 2006;114(3–4):227–34.

    Article  CAS  PubMed  Google Scholar 

  46. Stevens JB, Liu G, Bremer SW, Ye KJ, Xu W, Xu J, Sun Y, Wu GS, Savasan S, Krawetz SA, Ye CJ, Heng HH. Mitotic cell death by chromosome fragmentation. Cancer Res. 2007;67(16):7686–94.

    Article  CAS  PubMed  Google Scholar 

  47. Heng HH. The contribution of genomic heterogeneity. Preface Cytogenet Genome Res. 2013;139(3):141–43

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This manuscript is part of a series of studies entitled “The mechanism of somatic and organismal evolution”. This work was partially supported by grants to Henry Heng from the United States Department of Defense (GW093028), SeeDNA Inc., the National Chronic Fatigue and Immune Dysfunction Syndrome Foundation, and the Nancy Taylor Foundation for Chronic Diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry H. Heng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Heng, H.H. et al. (2016). Heterogeneity Mediated System Complexity: The Ultimate Challenge for Studying Common and Complex Diseases. In: Sturmberg, J. (eds) The Value of Systems and Complexity Sciences for Healthcare. Springer, Cham. https://doi.org/10.1007/978-3-319-26221-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26221-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26219-2

  • Online ISBN: 978-3-319-26221-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics